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 Why is fracture a challenging problem?
* Treatment of fracture in the local theory and in peridynamics
* Reality and usefulness of nonlocality

e Material variability and the probabilistic nature of fracture




Why is fracture a challenging problem?

Physical aspects

* [tinvolves many length and time scales.
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* [t caninvolve multiple mechanisms that lead to fracture only in
combination with each other.

* [t caninvolve many interacting defects.
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Fragmented glass » —
(image: Washington Glass School) Nanoscale twins in fractured gold crystal
J. Wang et al, Nature Communications (2013)




Why is fracture a challenging problem?
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Mathematical aspects
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* The nature of fracture as a discontinuity is incompatible with the local theory.

 The Cauchy (local) theory assumes a continuous deformation.
* This leads to need to hack in extraneous mathematical relations (LEFM).
* Fracture processes are often physically nonlocal at some level.

V-o+b=0

Carbon nanotubes (image: nsf.gov)

Augustin-Louis Cauchy, 1840
(image: Library of Congress)



Why is fracture a challenging problem?
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Computational aspects

e Traditional FEM (e.g. displacement Galerkin) inherits the incompatibility
of the local theory with fracture.

 This leads to the need to hack in a fix after discretization.
e MDis better but too slow.

Complex crack path in a composite
T T T RIS S g
Real crack FE | | F—100um — LTSS

Figure 11.20 Pull-out: (a) schematic diagram; (b) fracture surface of ‘Silceram’

glass-ceramic reinforced with SiC fibres. (Courtesy H. S. Kim, P. S. Rogers and R. D.
Rawlings.)




Treatment of fracture in the local theory and peridynamics
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Fracture modeling in the local theory

e Smeared crack models, continuum damage mechanics

e Attempt to adjust bulk material properties without addressing individual cracks.

Damage D at x evolves according to local conditions.
D =¢(F,F,0,..)

where F= deformation gradient tensor, = temperature.

Damage degrades the material properties. Examples:
e Y=(1-D)Y, ..flow stress(smeared crack model).
e E=((1—-D)E, ..elastic modulus (CDM).

Advantage: Easy to include in FEM.

Disadvantage: Failure occurs in many elements rather than on 2D surfaces (discrete
cracks).



Treatment of fracture in the local theory and peridynamics

Linear elastic fracture mechanics (LEFM)
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Assumes that the classical asymptotic stress field (o = K /+/r) holds within a small
region near the crack tip.

Crack growth occurs according to a given function a(K) that is obtained empirically.

o
a=crack growth velocity \\

——— >

r

Advantages:
e Doesn’t model the details of the process zone.
e Compatible with energy balance concept of brittle fracture (Griffith).

Disadvantages:
e Doesn’t model the details of the process zone.
e The function a (K) can be measured only in ideal cases.

e Assumes a pre-existing crack.




Treatment of fracture in the local theory and peridynamics
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Purpose of peridynamics®

e To unify the mechanics of continuous and discontinuous media within a single, consistent
set of equations.

Continuous body
with a defect

Discrete particles

Continuous body
e Why do this?
e Avoid coupling dissimilar mathematical systems (A to C).

e Model complex fracture patterns.
e Communicate across length scales.

* Peri (near) + dyn (force)




Treatment of fracture in the local theory and peridynamics
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Peridynamics:Horizon and family

e Any point x interacts directly with other points within a distance ¢ called the “horizon.

e The material within a distance 0 of x is called the “family” of x, Hy.

Equilibrium equation

/ f(q,x) dVgq +b(x) =0
H

X

f = bond force density

H,= family of x

General references
SS, Journal of the Mechanics and Physics of Solids (2000)
SS and R. Lehoucq, Advances in Applied Mechanics (2010)
Madenci & Oterkus , Peridynamic Theory & Its Applications (2014)




Treatment of fracture in the local theory and peridynamics
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Peridynamics: Strain energy at a point

Continuum Discrete particles Discrete structures

Family of x

Deformation

e

e Key assumption: the strain energy density at X is determined by the
deformation of its family.




Treatment of fracture in the local theory and peridynamics
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Peridynamic vs. local equations
State notation: State<bond>=vector
Relation Peridynamic theory Standard theory
Kinematics Y({a-x) =y(q) - y(x) F(x) = 22 (x)

Linear momentum
balance

) = [ (t(a.%) = tlx.a)) ¥ + b

Constitutive model

~

t(q,x) =T(q—-x), T=T(Y)

Angular momentum
balance

/Hz<q—><>><1<q—x> dVy = 0

Elasticity

T = Wy (Fréchet derivative)

o = Wr (tensor gradient)

First law

e=TeY+q+r

éza-F—H]—Fr

T(E) - X (&) dVe




Treatment of fracture in the local theory and peridynamics

rh)
Peridynamics: EMU numerical method

= Integral is replaced by a finite sum: resulting method is meshless and Lagrangian.

py(x,t) = / f(x',x,t) dVy + b(x, 1) —» Pyl =y £(xp, X, 1) AV; + b}
H keH

* Linearized model:

pu; = Z Cir(ur — ;) AVy + b,
keH,;




Treatment of fracture in the local theory and peridynamics
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Bond based material models

* If each bond response is independent of the others, the resulting material model is
called bond-based.
 The material model is then simply a graph of bond force density vs. bond strain.
 Damage can be modeled through bond breakage.
* Bond response is calibrated to:
e Bulk elastic properties.
e Critical energy release rate.

Bond force densityA Bond
breakage

~
7

Bond strain
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Treatment of fracture in the local theory and peridynamics

Autonomous crack growth

Broken bond
Crack path
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e When a bond breaks, its load is shifted to its neighbors, leading to progressive failure.
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PD reproduces the Griffith crack energy
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|
< Slope = 0.013
S
Ry From bond —
= properties, energy g
€ | release rate . — >
<1  should be Crack tip position

|

» This confirms that the energy consumed per unit crack growth area equals the expected
value from bond breakage properties.




Treatment of fracture in the local theory and peridynamics
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Fracture and debonding of membranes

* Simulation of peeling illustrates interplay between fracture (tearing) and debonding (peeling).

Fracture
Membrane

/

\

Substrate




Treatment of fracture in the local theory and peridynamics
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Dynamic crack branching

Video

e Red indicates bonds currently
undergoing damage.
® These appear ahead of the
visible discontinuities.
e Blue/green indicate damage
(broken bonds).
e More and more energy is being
built up ahead of the crack — it
can’t keep up.

e Leads to fragmentation.

More on dynamic fracture: see Ha & Bobaru (2010, 2011)
e



Treatment of fracture in the local theory and peridynamics
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Membranes and thin films

Videos
Oscillatory crack path Crack interaction in a sheet Aging of a film

18



Reality and usefulness of nonlocality

Physical nonlocality: Self-assembly and
long-range forces

e Potential importance for self-assembled
nanostructures.
e All forces are treated as long-range.
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Micelles spatially
separate and
organize hard & soft
precursors

ETHANOL, MONOMERS,
SILICA CROSSLINKERS,
(hard) INITIATORS, ETC.

(soft)

Self-assembly is driven by long-range forces
Image: Brinker, Lu, & Sellinger, Advanced Materials (1999)

Failure in a nanofiber membrane
(F. Bobaru, Univ. of Nebraska)

Nanofiber self-shaping Carbon nanotube

Dislocation

19



Reality and usefulness of nonlocality

Nonlocality can arise from the way we
choose to model things

= Homogenization, neglecting the natural length scales of a system, often
doesn’t give good answers.

Stress

Homogenized, local

/

— Real
Indentor

Concrete

Claim: Nonlocality is an essential feature of a realistic homogenized
model of a heterogeneous material.
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Reality and usefulness of nonlocality
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Nonlocality in a composite

When we use a “smoothed out” displacement field, nonlocality appears in the
equations.

* Example: alternate stiff and compliant layers.
Prescribe the mean displacement (1D) to be a step function of position.

Compliant

Stiff




Reality and usefulness of nonlocality

Nonlocality in a composite, ctd.
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* The evolution equation for the mean displacement field is nonlocal.
.. w
pi(a,t) = Eoi"(@,8) + k3 [ (o) — i, )e™ = dp +3(a, ),
—00

L Balishy length scale
AV 3uc(hs +he) '

Strain in each phase if the homogenized strain follows a step function

Strain 5
Homogenized strain u'(x)

Stiff strain %
>
x

Compliant strain




Reality and usefulness of nonlocality

Are composites nonlocal?

= Peridynamic model is more accurate than the local model for predicting stress
concentration in a laminate.

" he=h,=04mm, E; = 150GPa, u. =4GPa.
= =1/A=1.41mm.
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Normal stress distribution (Mpa)

25 35 45 B55 65 75 85 95 105 116 126

EMU: contours of longitudinal stress X position (mm)
Horizon = 2mm

Data of Toubal, Karama, and Lorrain, Composite Structures 68 (2005) 31-36
I —————



Reality and usefulness of nonlocality
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Survey of some nonlocal theories

= MD-like forces, Cauchy-Born kinematics (Navier).

= Add nonlocal terms to the standard local model (Kroner).

= Average the local stress and use this in the Cauchy equilibrium equation (Eringen).
= Average the damage and use this in a local material model (Belytschko, Bazant).

= Include rotational DOFs in a local model (Cosserat).

= |nclude second partial derivatives of displacement in a local model (Coleman).

= Strongly nonlocal, linear elastic, mechanical only (Kunin).

All of the above are unsuitable for modeling fracture.

= Strongly nonlocal, nonlinear, mechanical + consistent thermodynamics + diffusion
+ damage (peridynamics).



Reality and usefulness of nonlocality

Bone: A composite material with many

Millimeter

Micrometer

PRI G
P A e S A

Nanometer

Bone contains a heirarchy of structures at many
length scales. Image: Wang and Gupta, Ann. Rev.

Mat. Sci. 41 (2011) 41-73
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Bone structure helps delay, deflect crack growth. Image:
Chan, Chan, and Nicolella, Bone 45 (2009) 427-434




Reality and usefulness of nonlocality

Concurrent multiscale method for defects

* Apply the best practical physics at the smallest length scale (near a crack tip).

e Scale up hierarchically to larger length scales.

* Each level is related to the one below it by the same equations.

* Any number of levels can be used.

e Adaptively follow the crack tip.

Crack process zone

The details of damage evolution are always

modeled at level 0.

Sandia
National
Laboratories




Reality and usefulness of nonlocality
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Concurrent solution strategy

= The equation of motion is applied only within each level.
= Higher levels provide boundary conditions on lower levels.
= Lower levels provide coarsened material properties (including damage) to higher levels.

In principle, a large number of levels can be used, all coupled in the same way: “scalable
multiscale” method.

A Level
%
7 S
79 o®
iz o N
" e
> ‘8¢ o

Schematic of communication between levels in a 2D body




Reality and usefulness of nonlocality

Concurrent multiscale example:
shear loading of a crack

* Level O region adaptively follows the crack tip.
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Bond strain Damage process zone

28



Reality and usefulness of nonlocality =

Failure of a glass rod in tension

e Aclassical test problem for fractography.
* We will try to reproduce key fractographic features.

* Multiscale approach allows us to make the horizon << geometric length scales.

/%Fi;ddisplacement

Y

p = 3000 kg/m3
E =70.5 GPa
v=0.25
Gie=7.0)/m?
6 =25um

P

3mm \
Initial defect:

2mm 120um diameter
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Reality and usefulness of nonlocality

Failure of a glass rod in tension
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Level 1 displacement Level O surrounds the crack front

* Level 1 multiscale.
e 20,000,000 level O sites (most are never used).
* Level O horizon is 25um.

30



Reality and usefulness of nonlocality
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Failure of a glass rod in tension (movie)

Evolution of surface roughness (movie)

Wake from main crack
V4
y

4 Microbranch
</ \

«  Main crack growth

* Rough features branch off from the main crack.
e Each one grows slower than the main crack and eventually dies.

31



Reality and usefulness of nonlocality
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Mirror-mist-hackle

* Model predicts roughness and microbranches that increase in size as the crack grows.
* Transition radius decreases as initial stress increases — trend agrees with experiments.

Fracture surface in a glass optical fiber
(Castilone, Glaesemann & Hanson, Proc. SPIE (2002))

3D peridynamic model

32



Reality and usefulness of nonlocality
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Composite fracture features

(b)

Figure 11.20 Pull-out: (a) schematic diagram; (b) fracture surface of ‘Silceram’
glass-ceramic reinforced with SiC fibres. (Courtesy H. S. Kim, P. S. Rogers and R. D.
Rawlings.)

Complex crack path in a composite




Reality and usefulness of nonlocality

Multiscale verification:
crack in a plate

 Example: Solve the same
problem in four different
levels using the
successively upscaled
material properties —
results are the same.
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Reality and usefulness of nonlocality
National

Multiscale modeling reveals the LUf-

* Material design requires understanding of how morphology at
multiple length scales affects strength.
* This is a key to material reliability.

structure of brittle cracks [

Multiscale model of crack growth through a brittle
material with distributed defects

Metallic glass fracture (Hofmann
et al, Nature 2008)
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Material variability and the random nature of fracture
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How should we treat a random distribution
of defects?

e Can the random nature of fracture be reflected in continuum level properties?
* Wrong ways:
* Local: randomly assign element properties.
e Peridynamic: randomly assign critical strains to bonds.
* Right way:
e Start with a realization of a random distribution of initial defects.
* Assign critical bonds strains that reflect each realization.

/ \ Weak spots (initial defects)
X
S Bonds / //




Material variability and the random nature of fracture
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Modeling randomness in fracture

* Assign a critical strain to each defect s;.
* Set each bond critical strain to the minimum of those of the defects it crosses.

S1

Sy

SZ<Sl<SO

Bonds
~

So--- undamaged critical strain
Sq... defect 1 critical strain
S, ... defect 2 critical strain

Bar containing two defects




Material variability and the random nature of fracture
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Where would fracture occur in this model?

* Assign a critical strain to each defect s;.
* Set each bond critical strain to the minimum of those of the defects it crosses.

? ? ? )
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Colors show critical strain in some bonds



Material variability and the random nature of fracture

Rescaling the critical strains

* Set each new bond critical strain to the minimum of those of the original bonds it

intersects.

* The rescaled model still fractures at the weakest spot.

Scaled up horizon

AN

Original model
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Fracture plane




Material variability and the random nature of fracture
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Strategy for treating randomness in
fracture due to material variability

* Define a set of realizations of randomly distributed initial defects.
e Assign level 0 bond strains.
* Scale up to any desired length scale The scaled up model contains the defects.

material realization 1

material realization 2




Discussion

* It’s fairly clear that nonlocality is an essential feature of any mechanics theory that

seeks to accomplish what peridynamics seeks to accomplish.
* Nonlocal interactions can arise due to the way we choose to model things.

e Especially heterogeneous media.
* Nonlocality may also be an essential feature of a scalable multiscale approach to

treating large numbers of small defects.

Do we need a different word for nonlocal continuum mechanics?
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