

 SAND2015-9301PE
*Uncertainty Quantification
in
Computational Models*

Habib N. Najm

hnnajm@sandia.gov

Sandia National Laboratories
Livermore, CA, USA

UC Merced
Merced, CA
Oct. 16, 2015

Acknowledgement

B.J. Debusschere, R.D. Berry, K. Sargsyan, C. Safta,
K. Chowdhary, M. Khalil – Sandia National Laboratories, CA

R.G. Ghanem – U. South. California, Los Angeles, CA

O.M. Knio – Duke Univ., Durham, NC

O.P. Le Maître – CNRS, Paris, France

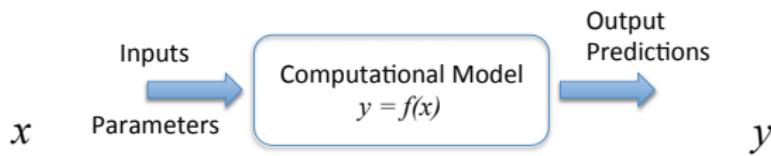
Y.M. Marzouk – Mass. Inst. of Tech., Cambridge, MA

This work was supported by:

- DOE Office of Advanced Scientific Computing Research (ASCR), Scientific Discovery through Advanced Computing (SciDAC)
- DOE ASCR Applied Mathematics program.
- DOE Office of Basic Energy Sciences, Div. of Chem. Sci., Geosci., & Biosci.
- SNL Lab. Directed Res. & Dev. (LDRD) program

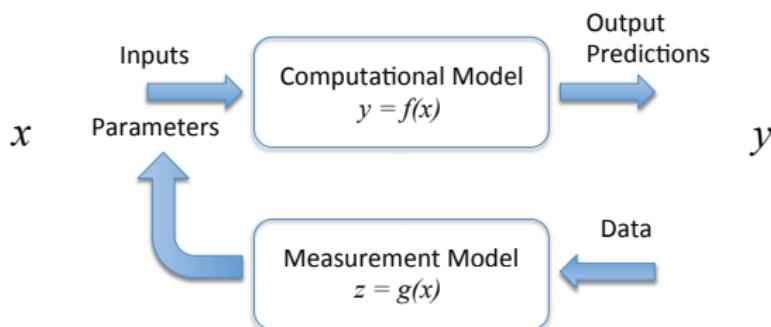
Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94-AL85000.

Uncertainty Quantification and Computational Science



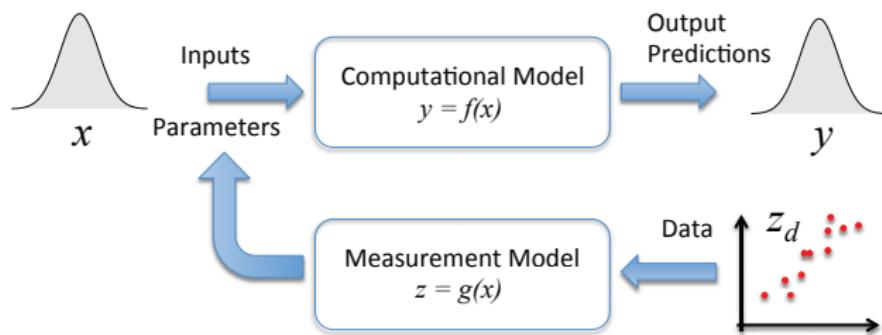
Forward problem

Uncertainty Quantification and Computational Science



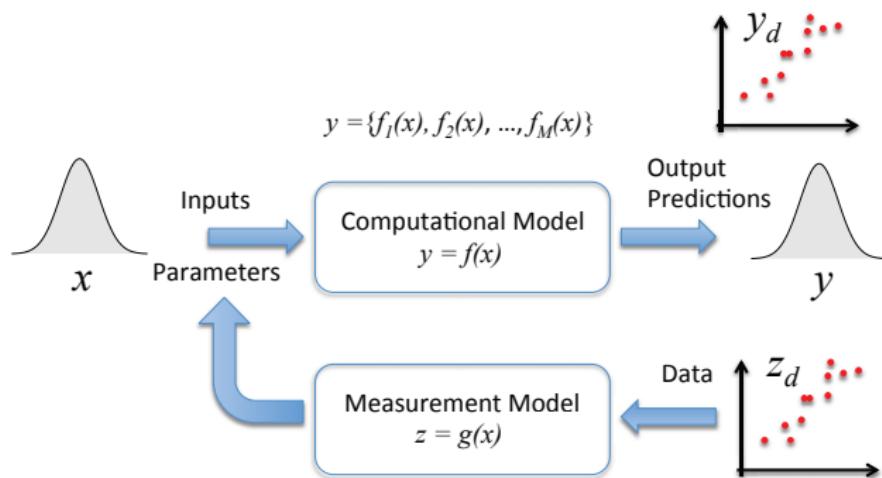
Inverse & Forward problems

Uncertainty Quantification and Computational Science



Inverse & Forward UQ

Uncertainty Quantification and Computational Science



Inverse & Forward UQ
Model validation & comparison, Hypothesis testing

Outline

- 1 Introduction
- 2 Polynomial Chaos
- 3 Forward UQ
- 4 Inverse Problem - Bayesian Inference
- 5 UQ - Computational Issues
- 6 UQ - Challenges
- 7 Closure

Forward propagation of parametric uncertainty

Forward model: $y = f(x)$

- Local sensitivity analysis (SA) and error propagation

$$\Delta y = \left. \frac{df}{dx} \right|_{x_0} \Delta x$$

This is ok for:

- small uncertainty
- low degree of non-linearity in $f(x)$
- Non-probabilistic methods
 - Fuzzy logic
 - Evidence theory - Dempster-Shafer theory
 - Interval math
- Probabilistic methods – this is our focus

Probabilistic Forward UQ

-

$$y = f(x)$$

Represent uncertain quantities using probability theory

- Random sampling, MC, QMC
 - Generate random samples $\{x^i\}_{i=1}^N$ from the PDF of x , $p(x)$
 - Bin the corresponding $\{y^i\}$ to construct $p(y)$
 - Not feasible for computationally expensive $f(x)$
 - slow convergence of MC/QMC methods
 - ⇒ very large N required for reliable estimates
- Build a cheap surrogate for $f(x)$, then use MC
 - Collocation – interpolants
 - Regression – fitting
- Galerkin methods
 - Polynomial Chaos (PC)
 - Intrusive and non-intrusive PC methods

Probabilistic Forward UQ & Polynomial Chaos

Representation of Random Variables

With $y = f(x)$, x a random variable, estimate the RV y

- Can describe a RV in terms of its
 - density, moments, characteristic function, or
 - as a function on a probability space
- Constraining the analysis to RVs with finite variance
 - ⇒ Represent RV as a spectral expansion in terms of orthogonal functions of standard RVs
 - Polynomial Chaos Expansion
- Enables the use of available functional analysis methods for forward UQ

Polynomial Chaos Expansion (PCE)

- Model uncertain quantities as random variables (RVs)
- Given a *germ* $\xi(\omega) = \{\xi_1, \dots, \xi_n\}$ – a set of *i.i.d.* RVs
 - where $p(\xi)$ is uniquely determined by its moments

Any RV in $L^2(\Omega, \mathfrak{S}(\xi), P)$ can be written as a PCE:

$$u(\mathbf{x}, t, \omega) = f(\mathbf{x}, t, \xi) \simeq \sum_{k=0}^P u_k(\mathbf{x}, t) \Psi_k(\xi(\omega))$$

- $u_k(\mathbf{x}, t)$ are mode strengths
- $\Psi_k()$ are multivariate functions orthogonal w.r.t. $p(\xi)$

With dimension n and total order p : $P + 1 = \frac{(n + p)!}{n!p!}$

Orthogonality and Projection

By construction, the $\Psi_k()$ are orthogonal w.r.t. the density of ξ

$$\begin{aligned}\langle f(\xi) \rangle &\equiv \int_{\Xi} f(\xi) p(\xi) d\xi, & \langle \Psi_i \Psi_j \rangle &= \delta_{ij} \langle \Psi_i^2 \rangle \\ u_k(x, t) &= \frac{\langle u \Psi_k \rangle}{\langle \Psi_k^2 \rangle} = \frac{1}{\langle \Psi_k^2 \rangle} \int u(x, t; \lambda(\xi)) \Psi_k(\xi) p(\xi) d\xi\end{aligned}$$

Examples:

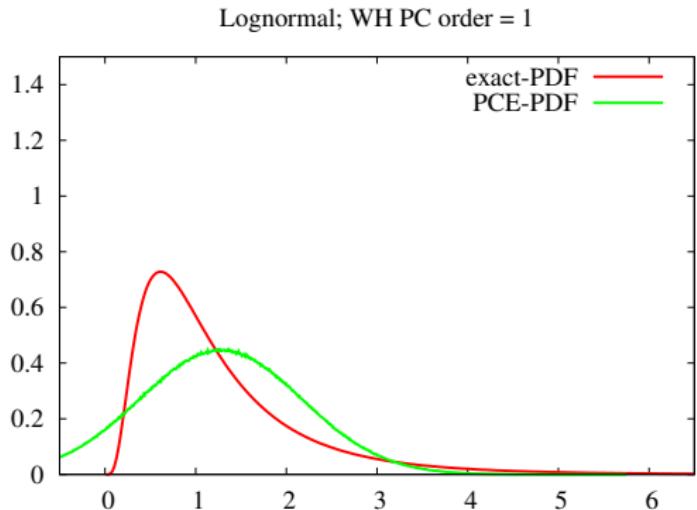
- Hermite polynomials with Gaussian basis
- Legendre polynomials with Uniform basis, ...
- Global versus Local PC methods
 - Adaptive domain decomposition of the support of ξ

PC Illustration: WH PCE for a Lognormal RV

- Wiener-Hermite PCE constructed for a Lognormal RV
- PCE-sampled PDF superposed on true PDF
- Order = 1

$$u = \sum_{k=0}^P u_k \Psi_k(\xi)$$

$$= u_0 + u_1 \xi$$



PC Illustration: WH PCE for a Lognormal RV

- Wiener-Hermite PCE constructed for a Lognormal RV
- PCE-sampled PDF superposed on true PDF
- Order = 2

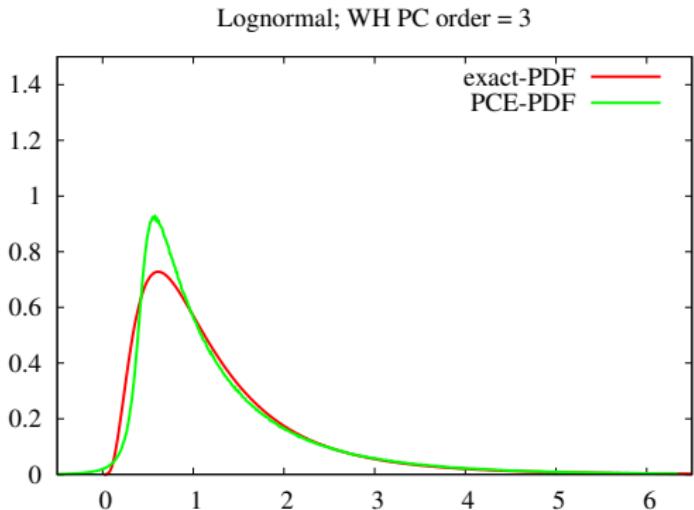
$$\begin{aligned}
 u &= \sum_{k=0}^P u_k \Psi_k(\xi) \\
 &= u_0 + u_1 \xi + u_2 (\xi^2 - 1)
 \end{aligned}$$



PC Illustration: WH PCE for a Lognormal RV

- Wiener-Hermite PCE constructed for a Lognormal RV
- PCE-sampled PDF superposed on true PDF
- Order = 3

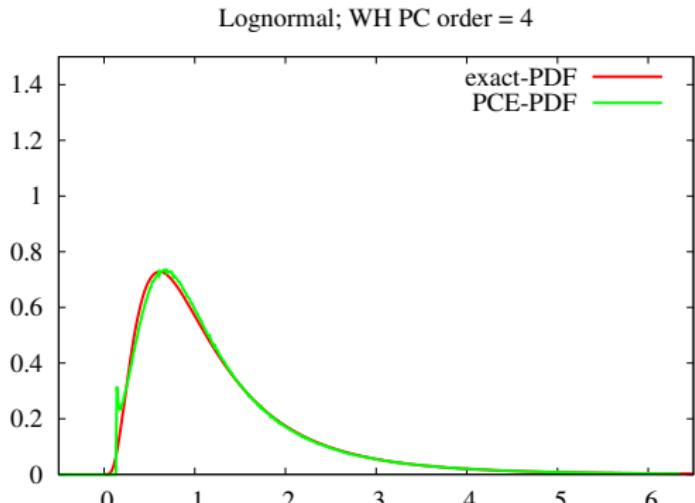
$$\begin{aligned}
 u &= \sum_{k=0}^P u_k \Psi_k(\xi) \\
 &= u_0 + u_1 \xi + u_2 (\xi^2 - 1) + u_3 (\xi^3 - 3\xi)
 \end{aligned}$$



PC Illustration: WH PCE for a Lognormal RV

- Wiener-Hermite PCE constructed for a Lognormal RV
- PCE-sampled PDF superposed on true PDF
- Order = 4

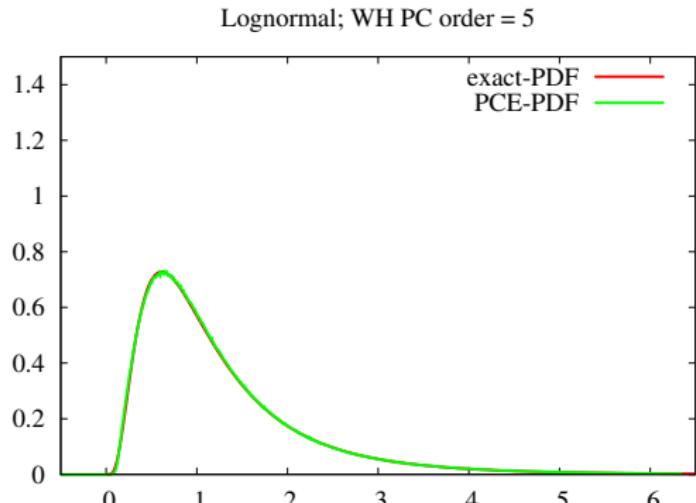
$$\begin{aligned}
 u &= \sum_{k=0}^P u_k \Psi_k(\xi) \\
 &= u_0 + u_1 \xi + u_2 (\xi^2 - 1) + u_3 (\xi^3 - 3\xi) + u_4 (\xi^4 - 6\xi^2 + 3)
 \end{aligned}$$



PC Illustration: WH PCE for a Lognormal RV

- Wiener-Hermite PCE constructed for a Lognormal RV
- PCE-sampled PDF superposed on true PDF
- Order = 5

$$\begin{aligned}
 u &= \sum_{k=0}^P u_k \Psi_k(\xi) \\
 &= u_0 + u_1 \xi + u_2 (\xi^2 - 1) + u_3 (\xi^3 - 3\xi) + u_4 (\xi^4 - 6\xi^2 + 3) \\
 &\quad + u_5 (\xi^5 - 10\xi^3 + 15\xi)
 \end{aligned}$$



Random Fields (RFs)

- A random field $Z(x, \omega)$ is a function on a product space $D \times \Omega$
 - a RV at any $x \in D$
 - an infinite dimensional object
- In many physical systems, uncertain field quantities, described by RFs, have an underlying *smoothness* due to correlations
 - Can be represented with a small no. of stochastic degrees of freedom
- ℓ_2 -Optimal representation – second-order statistics
 - Karhunen-Loève expansion (KLE)

Random Fields Representation – KLE

- KLE for a RF with a continuous covariance function

$$Z(x, \omega) = \mu(x) + \sum_{i=1}^{\infty} \sqrt{\lambda_i} \zeta_i(\omega) \phi_i(x)$$

- $\mu(x)$ is the mean of $Z(x, \omega)$ at x
- λ_i and $\phi_i(x)$ are the eigenvalues and eigenfunctions of the covariance

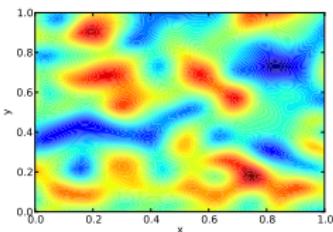
$$C(x_1, x_2) = \langle [Z(x_1, \omega) - \mu(x_1)][Z(x_2, \omega) - \mu(x_2)] \rangle$$

- The ζ_i are uncorrelated zero-mean unit-variance RVs

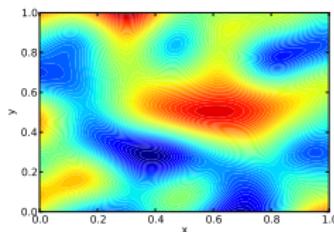
$$\zeta_i(\omega) = \frac{1}{\sqrt{\lambda_i}} \int_D Z(x, \omega) \phi_i(x) dx$$

RF - 2D Gaussian Process

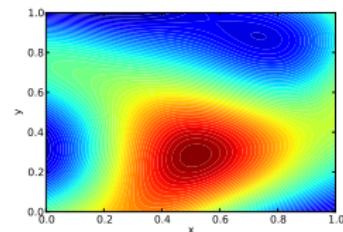
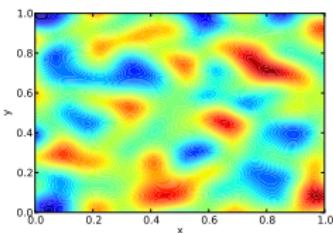
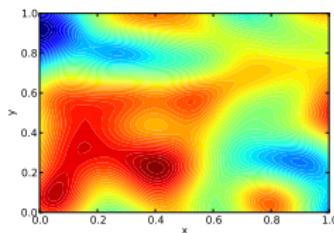
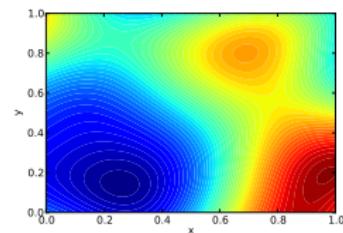
$$\delta = 0.1$$



$$\delta = 0.2$$



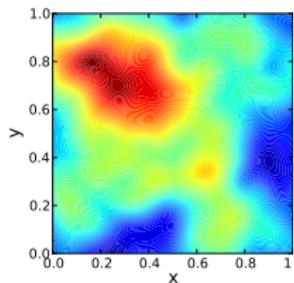
$$\delta = 0.5$$



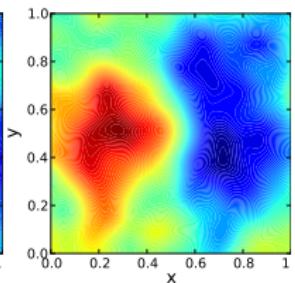
- 2D Gaussian Process with covariance:
$$Cov(x_1, x_2) = \exp(-||x_1 - x_2||^2 / \delta^2)$$
- Realizations smoother as covariance length δ increases

RF Illustration: 2D KL - Modes for $\delta = 0.1$

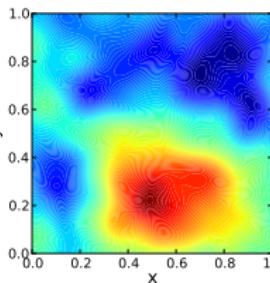
$$\sqrt{\lambda_1}\phi_1$$



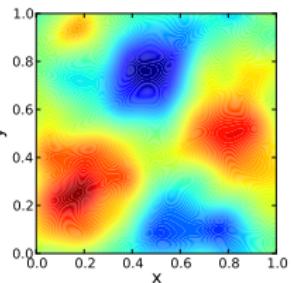
$$\sqrt{\lambda_2}\phi_2$$



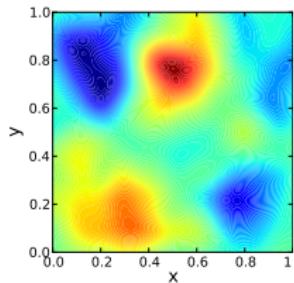
$$\sqrt{\lambda_3}\phi_3$$



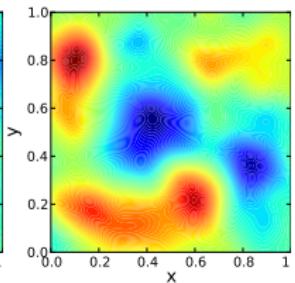
$$\sqrt{\lambda_4}\phi_4$$



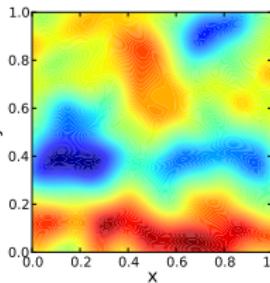
$$\sqrt{\lambda_5}\phi_5$$



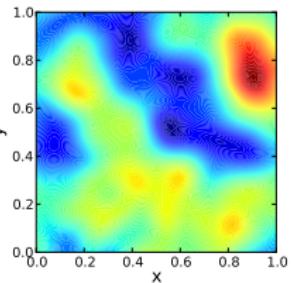
$$\sqrt{\lambda_6}\phi_6$$



$$\sqrt{\lambda_7}\phi_7$$

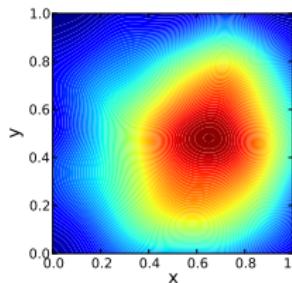


$$\sqrt{\lambda_8}\phi_8$$

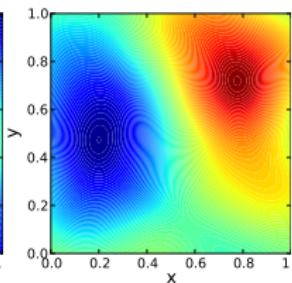


RF Illustration: 2D KL - Modes for $\delta = 0.2$

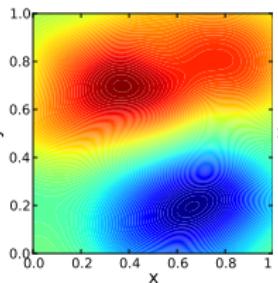
$$\sqrt{\lambda_1}\phi_1$$



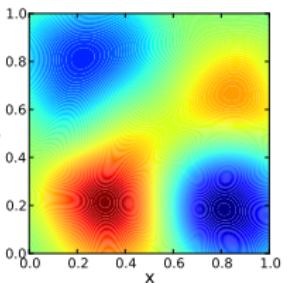
$$\sqrt{\lambda_2}\phi_2$$



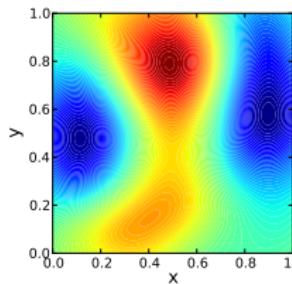
$$\sqrt{\lambda_3}\phi_3$$



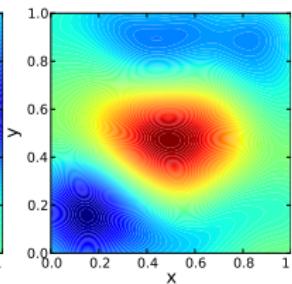
$$\sqrt{\lambda_4}\phi_4$$



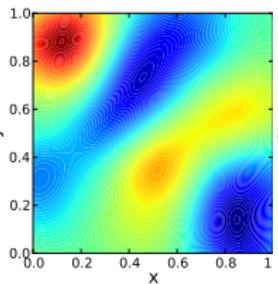
$$\sqrt{\lambda_5}\phi_5$$



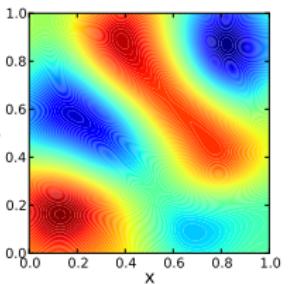
$$\sqrt{\lambda_6}\phi_6$$



$$\sqrt{\lambda_7}\phi_7$$

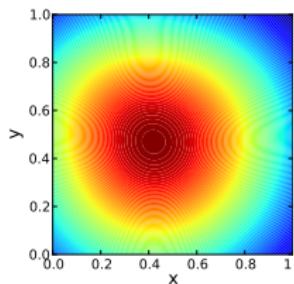


$$\sqrt{\lambda_8}\phi_8$$

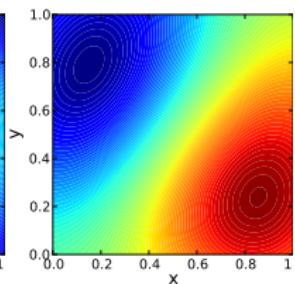


RF Illustration: 2D KL - Modes for $\delta = 0.5$

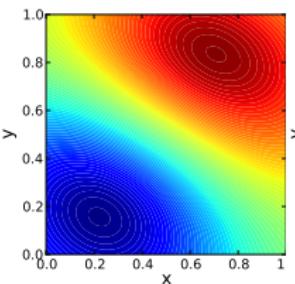
$$\sqrt{\lambda_1}\phi_1$$



$$\sqrt{\lambda_2}\phi_2$$



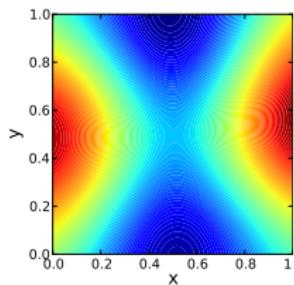
$$\sqrt{\lambda_3}\phi_3$$



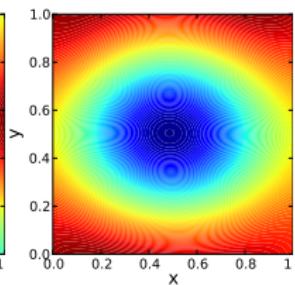
$$\sqrt{\lambda_4}\phi_4$$



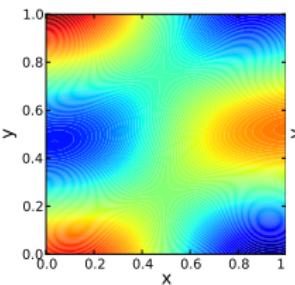
$$\sqrt{\lambda_5}\phi_5$$



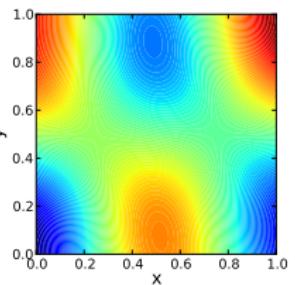
$$\sqrt{\lambda_6}\phi_6$$



$$\sqrt{\lambda_7}\phi_7$$

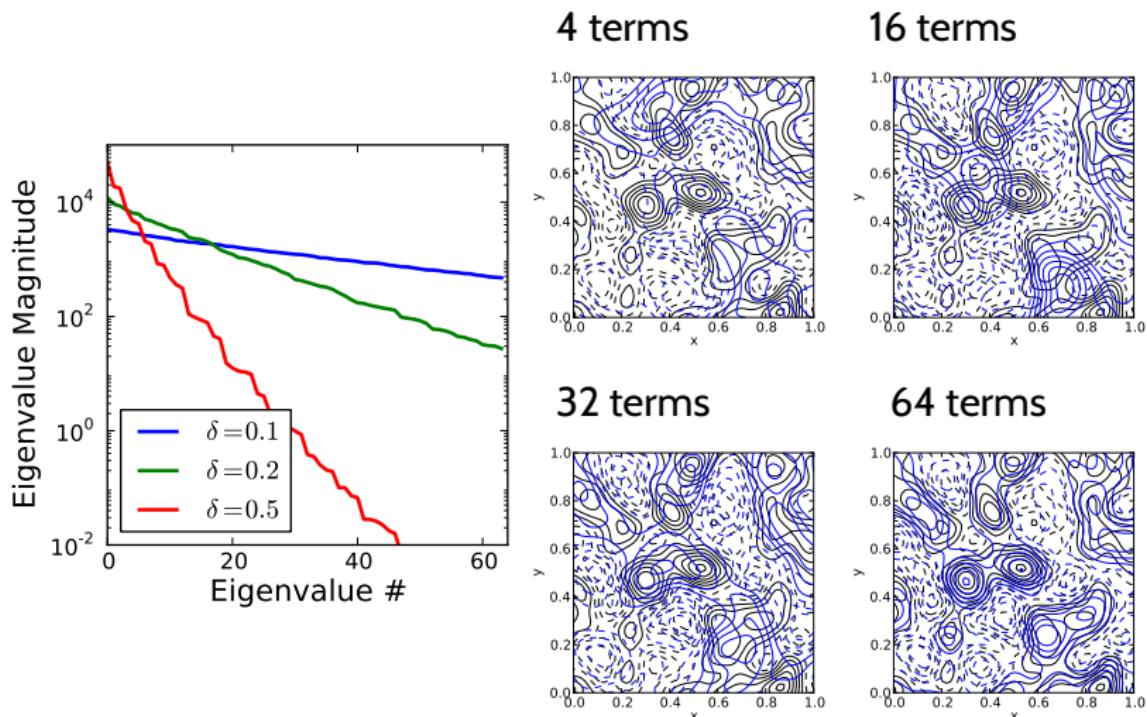


$$\sqrt{\lambda_8}\phi_8$$



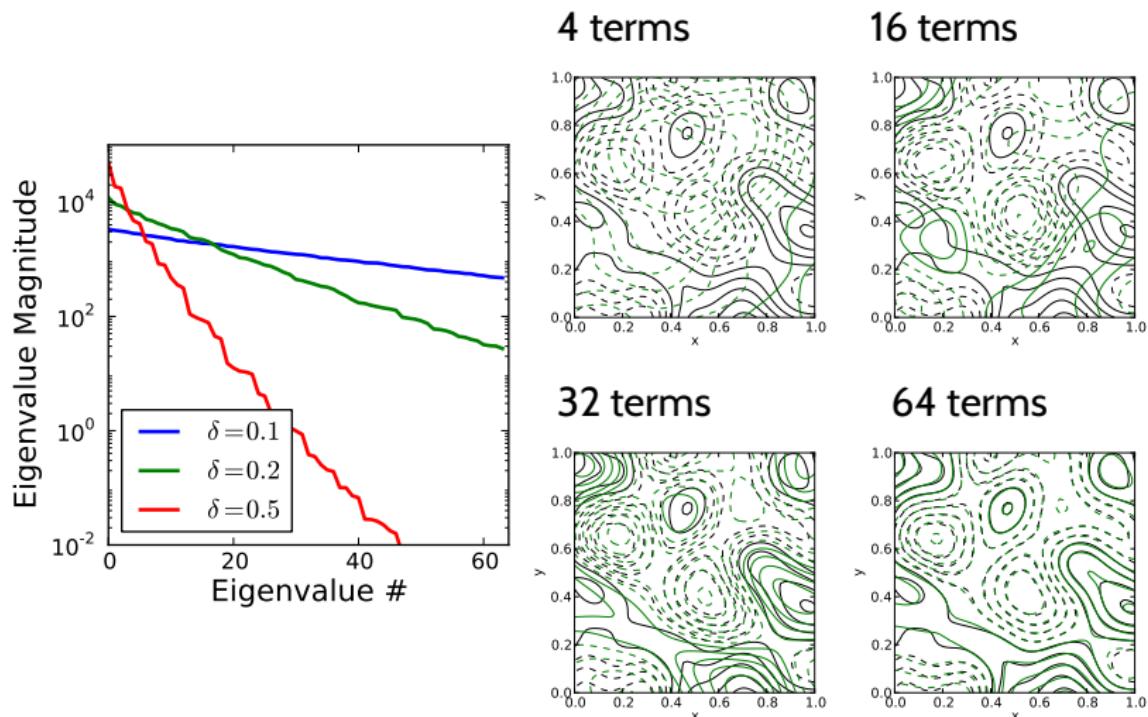
RF Illustration: 2D KL - eigenvalue spectrum

$$\delta = 0.1$$



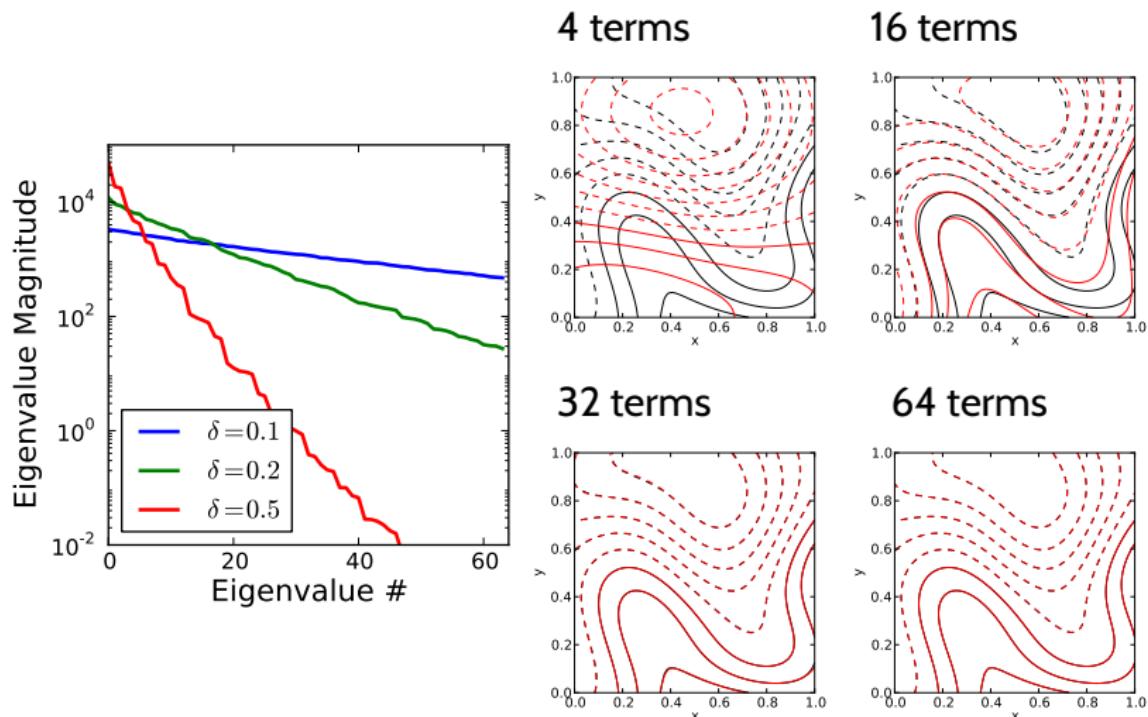
RF Illustration: 2D KL - eigenvalue spectrum

$$\delta = 0.2$$

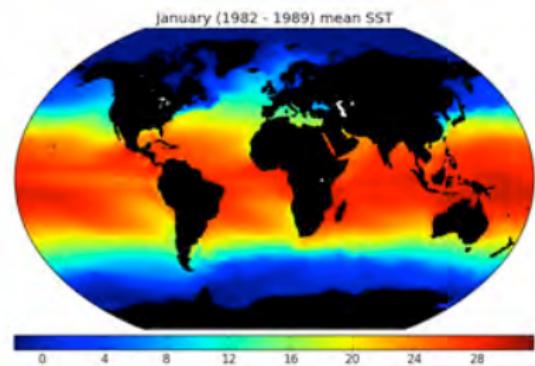


RF Illustration: 2D KL - eigenvalue spectrum

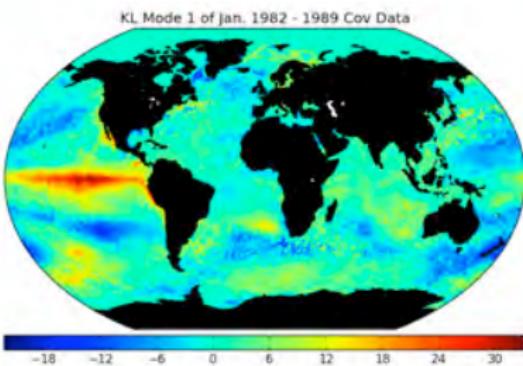
$$\delta = 0.5$$



Random Field - SST Variability - work with NOAA



Mean SST

1st KL mode

- Sea Surface Temperature (SST) variability - satellite data
- Large-scale RF KLE for global SST variability
 - 1/4-degree spatial resolution
 - Trilinos / parallelized block Krylov Schur solver - NERSC
 - 25 modes sufficient to capture most of the energy in the signal

Essential Use of PC in UQ

Strategy:

- Represent model parameters/solution as random variables
- Construct PCEs for uncertain parameters
- Evaluate PCEs for model outputs

Advantages:

- Computational efficiency
- Utility
 - Moments: $E(u) = u_0$, $\text{var}(u) = \sum_{k=1}^P u_k^2 \langle \Psi_k^2 \rangle, \dots$
 - Global Sensitivities – fractional variances, Sobol' indices
 - Surrogate for forward model

Requirement:

- RVs in L^2 , i.e. with finite variance, on $(\Omega, \mathfrak{S}(\xi), P)$

Intrusive PC UQ – Stochastic Galerkin – *no sampling*

- Given model equations: $\mathcal{M}(u(\mathbf{x}, t); \lambda) = 0$
- Express uncertain parameters/variables using PCEs

$$u = \sum_{k=0}^P u_k \Psi_k; \quad \lambda = \sum_{k=0}^P \lambda_k \Psi_k$$

- Substitute in model equations; apply Galerkin projection
- New set of equations: $\mathcal{G}(U(\mathbf{x}, t), \Lambda) = 0$
 - with $U = [u_0, \dots, u_P]^T, \Lambda = [\lambda_0, \dots, \lambda_P]^T$
- Solving this deterministic system once provides the full specification of uncertain model outputs

Example - *Intrusive* Galerkin PC ODE System

$$\frac{du}{dt} = f(u; \lambda)$$

$$\lambda = \sum_{i=0}^P \lambda_i \Psi_i \quad u(t) = \sum_{i=0}^P u_i(t) \Psi_i$$

$$\frac{du_i}{dt} = \frac{\langle f(u; \lambda) \Psi_i \rangle}{\langle \Psi_i^2 \rangle} \quad i = 0, \dots, P$$

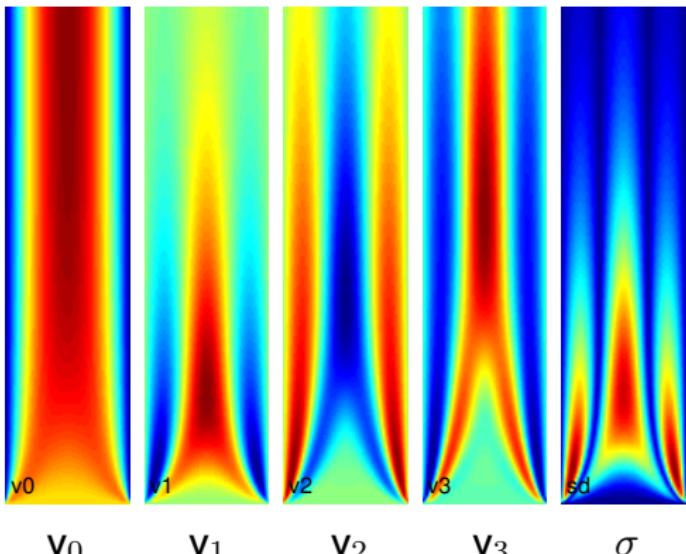
Say $f(u; \lambda) = \lambda u$, then

$$\frac{du_i}{dt} = \sum_{p=0}^P \sum_{q=0}^P \lambda_p u_q C_{pqi}, \quad i = 0, \dots, P$$

where the tensor $C_{pqi} = \langle \Psi_p \Psi_q \Psi_i \rangle / \langle \Psi_i^2 \rangle$ is readily evaluated

Laminar 2D Channel Flow with Uncertain Viscosity

- Incompressible flow
- Viscosity PCE
 - $\nu = \nu_0 + \nu_1 \xi$
- Streamwise velocity
 - $v = \sum_{i=0}^P v_i \Psi_i$
 - v_0 : mean
 - v_i : i -th order mode
 - $\sigma^2 = \sum_{i=1}^P v_i^2 \langle \Psi_i^2 \rangle$



(Le Maître *et al.*, J. Comput. Phys., 2001)

Intrusive PC – UQ Pros/Cons

Pros:

- Tailored solvers can deliver superior performance

Cons:

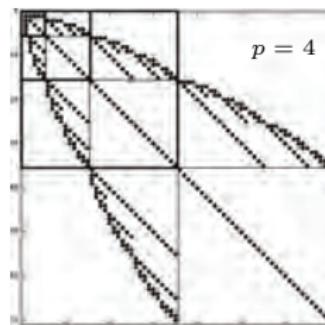
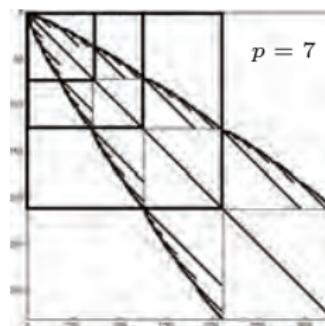
- Reformulation of governing equations
- New discretizations
- New numerical solution method
 - Consistency, Convergence, Stability
 - Global vs. multi-element local PC constructions
- New solvers and model codes
 - Opportunities for automated code transformation
 - New preconditioners

Intrusive PC UQ – Boundary Value Problem

B. Sousedík, R. Ghanem, USC; E. Phipps, SNL

- 2D linear elliptic BVP, N d.o.f.
- Uncertain diffusivity – random field
- FEM spatial discretization
- PCE stochastic representation
 - dim: $n = 4$, ord: $p = 4, 7$
 $Q = (n + p)!/n!p! = 70, 330$
- Stochastic Galerkin Matrix $QN \times QN$
 - $Q \times Q$ blocks, each of size $N \times N$
 - Each block has the sparsity structure of the deterministic FEM problem matrix
- With smart preconditioners ++ :
 - UQ prob. Cost $\sim \mathcal{O}(\det. \text{prob.})$

(Sousedík, Ghanem, and Phipps, *Numer. Linear Algebra Appl.* 2010; *IJUQ*)



Non-intrusive PC UQ

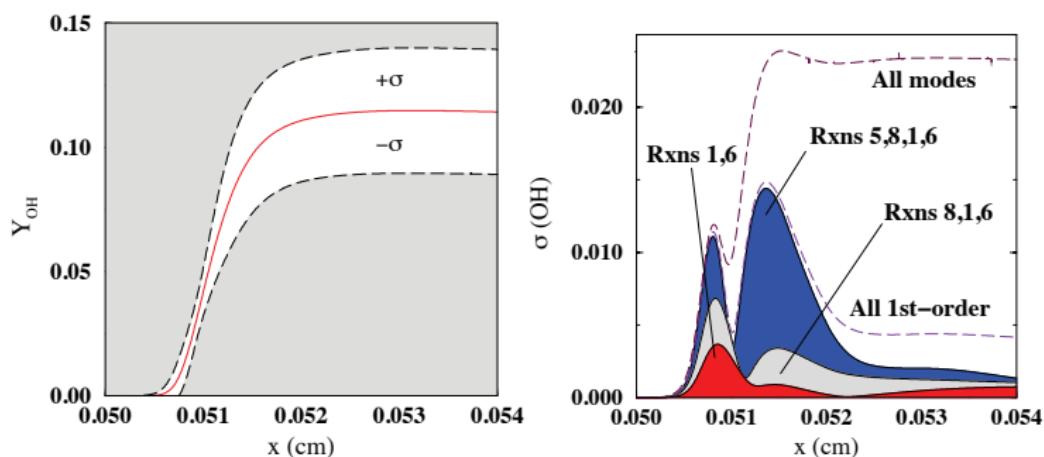
- *Sampling-based*
- Relies on black-box utilization of the computational model
- Evaluate projection integrals *numerically*
- For any quantity of interest $\phi(\mathbf{x}, t; \lambda) = \sum_{k=0}^P \phi_k(\mathbf{x}, t) \Psi_k(\boldsymbol{\xi})$

$$\phi_k(\mathbf{x}, t) = \frac{1}{\langle \Psi_k^2 \rangle} \int \phi(\mathbf{x}, t; \lambda(\boldsymbol{\xi})) \Psi_k(\boldsymbol{\xi}) p_{\boldsymbol{\xi}}(\boldsymbol{\xi}) d\boldsymbol{\xi}, \quad k = 0, \dots, P$$

- Integrals can be evaluated using
 - A variety of (Quasi) Monte Carlo methods
 - Slow convergence; \sim indep. of dimensionality
 - Quadrature/Sparse-Quadrature methods
 - Fast convergence; depends on dimensionality

Non-intrusive PC UQ

-

1D $\text{H}_2\text{-O}_2$ SCWO Flame

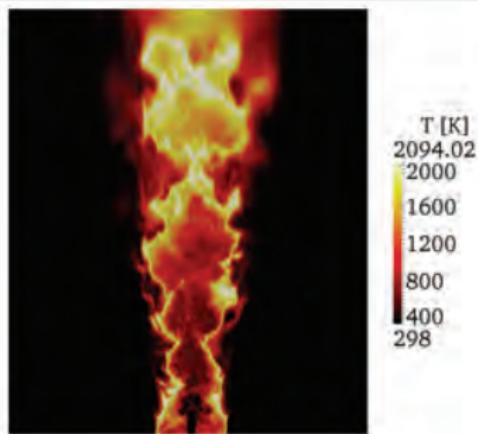
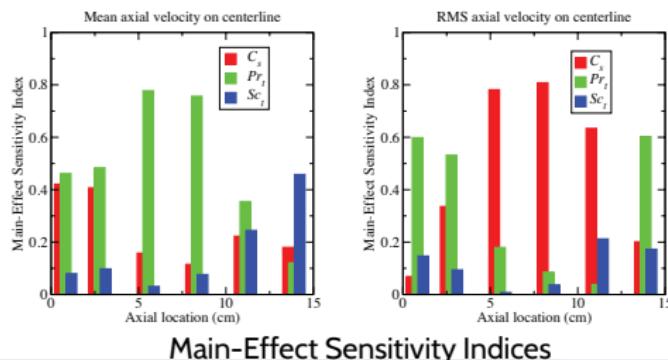
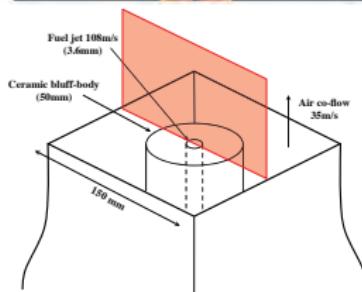
- Fast growth in OH uncertainty in the primary reaction zone
- Constant uncertainty and mean of OH in post-flame region
- Uncertainty in pre-exponential of Rxn.5 ($\text{H}_2\text{O}_2 + \text{OH} \rightarrow \text{H}_2\text{O} + \text{HO}_2$) has largest contribution to uncertainty in predicted OH

(Reagan *et al.* Comb. Flame, 2003)

UQ in LES computations: turbulent bluff-body flame

with M. Khalil, G. Lacaze, & J. Oefelein, Sandia Nat. Labs

- CH₄-H₂ jet, air coflow, 3D flow
- Re=9500, LES subgrid modeling
- 12×10^6 mesh cells, 1024 cores
- 3 days run time, 2×10^5 time steps
- 3 uncertain parameters (C_s , Pr_t , Sc_t)
- 2nd-order PC, 25 sparse-quad. pts



J. Oefelein & G. Lacaze, SNL

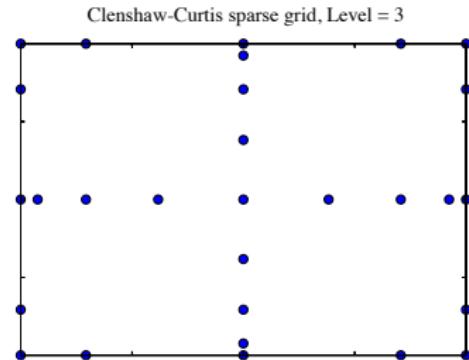
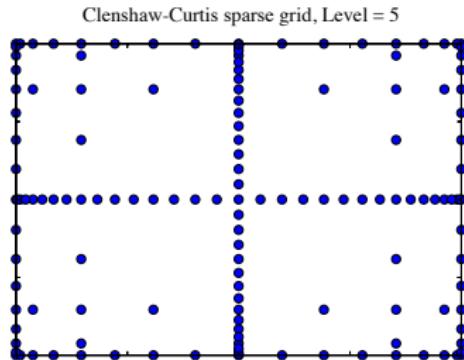
PC and High-Dimensionality

Dimensionality n of the PC basis: $\xi = \{\xi_1, \dots, \xi_n\}$

- $n \approx$ number of uncertain parameters
- $P + 1 = (n + p)!/n!p!$ grows fast with n

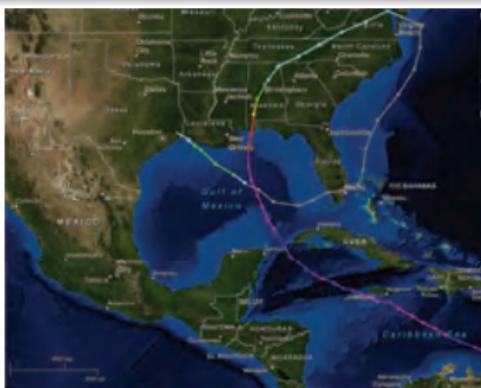
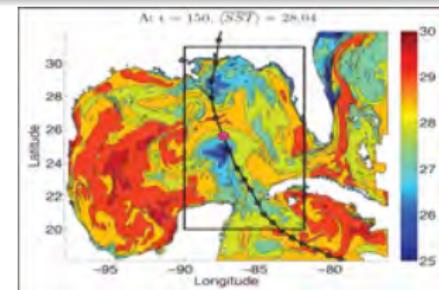
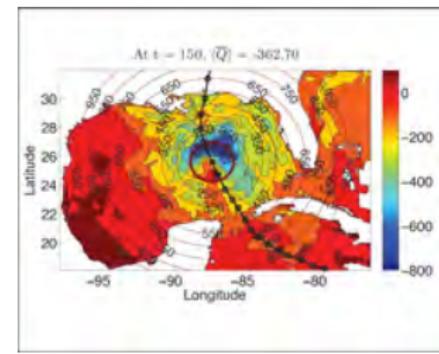
Impacts:

- Size of intrusive PC system
- Hi-D projection integrals \Rightarrow large # non-intrusive samples
 - Sparse quadrature methods



UQ in Ocean Modeling - Gulf of Mexico

A. Alexanderian, J. Winokur, I. Sraj, O.M. Knio, Duke Univ.; A. Srinivasan, M. Iskandarani, Univ. Miami; W.C. Thacker, NOAA



- Hurricane Ivan, Sep. 2004
- HYCOM ocean model (hycom.org)
- 4 uncertain parameters, *i.i.d.* U
 - subgrid mixing & wind drag params
- 385 sparse quadrature samples

(Alexanderian *et al.*, Winokur *et. al.*, *Comput. Geosci.*, 2012, 2013)

PC Sparse Quadrature in hiD

- Climate land model

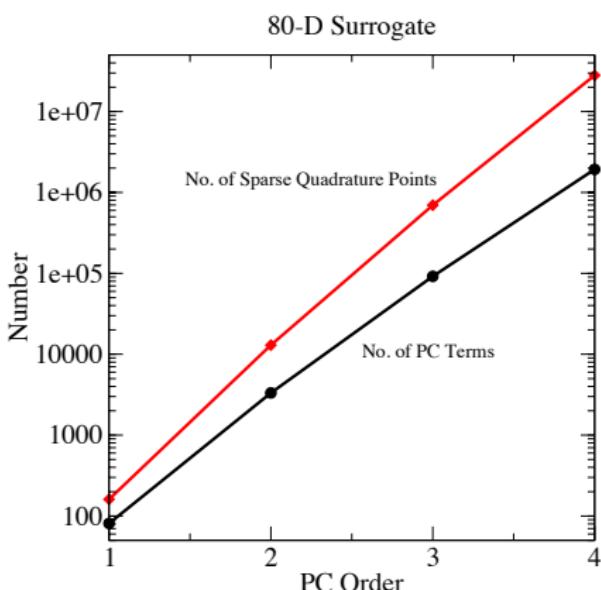
Full quadrature: $N = (N_{1D})^n$

Sparse Quadrature

- Wide range of methods
- Nested & hierarchical
- Clenshaw-Curtis: $N = \mathcal{O}(n^p)$
- Adaptive - greedy algorithms

Number of points can still be excessive in hi-D

- Large no. of terms
- Reduction/sparsity



Other non-intrusive methods

- Response surface employing PC or other functional basis
- Collocation: Fit interpolant to samples
 - Oscillation concern in multi-D
- Regression: Estimate best-fit response surface
 - Least-squares
 - Sparsity via ℓ_1 constraints; compressive sensing
 - Bayesian inference
 - Sparsity via Laplace priors; Bayesian compressive sensing
 - Useful when quadrature methods are infeasible, e.g.:
 - Samples given *a priori*
 - Can't choose sample locations
 - Can't take enough samples
 - Forward model is noisy

Inverse UQ – Estimation of Uncertain Parameters

Forward UQ requires specification of uncertain inputs

Probabilistic setting

- Require joint PDF on input space
- Statistical inference – an inverse problem

Bayesian setting

- Given Data: PDF on uncertain inputs can be estimated using Bayes formula
 - Bayesian Inference
- Given Constraints: PDF on uncertain inputs can be estimated using the Maximum Entropy principle
 - MaxEnt Methods

Bayes formula for Parameter Inference

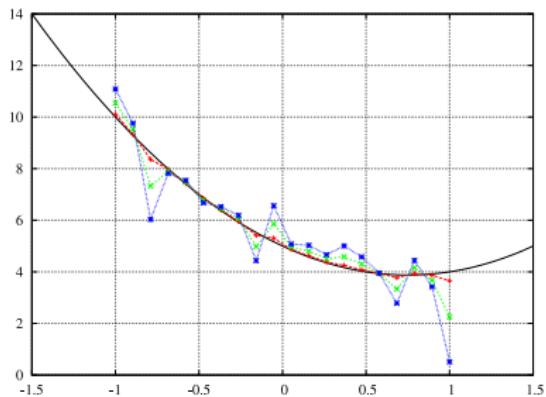
- Data Model (fit model + noise model): $y = f(\lambda) * g(\epsilon)$
- Bayes Formula:

$$p(\lambda, y) = p(\lambda|y)p(y) = p(y|\lambda)p(\lambda)$$

$$p(\lambda|y) = \frac{p(y|\lambda)p(\lambda)}{p(y)}$$

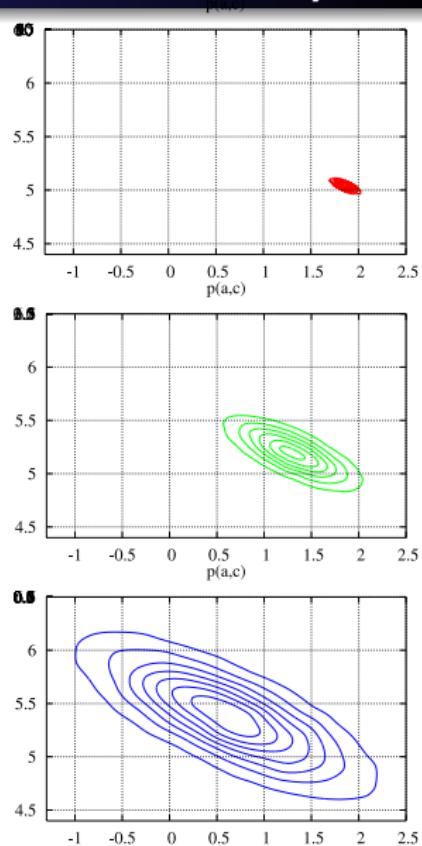
Likelihood Prior
 Posterior Evidence

- Prior: knowledge of λ prior to data
- Likelihood: forward model and measurement noise
- Posterior: combines information from prior and data
- Evidence: normalizing constant for present context

Bayesian inference illustration: noise $\uparrow \Rightarrow$ uncertainty \uparrow 

- data: $y = 2x^2 - 3x + 5 + \epsilon$
- $\epsilon \sim \mathcal{N}(0, \sigma^2)$, $\sigma = \{0.1, 0.5, 1.0\}$
- Fit model $y = ax^2 + bx + c$

Marginal posterior density $p(a, c)$:



Exploring the Posterior

- Given any sample λ , the un-normalized posterior probability can be easily computed

$$p(\lambda|y) \propto p(y|\lambda)p(\lambda)$$

- Explore posterior w/ Markov Chain Monte Carlo (MCMC)
 - Metropolis-Hastings algorithm:
 - Random walk with proposal PDF & rejection rules
 - Computationally intensive, $\mathcal{O}(10^5)$ samples
 - Each sample: evaluation of the forward model
 - Surrogate models
- Evaluate moments/marginals from the MCMC statistics

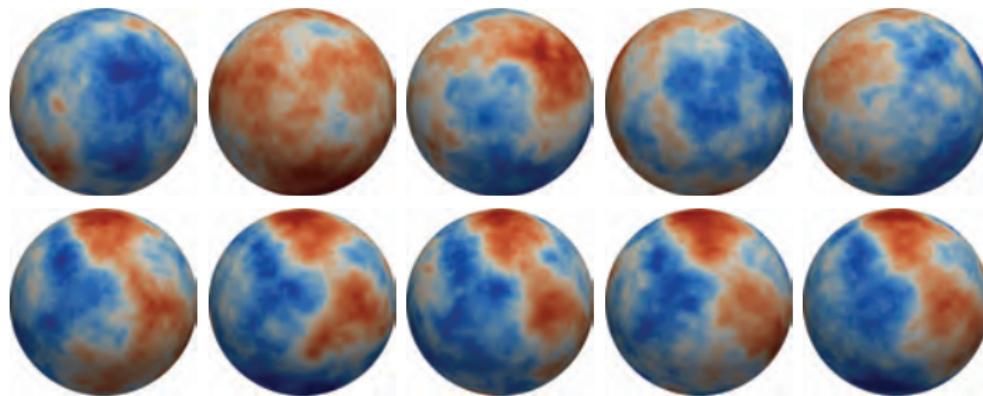
Surrogate Models for Bayesian Inference

- Need an inexpensive response surface for
 - Observables of interest y
 - as functions of parameters of interest x
- Gaussian Process (GP) surrogate
 - GP goes through all data points with probability 1.0
 - Uncertainty between the points
- Fit a convenient polynomial to $y = f(x)$
 - over the range of uncertainty in x
 - Employ a number of samples (x_i, y_i)
 - Fit with interpolants, regression, ... global/local
 - With uncertain x :
 - Construct Polynomial Chaos response surface

(Marzouk et al. JCP 2007; Marzouk & Najm JCP 2009)

Extreme-scale Seismic Inversion

T. Bui-Thanh, O. Ghattas, J. Martin, & G. Stadler, UT Austin



- linearized 3D global seismic inversion
- 1.07M earth model parameters
- 630M wave propagation unknowns
- 100K cores on Jaguar (ORNL)
- $2000 \times$ reduction in effective problem dimension due to low rank approx

- *Top row: Prior samples*
- *Bottom row: Posterior samples*
- Difference between rows indicates information gained from (and uncertainty reduced due to) data
- Gordon Bell Prize finalist, SC12

(Bui-Thanh *et al.* Proc. IEEE/ACM SC12; SISC 2013)

UQ from a Computational Perspective

- UQ involves significant computational cost
 - Generally (many times) \times the deterministic code
 - Run case cannot be the single largest capability problem
- UQ enables extraction of additional information on the physical system at hand
 - Effectively a parametric study over uncertain model inputs
 - Enhances scientific discovery from computations
- Computational elements of interest
 - Scalability and Performance
 - Fault tolerance
 - Code failures

Computational Character of UQ Codes

- Bayesian inference
 - MCMC algorithms, serial, parallelism
 - many model samples
 - high dimensional parameter space
- Intrusive UQ methods
 - new math, algorithms, solvers, code
 - compiler relevance: automatic source code transformation
- non-intrusive UQ methods
 - deterministic sampling
 - high-dimensional integrals
 - embarrassingly parallel

High dimensionality challenge - Forward UQ

Consider a forward model

$$y = f(x)$$

Let $x \in \mathbb{R}^n$ be uncertain, represented as a random vector,

$$x \sim p(x)$$

Estimate moments of y

$$\mathcal{M}^q = \int [f(x)]^q p(x) dx$$

Forward UQ is an integration problem.

Integration in High Dimensions

- Monte Carlo (MC) methods
 - well suited for high-D integrals – convergence rate independent of dimensionality
 - nonetheless they require large numbers of samples for good accuracy
- Quadrature
 - Tensor product quadrature is useless in hi-D
 - Say m points in each of n dimensions: m^n points
 - Adaptive sparse quadrature
 - Much more feasible
 - Can beat MC – dep. on smoothness of integrand
 - Greedy algorithms
- Dimensionality reduction
 - Low rank and sparse representations
 - Global sensitivity analysis

Model Complexity challenge

- If a single model run is a challenge then UQ is infeasible
- Most physical model output quantities of interest depend on only a “small” number of parameters, however:
 - Global sensitivity analysis itself requires many samples
 - Even after reduction of dimensionality to, say, 5 parameters, $O(100)$ samples may be necessary
- Large number of independent samples
 - ideally suited for HPC
- Multifidelity UQ methods are useful – forward UQ
 - Use combinations of many low-resolution/low-fidelity runs with a few high-resolution/high-fidelity runs
- Parallel MCMC methods – inverse UQ

Data Scarcity Challenge

- Even in a “big-Data” context, it’s common to find no information in the data on many *big-model* parameters
 - Situation is typical in statistical inversion for field quantities
 - Bayesian inference of optimal random field constructions
 - Use adaptive MCMC methods that focus on data-informed parameters
- Usually, raw data is not published
 - Published “data” is essentially processed data products, being statistics on
 - the data, or functions of fitted model parameters
 - Use Maximum-Entropy and Approximate Bayesian Computation (ABC) methods – DFI
 - Discover posterior density on model parameters consistent with published statistics

Bayesian inference - High Dimensionality Challenge

- Judgement on local/global posterior peaks is difficult
 - Multiple chains
 - Tempering
- Choosing a good starting point is very important
 - An initial optimization strategy is useful, albeit not trivial
- Choosing good MCMC proposals, and attaining good mixing, is a significant challenge
 - Likelihood-informed proposals
 - Dimension adaptive
 - Adaptive proposal learning from MCMC samples
 - Hessian informs best local multivariate normal approximation of posterior
 - Adaptive, Geometric, Langevin MCMC . . .

Bayesian inference – Model Error Challenge

- Quantifying model error, as distinct from data noise, is important for assessing confidence in model validity
- Available statistical methods for accounting for model error have shortcomings when applied to physical models
- New methods are needed/under-development for assessing how best to model model error such that
 - physical constraints are satisfied
 - feasible disambiguation of model-error/data-noise
 - calibrated model error terms adequately impact all model outputs of interest
 - uncertainties in predictions from calibrated model reflect the range of discrepancy from the truth

Model Evidence and Complexity

Let $\mathcal{M} = \{M_1, M_2, \dots\}$ be a set of models of interest

- Parameter estimation from data is conditioned on the model

$$p(\theta|D, M_k) = \frac{p(D|\theta, M_k)\pi(\theta|M_k)}{p(D|M_k)}$$

Evidence (marginal likelihood) for M_k :

$$p(D|M_k) = \int p(D|\theta, M_k)\pi(\theta|M_k)d\theta$$

Model evidence is useful for model selection

- Optimal complexity – Occam's razor principle
- Compromise between fitting data and model complexity
- Avoid overfitting

Closure

- Probabilistic UQ framework – PC & KLE
- Forward UQ
 - Polynomial Chaos representation of random variables
 - Intrusive and non-intrusive forward PC UQ methods
- Inverse UQ
 - Parameter estimation via Bayesian inference
- UQ and HPC
 - Scalability, Performance, Fault tolerance, Code failures
- UQ Challenges
 - High dimensionality
 - Model complexity
 - Data scarcity
 - Model error