

Exceptional service in the national interest

Progress and Challenges in Computational Peridynamics

David Littlewood

Workshop on Nonlocal Models in Mathematics, Computation, Science, and Engineering
28 October 2015

Center for Computing Research

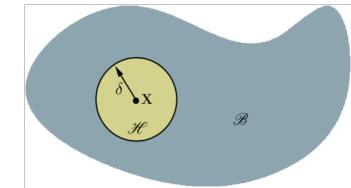
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2015-XXXX

Peridynamic Theory of Solid Mechanics

Peridynamics is a mathematical theory that unifies the mechanics of continuous media, cracks, and discrete particles

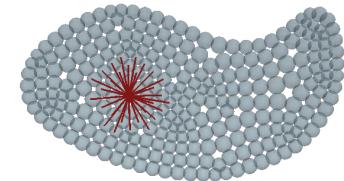
- Peridynamics is a nonlocal extension of continuum mechanics
- Remains valid in presence of discontinuities, including cracks
- Balance of linear momentum is based on an integral equation

$$\rho(\mathbf{x})\ddot{\mathbf{u}}(\mathbf{x}, t) = \underbrace{\int_{\mathcal{B}} \{\underline{\mathbf{T}}[\mathbf{x}, t] \langle \mathbf{x}' - \mathbf{x} \rangle - \underline{\mathbf{T}}'[\mathbf{x}', t] \langle \mathbf{x} - \mathbf{x}' \rangle\} dV_{\mathbf{x}'} + \mathbf{b}(\mathbf{x}, t)}_{\text{Divergence of stress replaced with integral of nonlocal forces.}}$$



- Peridynamic bonds connect any two material points that interact directly
- Peridynamic forces are determined by force states acting on bonds
- A peridynamic body may be discretized by a finite number of elements

$$\rho(\mathbf{x})\ddot{\mathbf{u}}_h(\mathbf{x}, t) = \sum_{i=0}^N \{\underline{\mathbf{T}}[\mathbf{x}, t] \langle \mathbf{x}'_i - \mathbf{x} \rangle - \underline{\mathbf{T}}'[\mathbf{x}'_i, t] \langle \mathbf{x} - \mathbf{x}'_i \rangle\} \Delta V_{\mathbf{x}'_i} + \mathbf{b}(\mathbf{x}, t)$$



S.A. Silling. Reformulation of elasticity theory for discontinuities and long-range forces. *Journal of the Mechanics and Physics of Solids*, 48:175-209, 2000.

S.A. Silling and E. Askari. A meshfree method based on the peridynamic model of solid mechanics. *Computers and Structures*, 83:1526-1535, 2005.

Silling, S.A. and Lehoucq, R. B. Peridynamic Theory of Solid Mechanics. *Advances in Applied Mechanics* 44:73-168, 2010.

The *Peridigm* Computational Peridynamics Code

WHAT IS PERIDIGM?

- Open-source software developed at Sandia National Laboratories
- C++ code based on Sandia's *Trilinos* project
- Platform for multi-physics peridynamic simulations
- Capabilities:
 - State-based constitutive models
 - Implicit and explicit time integration
 - Contact for transient dynamics
 - Large-scale parallel simulations
- Compatible with pre- and post-processing tools
 - Cubit mesh generation
 - Paraview visualization tools
 - SEACAS utilities
- Designed for extensibility

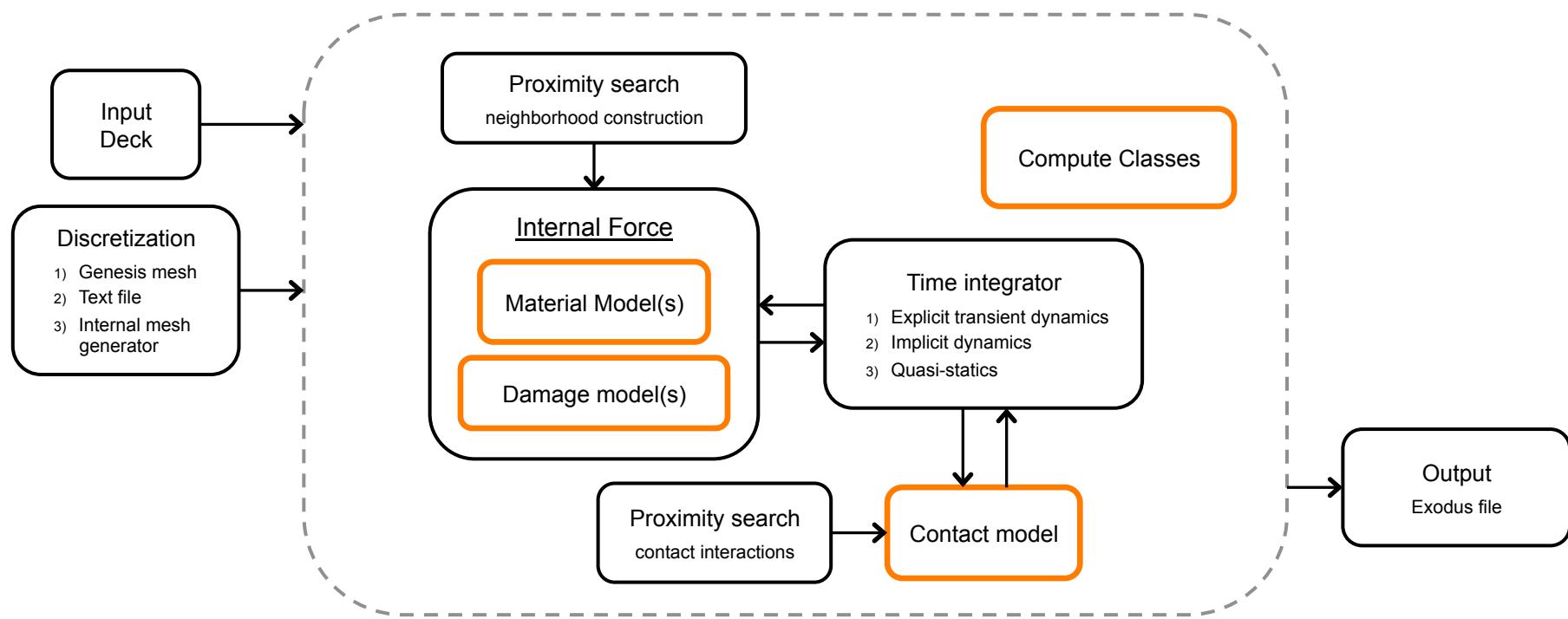
Contributors

Michael Parks	John Foster, et al.
David Littlewood	Stewart Silling
John Mitchell	Alex Vasenkov
Dan Turner	

Peridigm Code Architecture

DESIGN GOALS:

- State-based peridynamics
- Explicit and Implicit time integration
- Proximity search neighborhood construction
- Contact
- Massively parallel
- Performance
- Extensibility



Orange denotes extensible components

Ingredients for Computational Peridynamics

- Constitutive model
- Bond-failure law
- Contact model
- Discretization
- Time integration
 - Explicit
 - Implicit
- Pre- and post-processing
- Model coupling

Constitutive Models for Peridynamics

PERIDYNAMIC FORCE STATES MAP BONDS TO PAIRWISE FORCE DENSITIES

- Peridynamic constitutive laws can be grouped into two categories
 - *Bond-based*: bond forces depend only on a single pair of material points
 - *State-based*: bond forces depend on deformations of all neighboring material points

Microelastic Material ¹

- Bond-based constitutive model
- Pairwise forces are a function of bond stretch

$$s = \frac{y - x}{x}$$

- Magnitude of pairwise force density given by

$$\underline{t} = \frac{18k}{\pi\delta^4} s$$

Linear Peridynamic Solid ²

- State-based constitutive model
- Deformation decomposed into deviatoric and dilatational components

$$\theta = \frac{3}{m} \int_{\mathcal{H}} (\underline{\omega} \underline{x}) \cdot \underline{e} dV \quad \underline{e}^d = \underline{e} - \frac{\theta \underline{x}}{3}$$

- Magnitude of pairwise force density given by

$$\underline{t} = \frac{3k\theta}{m} \underline{\omega} \underline{x} + \frac{15\mu}{m} \underline{\omega} \underline{e}^d$$

Definitions

\underline{x}	bond vector
x	initial bond length
y	deformed bond length
s	bond stretch
\underline{e}	bond extension
\underline{e}^d	deviatoric bond extension
$\underline{\omega}$	influence function
V	volume
\mathcal{H}	neighborhood
m	weighted volume
θ	dilatation
δ	horizon
k	bulk modulus
μ	shear modulus
\underline{t}	pairwise force density

1. S.A. Silling. Reformulation of elasticity theory for discontinuities and long-range forces. *Journal of the Mechanics and Physics of Solids*, 48:175-209, 2000.
2. S.A. Silling, M. Epton, O. Weckner, J. Xu, and E. Askari, Peridynamic states and constitutive modeling, *Journal of Elasticity*, 88, 2007.

Classical Material Models Can Be Applied in Peridynamics

*CORRESPONDENCE APPROACH RESULTS IN A NON-ORDINARY STATE-BASED MATERIAL MODEL*¹

- Approximate deformation gradient based on initial and current locations of material points in family

Approximate Deformation Gradient

$$\bar{\mathbf{F}} = (\underline{\mathbf{Y}} * \underline{\mathbf{X}}) \mathbf{K}^{-1}$$

Shape Tensor

$$\mathbf{K} = \underline{\mathbf{X}} * \underline{\mathbf{X}}$$

Definitions

$\underline{\mathbf{X}}$	reference position
$\underline{\mathbf{Y}}$	vector state
\mathbf{K}	deformation vector state
$\bar{\mathbf{F}}$	shape tensor
$\underline{\mathbf{F}}$	approximate deformation gradient
ξ	bond
$\underline{\omega}$	influence function
σ	Piola stress

- Kinematic data passed to classical material model
- Classical material model computes stress
- Stress converted to pairwise force density

$$\underline{\mathbf{T}}(\xi) = \underline{\omega}(\xi) \sigma \mathbf{K}^{-1} \xi$$

- Suppression of zero-energy modes (optional)²

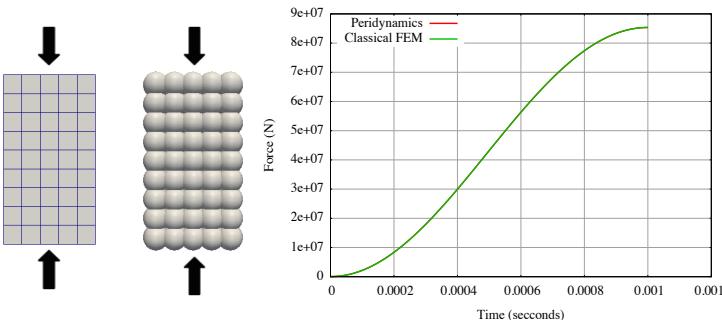
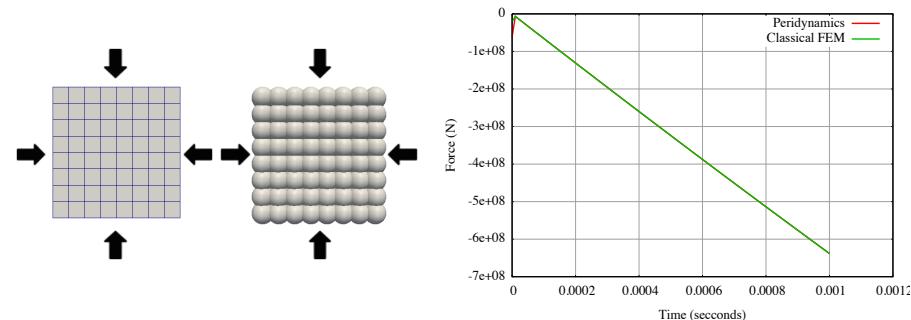
1. S.A. Silling, M. Epton, O. Weckner, J. Xu, and E. Askari, Peridynamic states and constitutive modeling, *Journal of Elasticity*, 88, 2007.

2. Littlewood, D. A Nonlocal Approach to Modeling Crack Nucleation in AA 7075-T651. Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition, Denver, Colorado, 2011.

Examples of Verification Problems

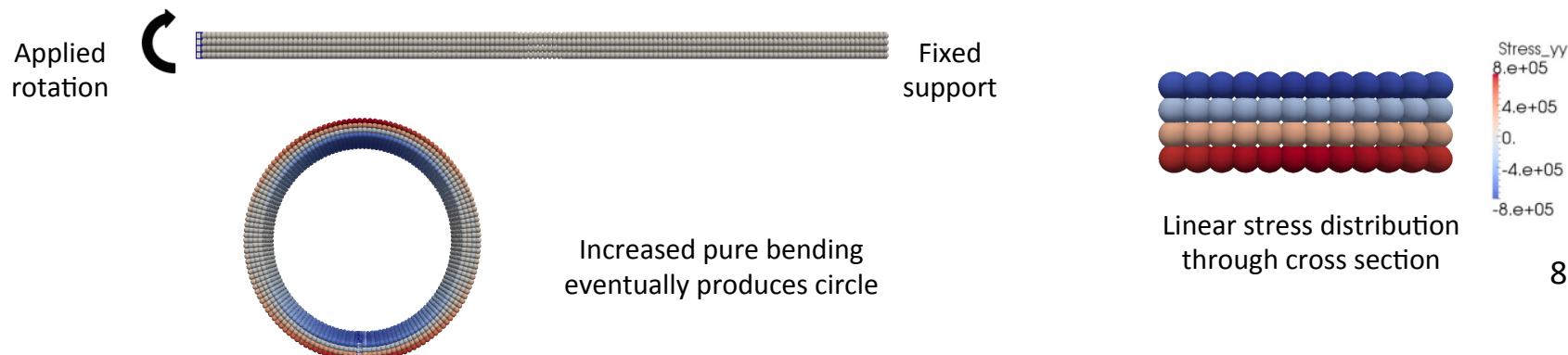
Uniaxial and hydrostatic compression

- Tests constructed such that peridynamics and classical FEM should yield same result
- Simulation results verified for numerous material models



Beam bending

- Test peridynamics with neo-Hookean material model against classical beam bending theory
- Simulation gives expected bending response and stress distribution



Position-Aware Linear Solid Material Model

ADDRESSES SURFACE EFFECT

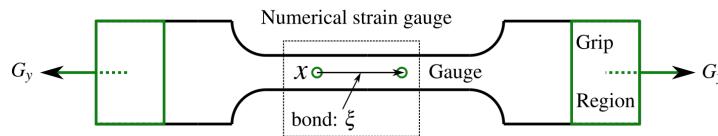
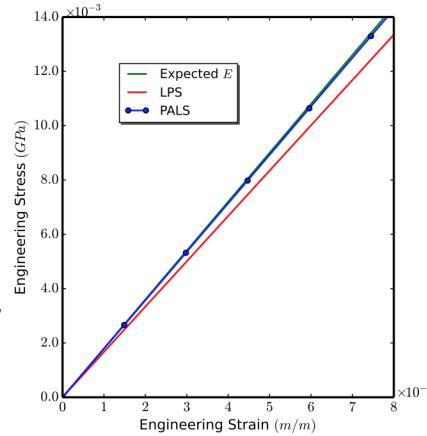
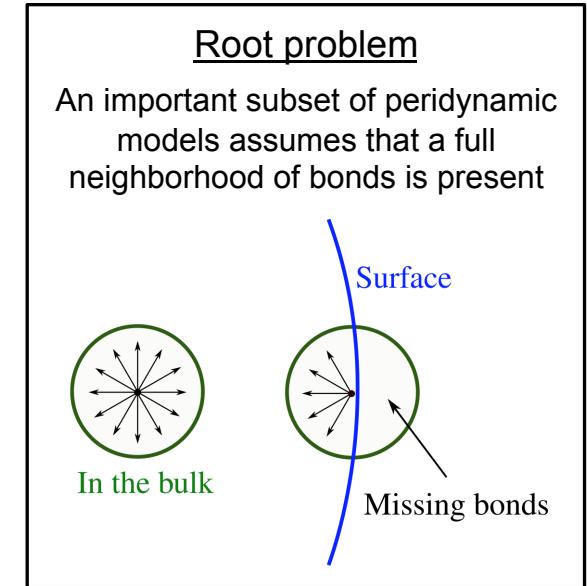
- Position-Aware Linear Solid (PALS) constitutive model takes proximity to free surfaces into account

$$W = \frac{1}{2}K\theta^2 + \mu(\underline{\sigma}\underline{\epsilon}) \bullet \underline{\epsilon}, \quad \theta = (\underline{\omega}|X|) \bullet \underline{\epsilon}$$

- Coefficients σ and ω are determined for each point in the discretized model
- Calculation of σ and ω ensures that the expected strain energy is recovered for a set of *matching deformations*

Example calculation

PALS model accurately recovers elastic modulus in tensile test



Ingredients for Computational Peridynamics

- Constitutive model
- Bond-failure law
- Contact model
- Discretization
- Time integration
 - Explicit
 - Implicit
- Pre- and post-processing
- Model coupling

Material Failure Is Controlled by a Bond-Failure Law

THE CRITICAL-STRETCH MODEL IS THE SIMPLEST BOND-FAILURE LAW

- A bonds fails irreversibly when its stretch exceeds a critical value

$$s_{\max} = \frac{y_{\max} - x}{x} \quad d = \begin{cases} 0 & \text{if } s_{\max} < s_0 \\ 1 & \text{if } s_{\max} \geq s_0 \end{cases}$$

- The critical stretch value is a function of the energy release rate

$$s_0 = \sqrt{\frac{5G_o}{9k\delta}}$$

EXAMPLES OF OTHER BOND-FAILURE LAWS

- Modifications of critical stretch law for pervasive damage [Silling]
- Energy-based approach [Foster]
- Ductile failure models for peridynamics [Silling]

Silling, S.A. and Askari, E. A meshfree method based on the peridynamic model of solid mechanics. *Computers and Structures* 83:1526-1535, 2005.

SIERRA Solid Mechanics Team. Sierra/SolidMechanics 4.36 user's guide. SAND Report 2015-2199, Sandia National Laboratories, Albuquerque, NM and Livermore, CA.

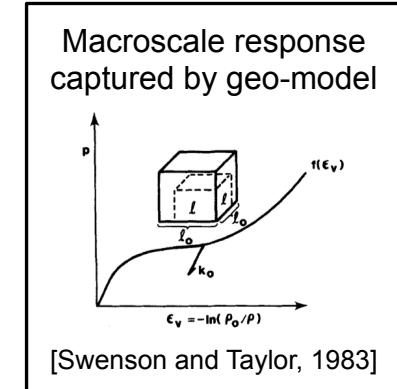
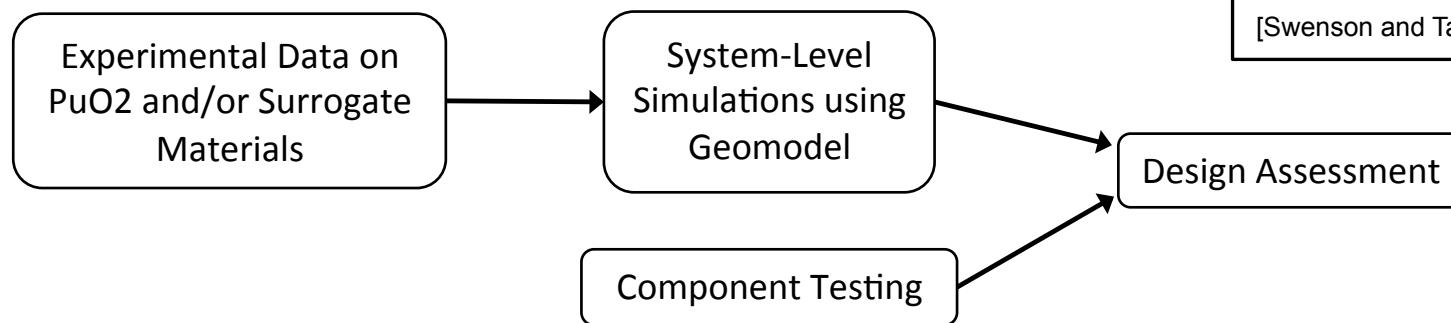
Foster, J.T., Silling, S.A., and Chen, W. An energy based failure criterion for use with peridynamic states. *Journal for Multiscale Computational Engineering* 9(6): 675-687, 2011.

Littlewood, D.J., Silling, S.A., Mitchell, J.A., Seleson, P.D., Bond, S.D., Parks, M.L., Turner, D.Z., Burnett, D.J., Ostien, J. and Gunzburger, M. Strong local-nonlocal coupling for integrated fracture modeling. SAND Report 2015-7998, Sandia National Laboratories, Albuquerque, NM and Livermore, CA.

Example Simulation: Grain-Scale Modeling of Fuel Pellets

DESIGN ASSESSMENT BASED ON EXPERIMENTS AND SIMULATIONS

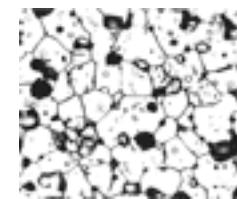
- Performing experiments on PuO_2 is difficult and expensive
- Key role for computational simulation
- Macroscale material response captured by continuum model



MECHANICAL PROPERTIES DICTATED BY FABRICATION, STORAGE, AND SERVICE CONDITIONS

Pressed
 PuO_2 pellet

Sintered pellet
at 1400 °C

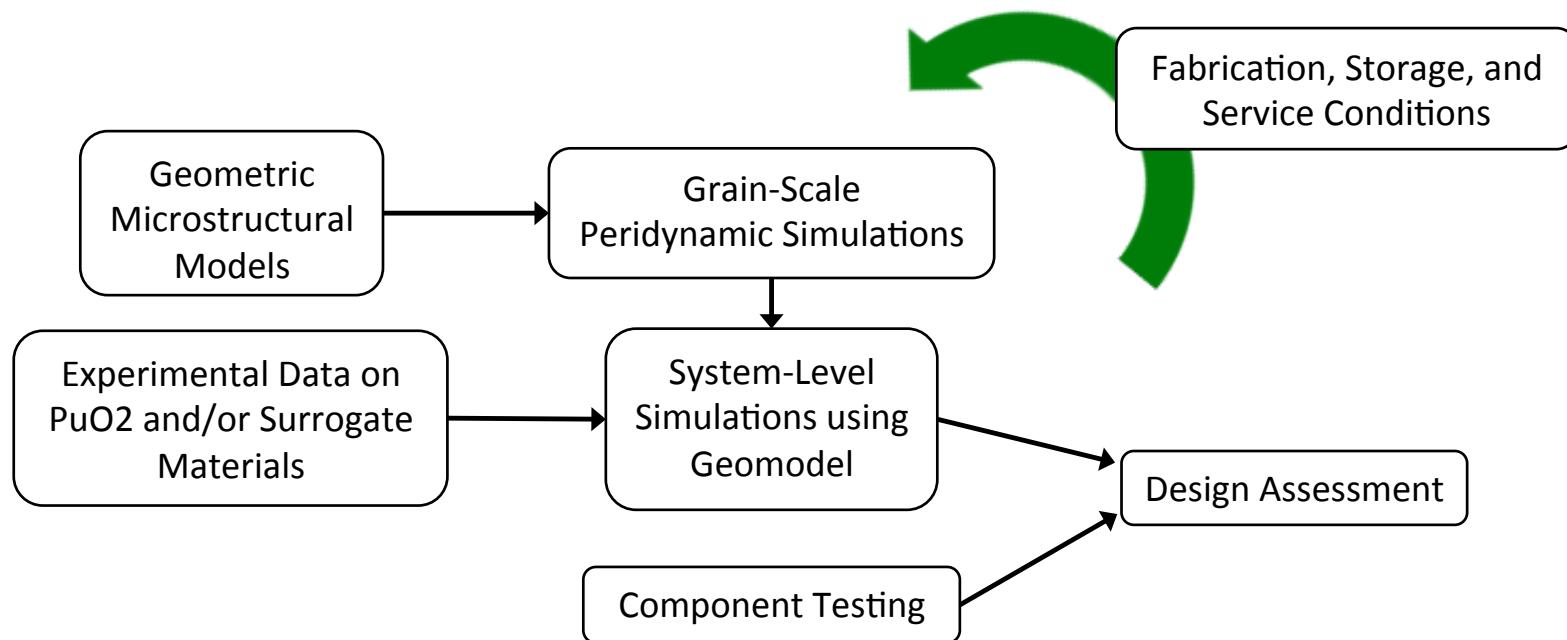


Sintered pellet
at 1700 °C

Example Simulation: Grain-Scale Modeling of Fuel Pellets

CAN WE MOVE BEYOND DESIGN ASSESSMENT?

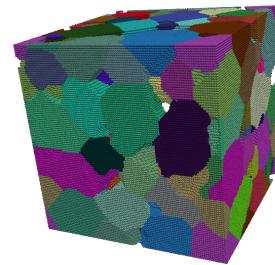
- The grain structure is dictated by fabrication, storage, and service conditions
- Mechanical response is largely determined by grain-scale mechanisms
- There is potential to alter fabrication, storage, and service conditions for improved mechanical performance based on simulation results



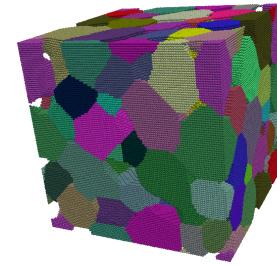
Example Simulation: Grain-Scale Modeling of PuO₂

REPRESENTATIONAL VOLUMES CAPTURE CRITICAL GRAIN-SCALE FEATURES

- Microstructure evolution model captures effects of fabrication conditions [Tikare, et al.]
- Key features:
 - Grain size, shape
 - Void fraction



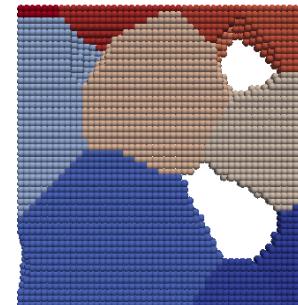
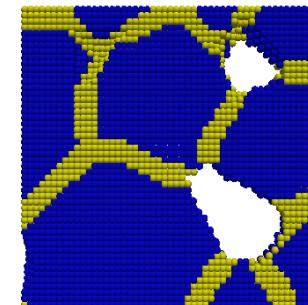
15% void volume



20% void volume

APPLY PERIDYNAMIC MODEL AT GRAIN-SCALE

- Individual grain response modeled as elastic
- Modified critical-stretch bond failure
- Contact algorithm controls material interactions after bonds are broken



Bond-failure law applied only to bonds across grain boundaries

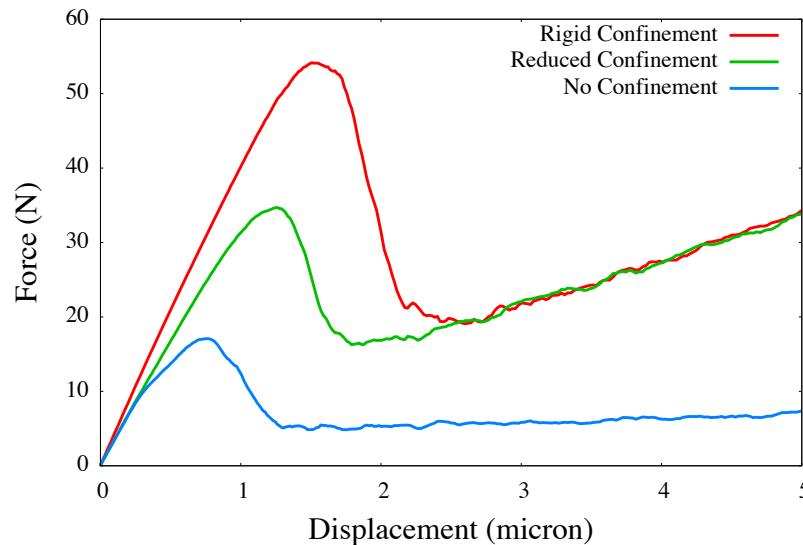
Tikare, V., Braginsky, M., Bouvard, D., and Vagnon, A. Numerical simulation of microstructural evolution during sintering at the mesoscale in a 3D powder compact, *Computational Materials Science* 48:317-325, 2010.

D. Littlewood, V. Tikare, and J. Bignell. Informing Macroscale Constitutive Laws through Modeling of Grain-Scale Mechanisms in Plutonium Oxide. Workshop on Nonlocal Damage and Failure: Peridynamics and Other Nonlocal Models, San Antonio, Texas, March 11-12 2013.

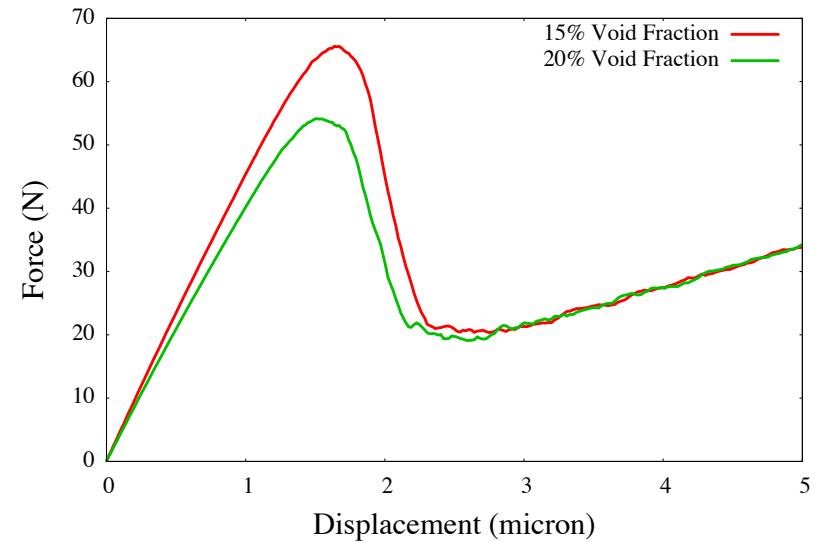
Example Simulation: Grain-Scale Modeling of PuO₂

REPRESENTATIONAL VOLUMES CAPTURE CRITICAL GRAIN-SCALE FEATURES

Effect of confinement



Effect of void fraction



Ingredients for Computational Peridynamics

- Constitutive model
- Bond-failure law
- **Contact model**
- Discretization
- Time integration
 - Explicit
 - Implicit
- Pre- and post-processing
- Model coupling

Short-Range Force Contact Model

SHORT-RANGE FORCE MODEL MAY INCLUDE STATIC AND DAMPING TERMS

$$\mathbf{f}_{\text{static}} = A C_{ij} \left(\frac{d - |\mathbf{y}_j - \mathbf{y}_i|}{d} \right) \Delta V_i \Delta V_j \mathbf{M}_{ij}$$

$$C_{ij} = \frac{18k}{\pi \delta^4} \quad \mathbf{M}_{ij} = \frac{\mathbf{y}_j - \mathbf{y}_i}{|\mathbf{y}_j - \mathbf{y}_i|}$$

Force is zero unless distance
between nodes is less than d $d_{ij} = \min \{ \beta |\mathbf{x}_j - \mathbf{x}_i|, \alpha(r_i + r_j) \}$

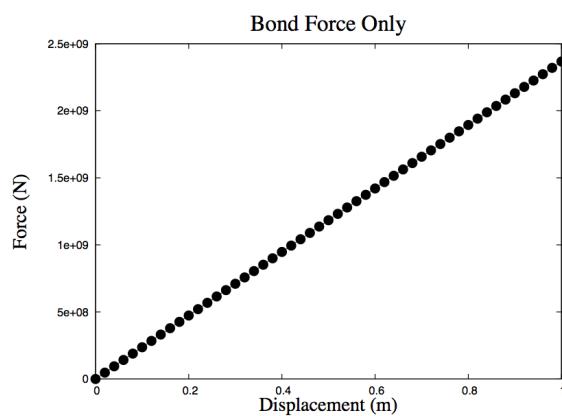
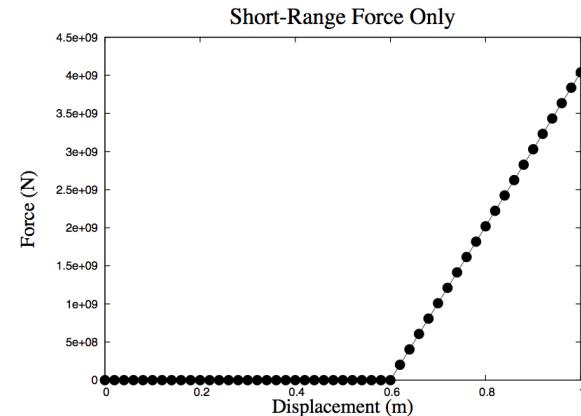
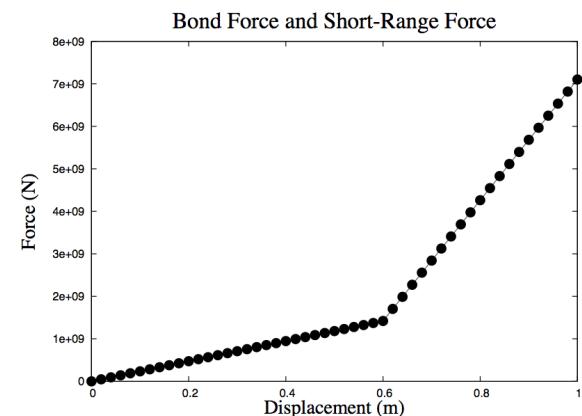
$$\mathbf{f}_{\text{damping}} = \epsilon \gamma_c v_{ij} \mathbf{M}_{ij}$$

Critical damping constant $\gamma_c = 2\sqrt{A C_{ij} \Delta V_i \Delta V_j \bar{m}}$

Relative separation velocity $v_{ij} = (\mathbf{v}_j - \mathbf{v}_i) \cdot \mathbf{M}_{ij}$

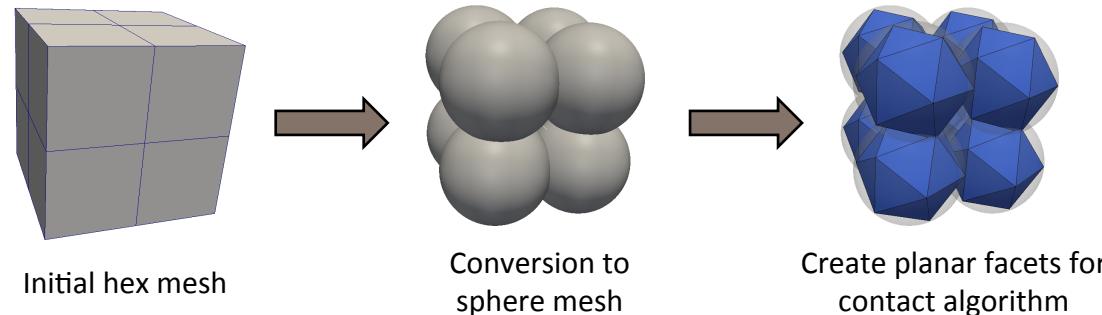
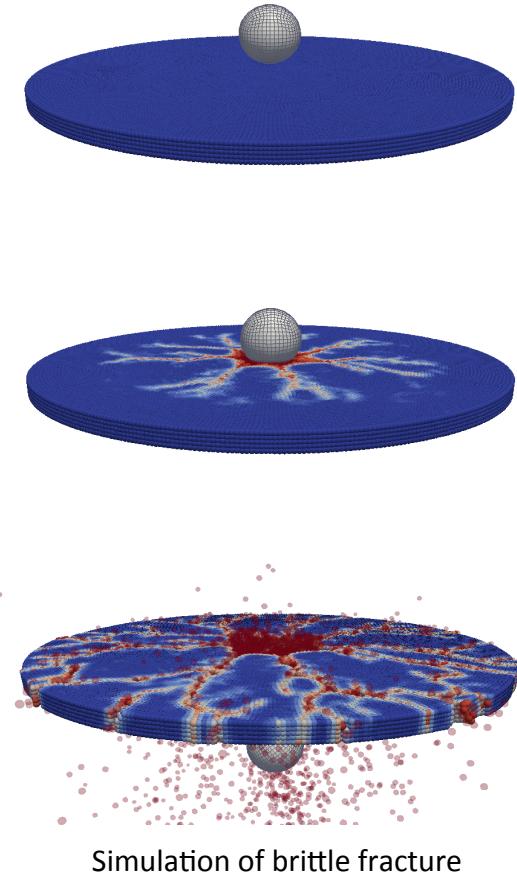
Short-Range Force Contact Model

ILLUSTRATION OF SHORT-RANGE FORCE AND STANDARD BOND FORCE



Application of a Classical (Local) Contact Model

- Contact algorithm operates on planar facets
- Peridynamics algorithm operates on sphere elements
- Lofted geometry allows for coupling of peridynamics and contact algorithm

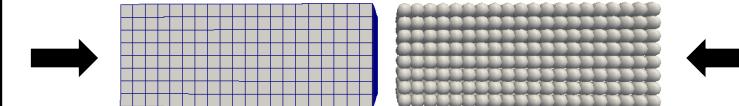


D. J. Littlewood. Simulation of dynamic fracture using peridynamics, finite element modeling, and contact. In *Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition (IMECE)*, Vancouver, British Columbia, Canada, 2010.

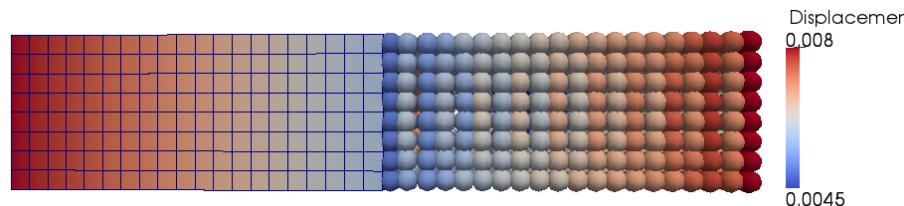
SIERRA Solid Mechanics Team. Sierra/SolidMechanics 4.36 user's guide. SAND Report 2015-2199, Sandia National Laboratories, Albuquerque, NM and Livermore, CA.

Interface Issues with Contact Models for Peridynamics

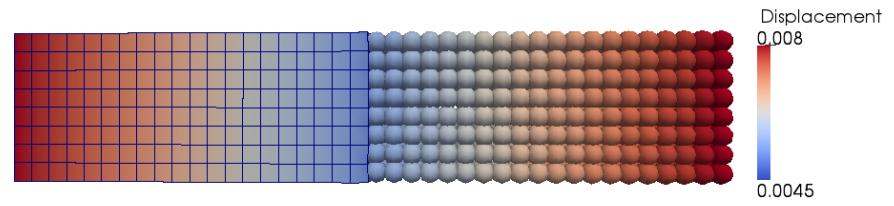
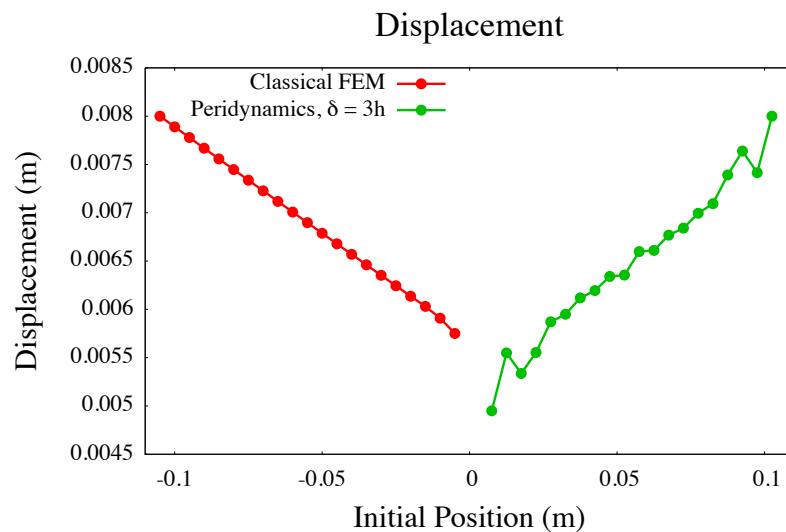
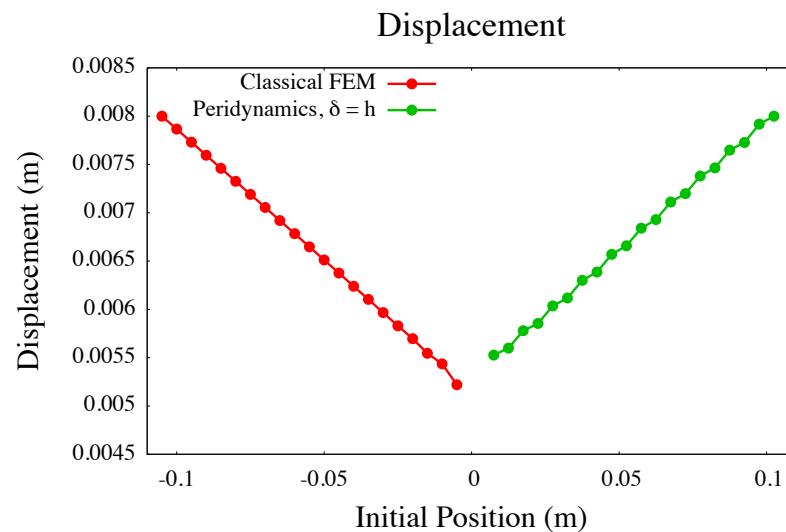
Simple Example:
Bars Contacting in Compression



Standard Horizon
Horizon = 3 * Mesh Spacing



Reduce Horizon
Horizon = Mesh Spacing



Ingredients for Computational Peridynamics

- Constitutive model
- Bond-failure law
- Contact model
- **Discretization**
- Time integration
 - Explicit
 - Implicit
- Pre- and post-processing
- Model coupling

Discretization Options for Peridynamic Models

CREATING A DISCRETIZATION FOR USE WITH PERIDIGM

Option 1) Genesis file

- Cubit mesh generator (hexahedron or tetrahedron mesh)
- Designate blocks and node sets
- Genesis sphere meshes also supported

Option 2) Text file

- Discretization defined by (coordinates, volume, block id) at each node
- User-supplied node sets (lists of node ids)
- Supports EMU input files

Option 3) Internal mesh generator

- Rectangular or cylindrical solid
- Restricted to single block
- User-supplied node sets (lists of node ids)

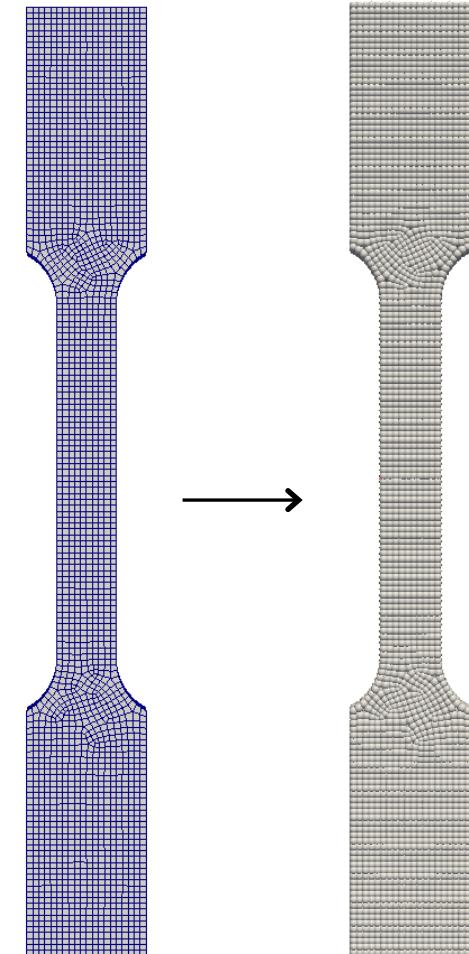
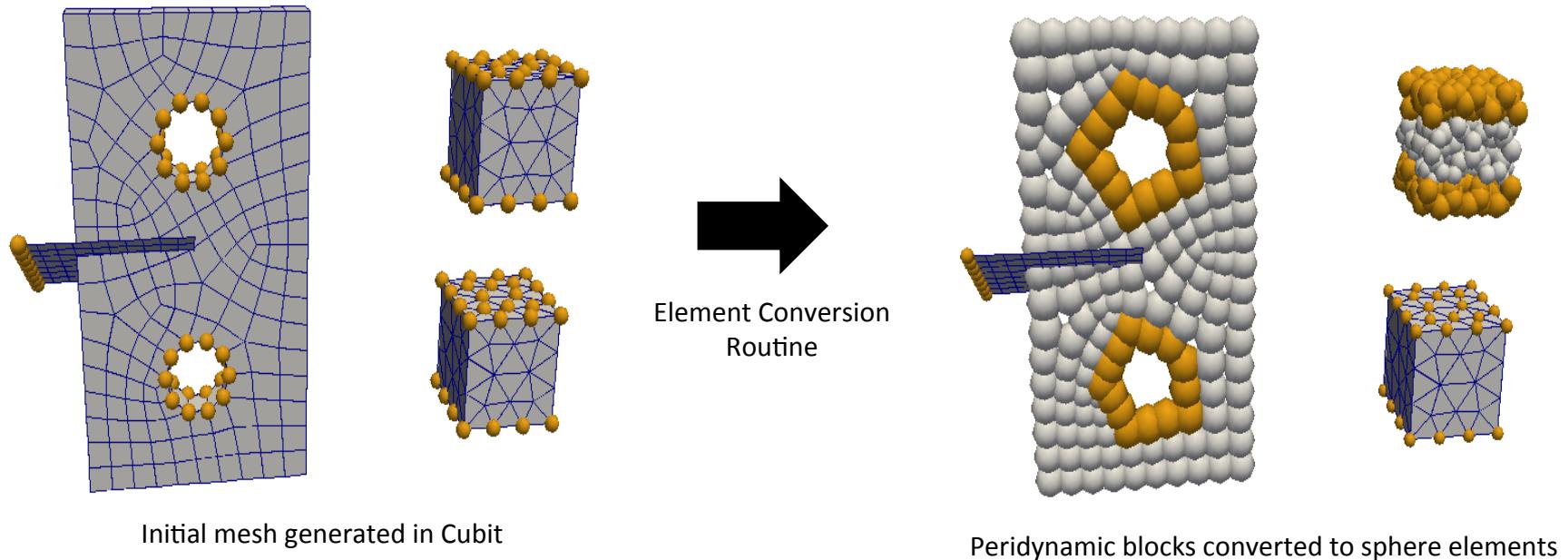


Illustration of *Peridigm* conversion
from hexahedron mesh to sphere mesh

Discretization Options for Peridynamic Models

HANDLING NODE SETS AND VISIBILITY CRITERIA

- Node sets defined in the original hex/tet mesh must be transferred to meshless discretization
- Mechanism required for treating small features, controlling visibility between material points



Convergence of Meshfree Peridynamic Simulations

MESHFREE APPROACH OF SILLING AND ASKARI IS WIDELY USED

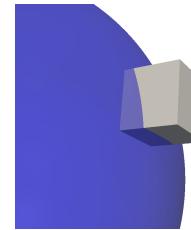
- Provides natural mechanism for material separation
- Computationally efficient, resilient

BUT... CONVERGENCE IS DIFFICULT TO DEMONSTRATE

- Two forms of convergence: horizon and mesh spacing
- Current practice introduces errors and spoils convergence

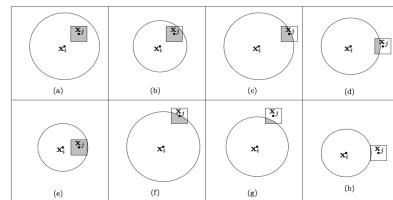
Key Issue

Calculate horizon-element intersections

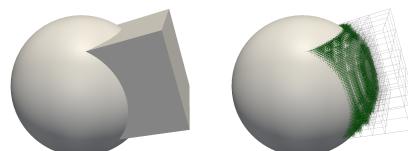


Partial area / volume calculations

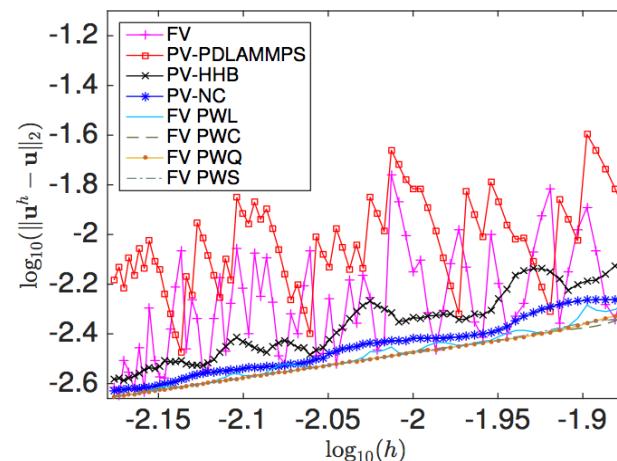
Analytical approach in 2D



Numerical approach in 3D



Modified approaches show dramatically improved convergence behavior



Seleson, P. Improved one-point quadrature algorithms for two-dimensional peridynamic models based on analytical calculations, *CMAME*, 282, pp. 184-217, 2014.

Seleson, P., and Littlewood, D. Convergence studies in meshfree peridynamic simulations. *Computers and Mathematics with Applications*. To appear.

Ingredients for Computational Peridynamics

- Constitutive model
- Bond-failure law
- Contact model
- Discretization
- Time integration
 - Explicit
 - Implicit
- Pre- and post-processing
- Model coupling

Time Integration

INTEGRATION SCHEMES

- Explicit dynamics: Velocity-Verlet (leapfrog) time integrator
- Implicit dynamics: Newmark-beta
- Quasi-statics
 - Newton and Newton-like nonlinear solvers
 - Jacobian-Free Newton Krylov

LINEAR SOLVERS

- Iterative Krylov methods, parallel scalability
- Conjugate gradient solver (default solver)

CONSTRUCTION OF THE TANGENT MATRIX

- Construction of the tangent matrix
 - User-supplied tangent
 - Finite-difference scheme
 - *Automatic differentiation* via the *Trilinos Sacado* package
- Finite-difference scheme operates directly on internal-force calculation
 - No additional development required by material model developer
- Automatic differentiation approach requires C++ templates and (minor) extension of material model

Explicit Time Integration

- Appropriate for dynamic problems and those with pervasive material failure
- Conditionally stable
- Requires estimate of the critical time step
- Requires many small time steps

Algorithm 1 Velocity Verlet

$$1: \mathbf{v}^{n+1/2} = \mathbf{v}^n + \frac{\Delta t}{2} \mathbf{M}^{-1} (\mathbf{f}^n + \mathbf{b}^n)$$

$$2: \mathbf{u}^{n+1} = \mathbf{u}^n + \Delta t \mathbf{v}^{n+1/2}$$

$$3: \mathbf{v}^{n+1} = \mathbf{v}^{n+1/2} + \frac{\Delta t}{2} \mathbf{M}^{-1} (\mathbf{f}^{n+1} + \mathbf{b}^{n+1})$$

Estimating the Critical Time Step

CANDIDATE APPROACHES

- Courant-Friedrichs-Lowy (CFL) condition ¹
- Approach of Silling and Askari for microelastic materials (von Neumann analysis) ²
- Generalized Silling and Askari approach incorporating bond angles
- Global estimate using the Lanczos method ^{1,3}
- Largest eigenvalue of 3x3 nodal stiffness matrix

MEASURES OF SUCCESS

- Accuracy of estimate
- Computational expense

STRATEGY FOR ASSESSING CRITICAL TIME STEP ESTIMATES

- Evaluate via test simulations
- Compare against empirical result
 - Stable time step determined by numerical experiment

1. Hughes, T.J.R. *The Finite Element Method: Linear Static and Dynamic Finite Element Analysis*. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1987.
2. Silling, S.A. and Askari, E. A meshfree method based on the peridynamic model of solid mechanics. *Computers and Structures* 83:1526-1535, 2005.
3. Koteras, J.R. and Lehoucq, R.B. Estimating the critical time-step in explicit dynamics using the Lanczos method. *International Journal for Numerical Methods in Engineering* 69:2780-2788, 2007.

Estimating the Critical Time Step

APPROACH OF SILLING AND ASKARI FOR PROTOTYPE MICROELASTIC BRITTLE MATERIAL

$$\Delta t_c = \sqrt{\frac{2\rho}{\sum_p V_p C_{ip}}} \quad C_{ip} = |\mathbf{C}(x_p - x_i)| = \left| \frac{\partial \mathbf{f}}{\partial \boldsymbol{\eta}} \right|$$

- Derived for one-dimensional problems with bond-based PMB material model
- Anecdotal evidence suggests time step estimate is conservative for other materials

CFL LIMIT

$$c = \sqrt{\frac{k}{\rho}} \quad \Delta t \leq \frac{\Delta x}{c}$$

- What is the proper characteristic length for peridynamic models?
- Anecdotal evidence suggests node spacing yields conservative estimate, horizon yields non-conservative estimate

EIGENVALUE ANALYSIS

$$\mathbf{M}\ddot{\mathbf{u}} + \mathbf{K}\mathbf{u} = \mathbf{f} \quad (\mathbf{K} - \lambda\mathbf{M})\mathbf{x} = 0 \quad \Delta t_c = \frac{2}{\sqrt{\lambda}}$$

- Requires an efficient algorithm to find the maximum global eigenvalue
 - E.g., Lanczos algorithm

Test Case: Elastic Wave Propagation

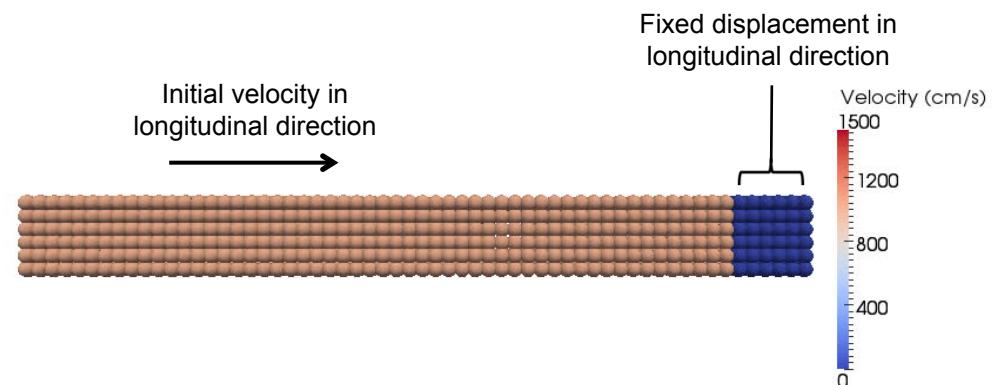
- Investigate material models
 - Microelastic bond-based
 - Linear peridynamic solid state-based
 - Wrapped classical elastic model
- Investigate critical time step estimates
 - Empirical (numerical experiment)
 - 1D approach of Silling and Askari
 - Generalized Silling and Askari
 - Element time step (3x3 stiffness probe)
 - Lanczos global estimate

Material Parameters

Density	7.8 g/cm ³
Young's Modulus	300.0 GPa
Poisson's Ratio	0.25
Horizon	0.5075 cm

Simulation

Bar Length	10.0 cm
Bar Width	1.0 cm
Initial Velocity	10.0 m/s
Time Step	0.48 μ s



Linear Peridynamic Solid State-Based Material Model

Time Step	Kinetic Energy
0.1 μ s	3.51 J
0.2 μ s	3.51 J
0.3 μ s	3.51 J
0.4 μ s	NaN
0.5 μ s	NaN
0.6 μ s	NaN
0.7 μ s	NaN
0.8 μ s	NaN
0.9 μ s	NaN
1.0 μ s	NaN

Nodal Stiffness Matrix

max. time step = 0.314 μ s
max. kinetic energy = 3.51 J

CFL Limit (element size)

max. time step = 0.329 μ s
max. kinetic energy = 3.51 J

Empirical Observation

max. time step = 0.381 μ s
max. kinetic energy = 3.51 J

Global Lanczos

max. time step = 0.381 μ s
max. kinetic energy = 3.51 J

CFL Limit (horizon)

max. time step = 1.00 μ s
max. kinetic energy = **unstable**

Test Case: Fragmenting Ring

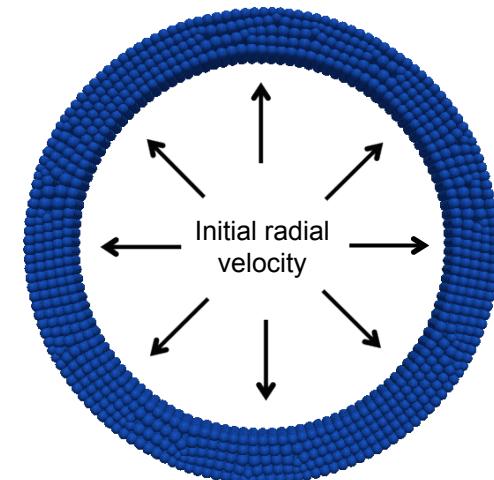
- Investigate material models
 - Microelastic bond-based
 - Linear peridynamic solid state-based
 - Wrapped classical elastic model (nosb)
- Investigate critical time step estimates
 - Empirical
 - 1D approach of Silling and Askari
 - Generalized Silling and Askari
 - Element time step (3x3 stiffness probe)
 - Lanczos global estimate

Material Parameters

Density	7.8 g/cm ³
Young's Modulus	300.0 GPa
Poisson's Ratio	0.25
Critical Stretch	0.01 cm/cm
Horizon	0.603 cm

Simulation

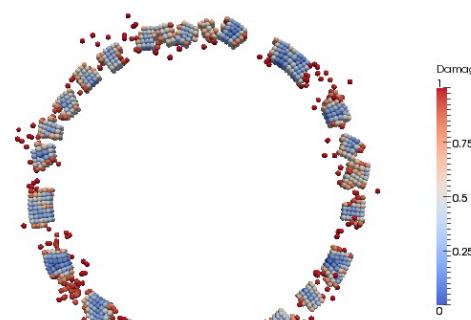
Ring Diameter	4.5 cm
Ring Width	1 cm
Initial Radial Velocity	200.0 m/s



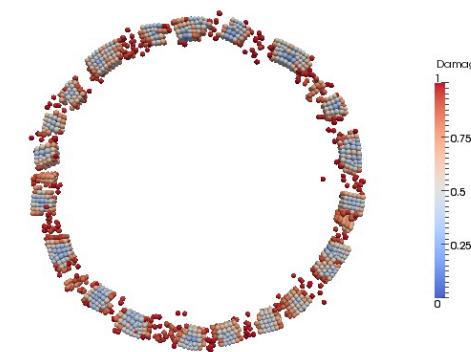
Unstable Time Step Manifests as Increased Bond Failure

Simulation results for microelastic material

Time Step	Percentage of Broken Bonds	Maximum Kinetic Energy ($t > 10 \mu\text{s}$)
$0.01 \mu\text{s}$	44.3 %	3.83 kJ
$0.1 \mu\text{s}$	44.5 %	3.82 kJ
$0.2 \mu\text{s}$	44.7 %	3.82 kJ
$0.3 \mu\text{s}$	45.3 %	3.82 kJ
$0.4 \mu\text{s}$	45.3 %	3.82 kJ
$0.5 \mu\text{s}$	45.4 %	3.82 kJ
$0.6 \mu\text{s}$	46.7 %	3.81 kJ
$0.7 \mu\text{s}$	49.1 %	3.83 kJ
$0.8 \mu\text{s}$	73.5 %	3.82 kJ
$0.9 \mu\text{s}$	95.3 %	4.39 kJ
$1.0 \mu\text{s}$	99.1 %	6.40 kJ



Time step = $5.0 \mu\text{s}$
46.7% of bonds broken



Time step = $7.5 \mu\text{s}$
62.7 % of bonds broken

Linear Peridynamic Solid State-Based Material Model

Time Step	Percentage of Broken Bonds	Maximum Kinetic Energy ($t > 10 \mu\text{s}$)
0.01 μs	40.3 %	3.43 kJ
0.1 μs	40.2 %	3.43 kJ
0.2 μs	40.4 %	3.43 kJ
0.3 μs	41.6 %	3.42 kJ
0.4 μs	42.0 %	3.44 kJ
0.5 μs	44.7 %	3.45 kJ
0.6 μs	95.6 %	4.33 kJ
0.7 μs	97.3 %	5.54 kJ
0.8 μs	98.6 %	7.14 kJ
0.9 μs	99.4 %	19.8 kJ
1.0 μs	99.8 %	62.8 kJ

CFL Limit (element size)

max. time step = 0.395 μs
percentage of broken bonds = 45.3 %
max. kinetic energy = 3.51 J

Global Lanczos

max. time step = 0.494 μs
percentage of broken bonds = 42.8 %
max. kinetic energy = 3.43 kJ

Nodal Stiffness Matrix

max. time step = 0.505 μs
percentage of broken bonds = 44.8 %
max. kinetic energy = 3.82 kJ

Empirical Observation

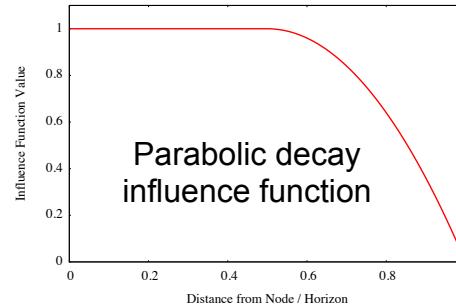
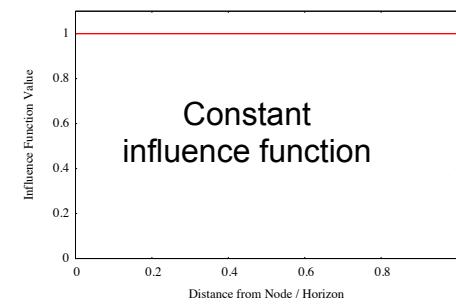
max. time step = 0.509 μs
percentage of broken bonds = 50.0 %
max. kinetic energy = 3.46 kJ

CFL Limit (horizon)

max. time step = 1.19 μs
percentage of broken bonds = 99.1 %
max. kinetic energy = **unstable**

The Influence Function Affects the Critical Time Step

- Choice of influence function affects critical time step
- Lanczos algorithm successfully detects changes in critical time step
- Observation: Influence function that decays with increasing bond length results in reduced critical time step



Peridynamic Linear Solid

	Parabolic decay influence function	Constant influence function
Max. Lanczos time step	0.381 μ s	0.434 μ s
Empirical result	0.381 μ s	0.434 μ s

14% Increase

Wrapped Classical Material Model

	Parabolic decay influence function	Constant influence function
Max. Lanczos time step	0.490 μ s	0.549 μ s
Empirical result	0.490 μ s	0.549 μ s

12% Increase

Implicit Time Integration

- Unconditionally stable
- Allows for large time steps
- Allows for solution of static and quasi-static problems
 - Neglect dynamic effects
- Requires solution of system of equations involving current and future configurations
 - Generally nonlinear
 - Newton-like methods require tangent stiffness matrix
 - Matrix-free approaches offer alternative approach

Construction of the Tangent Stiffness Matrix

Algorithm 1 Construction of the tangent stiffness matrix by central finite difference.

```

1: procedure TANGENT STIFFNESS MATRIX
2:    $\triangleright$  Initialize the tangent stiffness matrix to zero.
3:    $\mathbf{K} \leftarrow \mathbf{0}$ 
4:    $\triangleright$  Traverse each node in the discretization.
5:   for each node  $i$  do
6:      $\{traversal\ list\} \leftarrow$  node  $i$  and all neighbors of node  $i$ 
7:     for each node  $j$  in  $\{traversal\ list\}$  do
8:        $\triangleright$  Evaluate the force state at  $\mathbf{x}_i$  under perturbations of displacement.
9:       for each displacement degree of freedom  $r$  at node  $j$  do
10:       $\underline{\mathbf{T}}^{\epsilon+} \leftarrow \underline{\mathbf{T}}[\mathbf{x}_i](\mathbf{u} + \epsilon^r)$ 
11:       $\underline{\mathbf{T}}^{\epsilon-} \leftarrow \underline{\mathbf{T}}[\mathbf{x}_i](\mathbf{u} - \epsilon^r)$ 
12:       $\triangleright$  Evaluate pairwise forces under perturbations of displacement.
13:      for each node  $k$  in neighbor list of node  $i$  do
14:         $\mathbf{f}^{\epsilon+} \leftarrow \underline{\mathbf{T}}^{\epsilon+} \langle \mathbf{x}_k - \mathbf{x}_i \rangle \Delta V_i \Delta V_k$ 
15:         $\mathbf{f}^{\epsilon-} \leftarrow \underline{\mathbf{T}}^{\epsilon-} \langle \mathbf{x}_k - \mathbf{x}_i \rangle \Delta V_i \Delta V_k$ 
16:         $\mathbf{f}^{\text{diff}} \leftarrow \mathbf{f}^{\epsilon+} - \mathbf{f}^{\epsilon-}$ 
17:        for each degree of freedom  $s$  at node  $k$  do
18:           $K_{sr} \leftarrow K_{sr} + \frac{f_s^{\text{diff}}}{2\epsilon}$ 
19:        end for
20:      end for
21:    end for
22:  end for
23: end for
24: end procedure

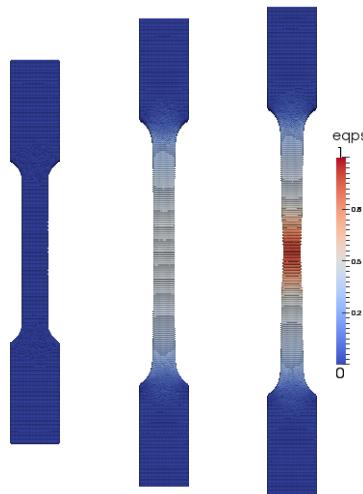
```

Dogbone Tensile Test

CONSTITUTIVE MODEL CALIBRATION AGAINST EXPERIMENTAL DATA

- Dogbone specimen
 - 304L stainless steel (very ductile)
 - Quasi-static loading conditions
- Peridynamic model
 - Non-ordinary state-based peridynamic
 - Elastic-plastic material constitutive model with piece-wise hardening curve

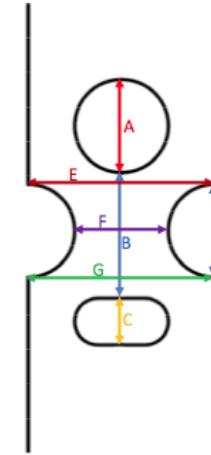
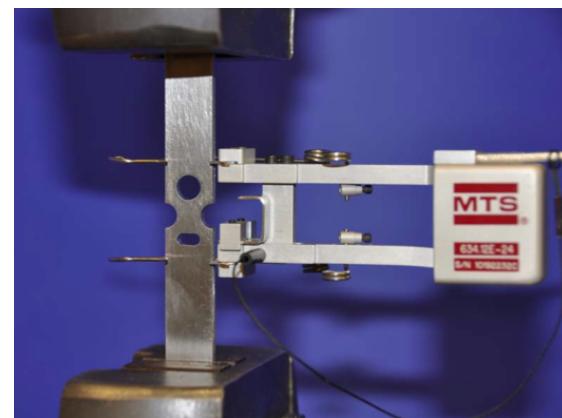
Young's Modulus	200.0 GPa
Poisson's Ratio	0.285
Yield Stress	220.0 MPa



Necking Experiment

CAN A PERIDYNAMIC MODEL CAPTURE LOCALIZATION?

- Specimen
 - 304L stainless steel (very ductile)
 - Quasi-static loading conditions
- Quantities of interest
 - Record force and engineering strain at peak load
 - Record engineering strain when force has dropped to 95% of peak load
 - Record chord lengths when force has dropped to 95% of peak load

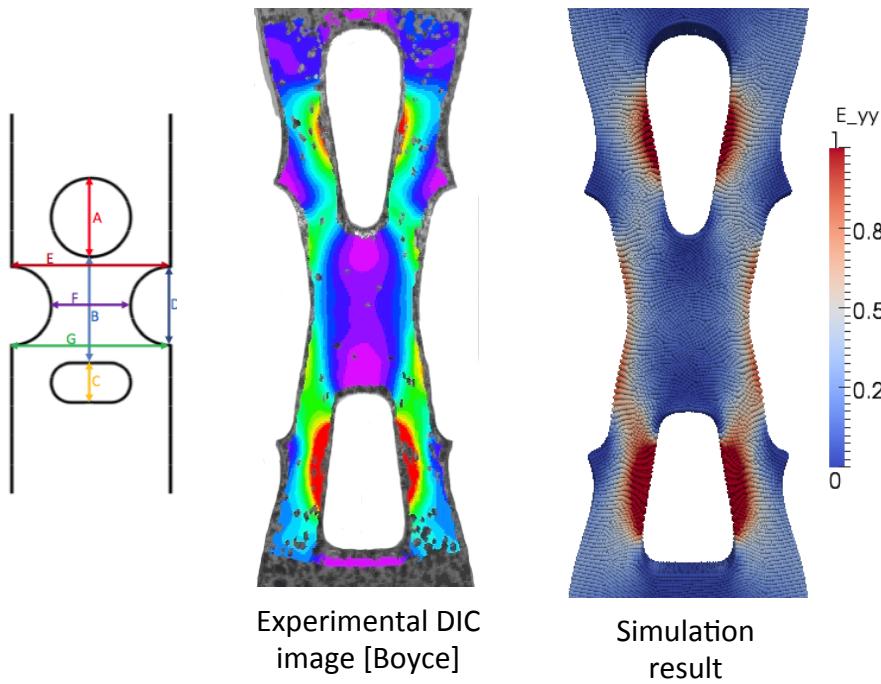
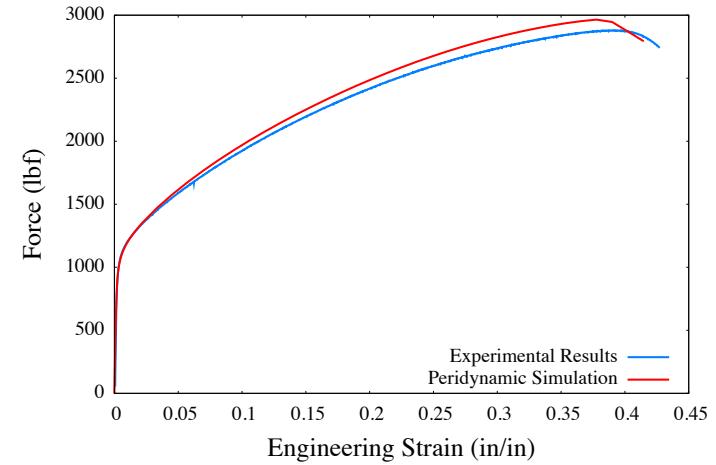
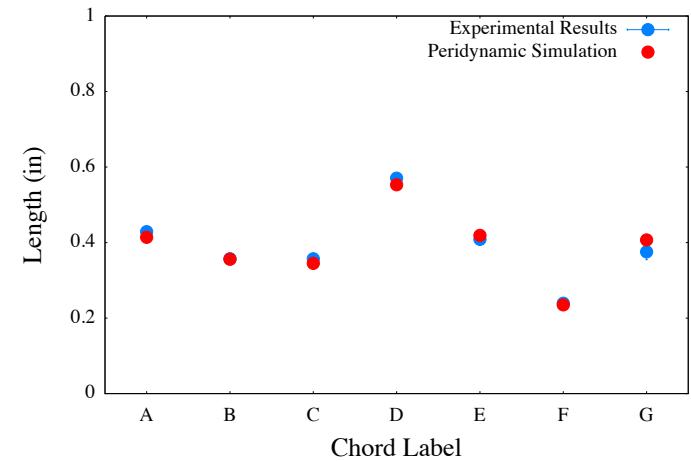


Experimental setup [Boyce]

Necking Experiment

PERIDYNAMIC MODEL

- Refined discretization contained 2,104,860 elements
- Peridynamic horizon approximately 1/10th the size of smallest geometric features



Modal Analysis of a Simply-Supported Beam

BENCHMARK PROBLEM FOR MODAL ANALYSIS

- One-dimensional analysis of simply-supported beam with square cross section

KEY ISSUES

- Does the peridynamic model agree with the classical (local) analytic solution in the case of a small horizon?
- How does solution of the peridynamic (nonlocal) model compare with a classical finite element solution of the local model?

Classical (local) analytic solution

E	Elastic modulus
h	Height and depth of beam
m	Mass of beam
l	Length of beam
n	Positive integer
f_n	Characteristic linear frequency (mode n)

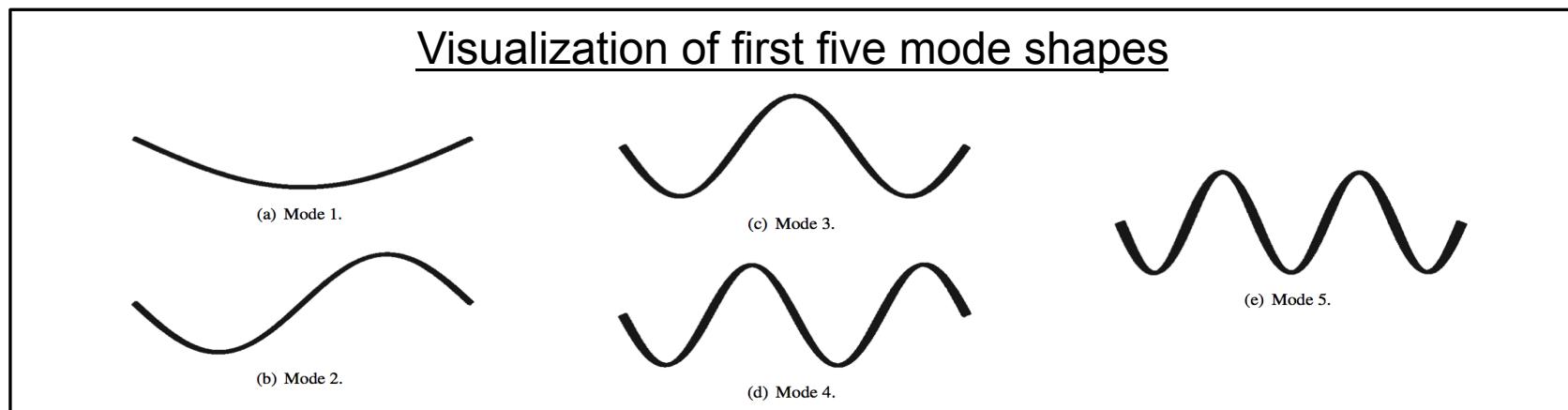
$$f_n = \frac{n^2 \pi}{2} \sqrt{\frac{E h^4}{12 m l^4}}$$

Modal Analysis of a Simply-Supported Beam

PERIDYNAMIC SIMULATION

- Beam dimensions: 1m x 0.01m x 0.01m
- Material: steel ($E = 206.8$ GPa)
- Peridynamic horizon: 0.000713m
- Classical linear elastic material model applied via non-ordinary state-based peridynamics
- Emulation of one-dimensional problem
- Discretized with 840K elements

Mode	Classical Theory	Peridynamic Simulation	Percent Difference
1	23.30 Hz	23.26 Hz	0.17 %
2	93.22 Hz	93.02 Hz	0.21 %
3	209.73 Hz	209.06 Hz	0.32 %
4	372.86 Hz	371.29 Hz	0.43 %
5	582.59 Hz	579.39 Hz	0.55 %



David J. Littlewood, Kyran Mish, and Kendall Pierson. 2012. Peridynamic simulation of damage evolution for structural health monitoring. Proceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition (IMECE2012), Houston, TX.

Jacobian-Free Newton Krylov

MATRIX-FREE APPROACH SHOWS PROMISE FOR PERIDYNAMIC MODELS

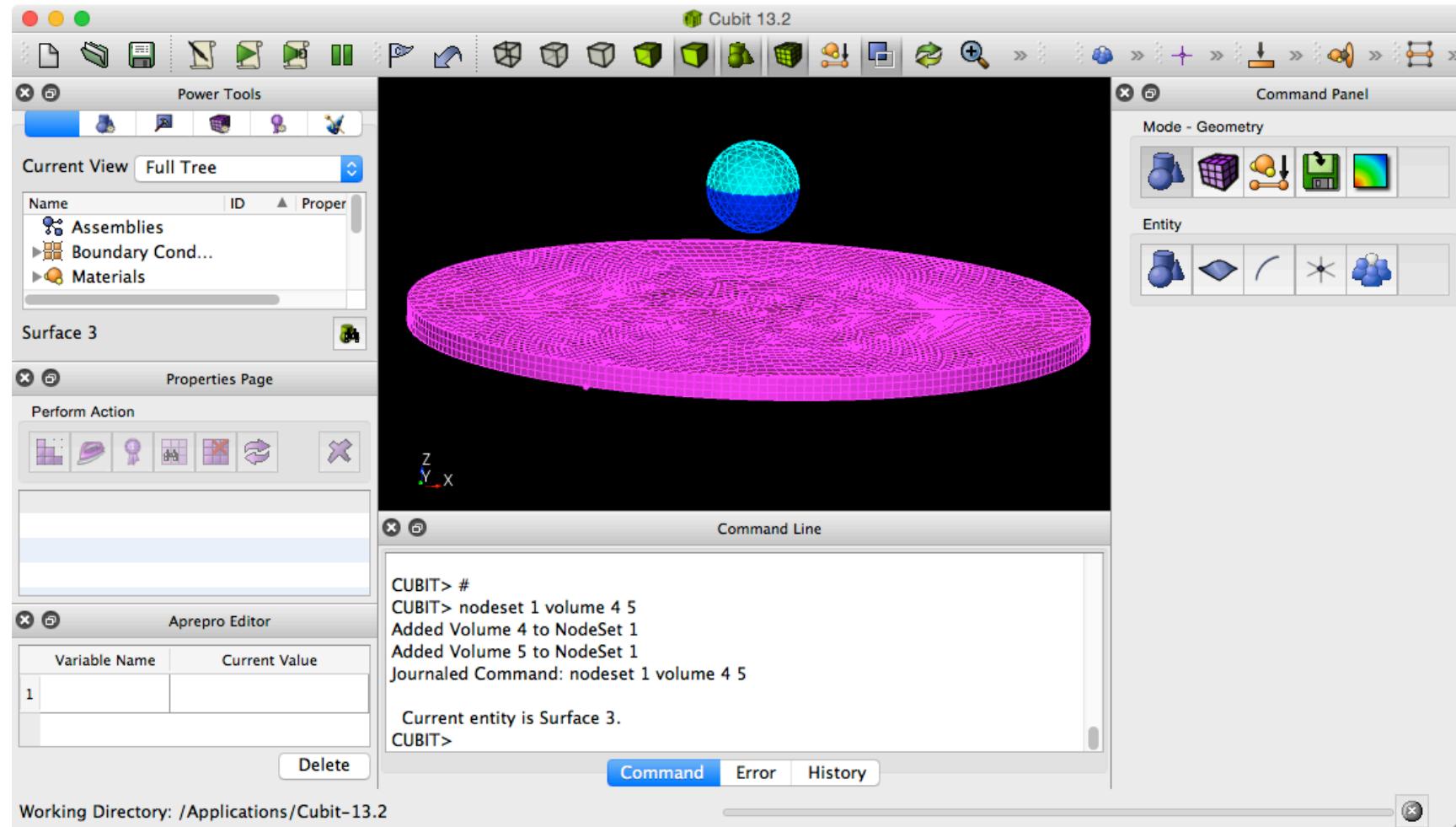
- Allows for solution of linear system without explicit construction of tangent stiffness matrix
- Attractive for peridynamics due to high computational cost of assembling and solving matrix-vector system
- Initial results show dramatic reduction in computational expense and memory usage

Ingredients for Computational Peridynamics

- Constitutive model
- Bond-failure law
- Contact model
- Discretization
- Time integration
 - Explicit
 - Implicit
- Pre- and post-processing
- Model coupling

Performing a Peridynamic Simulation

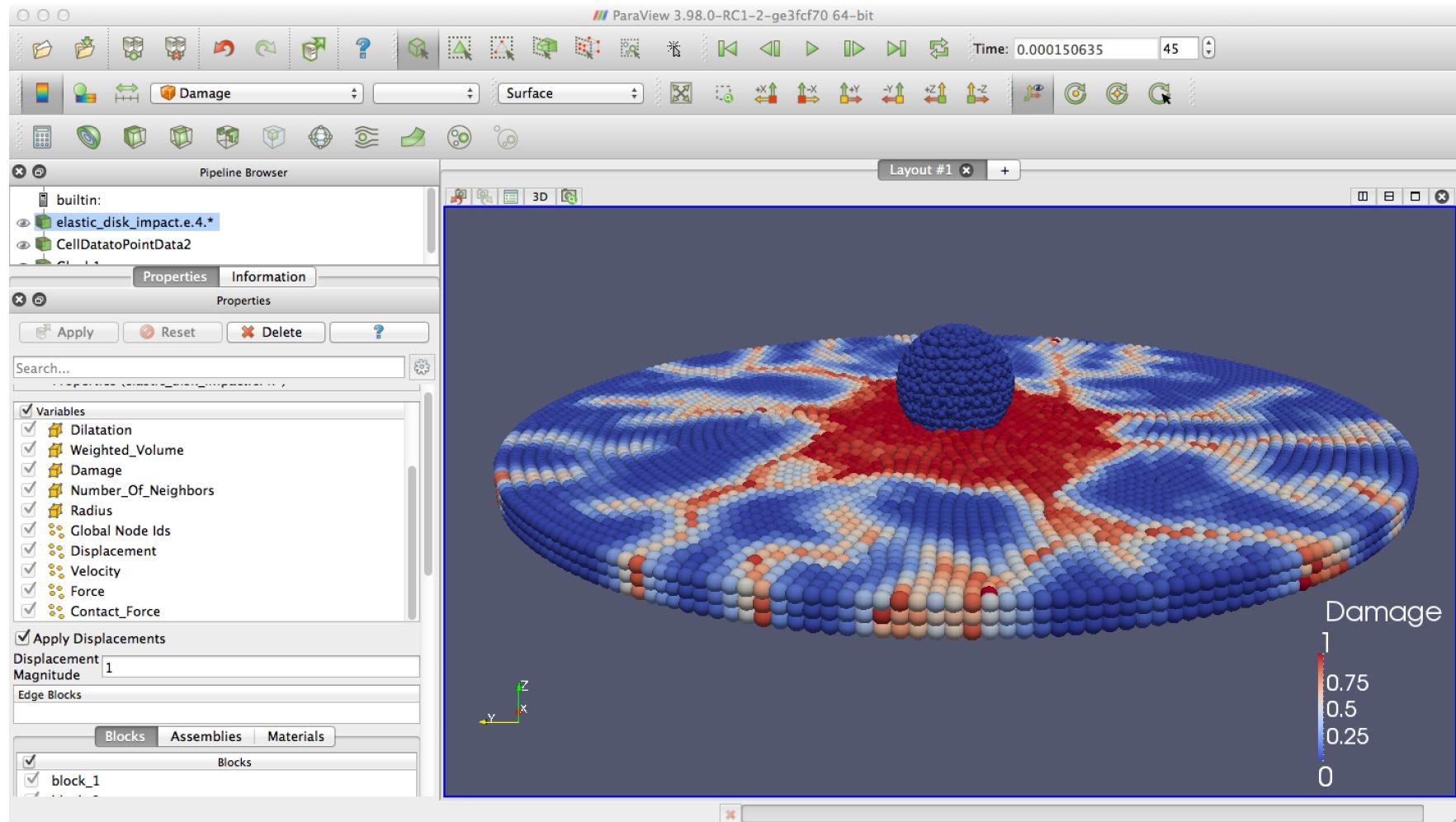
PRE-PROCESSING WITH CUBIT¹



1. cubit.sandia.gov

Performing an Peridynamic Analysis

POST-PROCESSING WITH PARAVIEW¹



1. www.paraview.org

Ingredients for Computational Peridynamics

- Constitutive model
- Bond-failure law
- Contact model
- Discretization
- Time integration
 - Explicit
 - Implicit
- Pre- and post-processing
- **Model coupling**

A Variable Peridynamic Horizon is Required to Achieve Compatibility at Local-Nonlocal Interfaces

PERIDYNAMIC PARTIAL STRESS FORMULATION

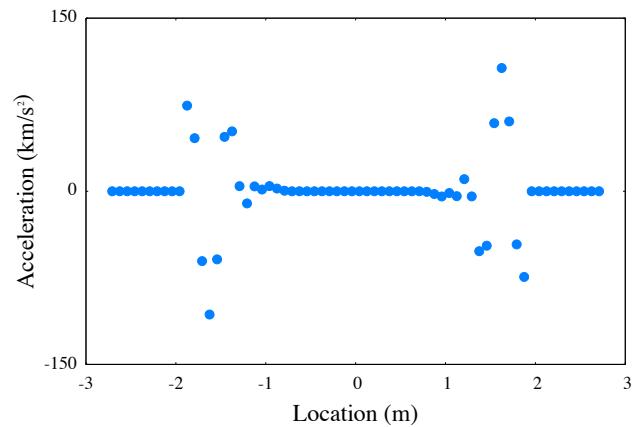
- Standard peridynamic models do not allow for a variable nonlocal length scale
- Peridynamic partial stress was developed specifically to support a variable horizon

$$\nu_o(\mathbf{x}) := \int_{\mathcal{H}} \mathbf{T}[\mathbf{x}] \langle \xi \rangle \otimes \xi \, dV_{\mathbf{x}'}$$

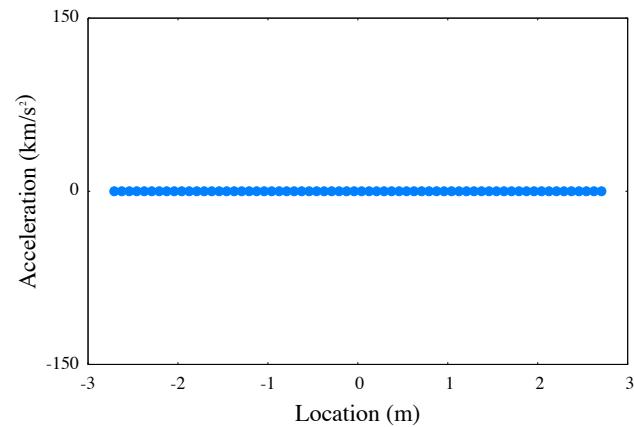
- Partial stress formulation is guaranteed to pass the linear patch test, performs well under smooth deformation (as in coupling region)

Test case

Prescribed linear displacement over a bar with a varying peridynamic horizon



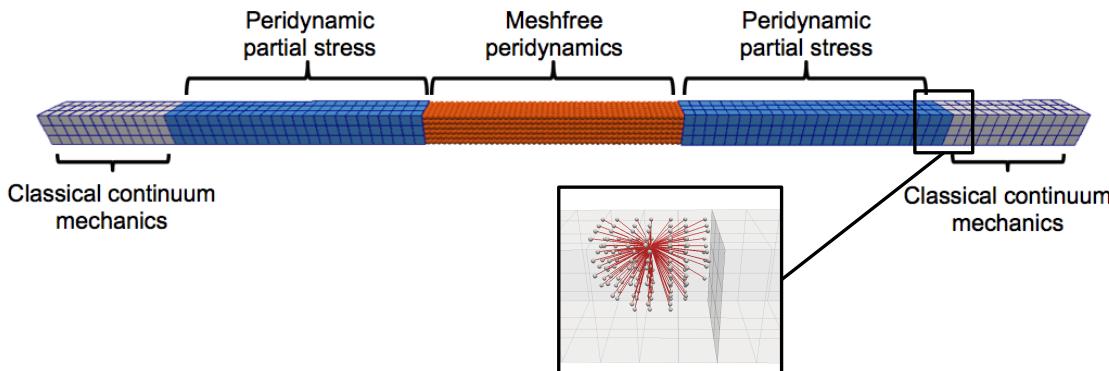
Varying the horizon disrupts the standard model



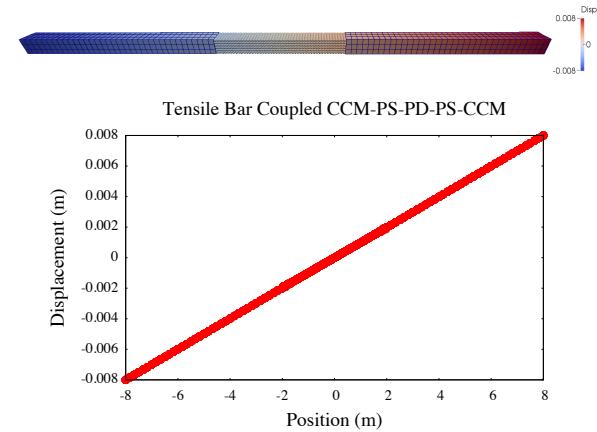
Partial stress formulation dramatically improves results

The Partial Stress Formulation for Local-Nonlocal Coupling

- Software infrastructure in place for strongly coupled simulations
- Meshfree peridynamic models, peridynamic partial stress, and classical FEM within single executable
- Partial stress provides transition between classical continuum mechanics and peridynamics
- Monolithic implicit solve (statics)
- Local-nonlocal coupling allows for application of local-only BC



Patch test results



Leveraging the LDRD: Optimization-Based Coupling

ONGOING EFFORT OF D'ELIA, PEREGO, AND BOCHEV

- Model coupling can be cast as an optimization problem
 - *Objective function*: Difference between solutions in overlap region
 - *Constraints*: Governing equations of the individual models
 - *Controls*: Fictitious boundary conditions in overlap region

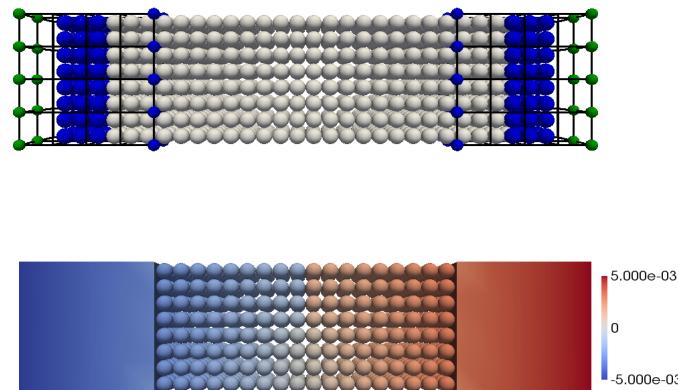
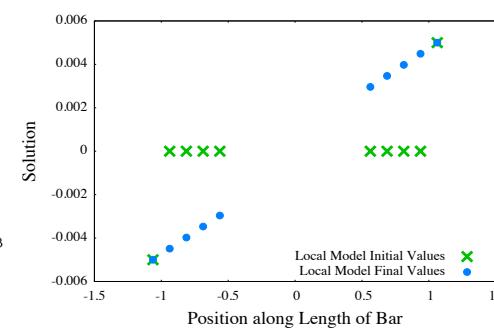
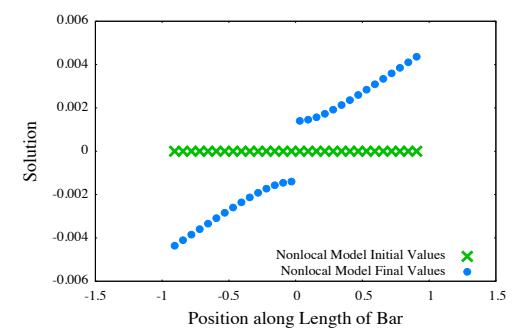
Peridigm

Albany

Trilinos

COLLABORATIVE EFFORT FOR ALBANY-PERIDIGM COUPLING

- Leverages LDRD and agile components approach
- Demonstration simulations couple local and nonlocal diffusion models



D'Elia, M., Perego, M., Bochev, P., Littlewood, D. A coupling strategy for nonlocal and local diffusion models with mixed volume constraints and boundary conditions. *Computers and Mathematics with Applications*. Submitted for publication.

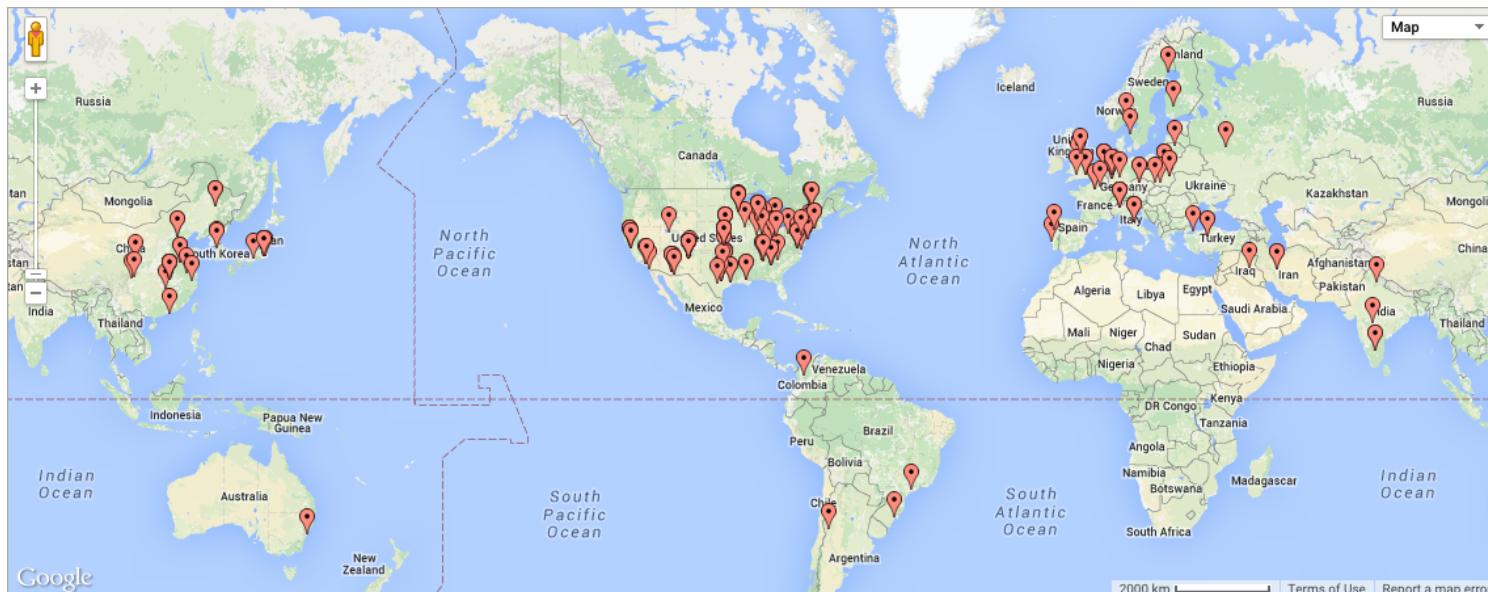
Questions?

David Littlewood

djlitt@sandia.gov

<http://peridigm.sandia.gov>

Peridigm Downloads (July 2014 – August 2015)



Map generated at <http://batchgeo.com>