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Introduction

Forward propagation of parametric uncertainty

Forward model: y = f(x)
@ Local sensitivity analysis (SA) and error propagation

df

Ay = ——
y dxmo

Ax

This is ok for:

- small uncertainty
- low degree of non-linearity in f(z)

@ Non-probabilistic methods
o Fuzzy logic
o Evidence theory - Dempster-Shafer theory
e Interval math

@ Probabilistic methods - this is our focus
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Introduction

Probabilistic Forward UQ

Represent uncertain quantities using probability theory
@ Random sampling, MC, QMC

o Generate random samples {z°}¥_, from the PDF of z, p(z)
e Bin the corresponding {y‘} to construct p(y)
o Not feasible for computationally expensive f(x)

- slow convergence of MC/QMC methods
= very large N required for reliable estimates

@ Build a cheap surrogate for f(x), then use MC
o Collocation - interpolants
o Regression - fitting
@ Galerkin methods
- Polynomial Chaos (PC)
- Intrusive and non-intrusive PC methods

Najm UQ in Computations



Introduction

Probabilistic Forward UQ & Polynomial Chaos

Representation of Random Variables

With y = f(x),  arandom variable, estimate the RV y

@ Can describe a RV in terms of its

e density, moments, characteristic function, or
e as a function on a probability space

@ Constraining the analysis to RVs with finite variance

= Represent RV as a spectral expansion in terms of orthogonal
functions of standard RVs

- Polynomial Chaos Expansion

@ Enables the use of available functional analysis methods for
forward UQ
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PC

Polynomial Chaos Expansion (PCE)

@ Model uncertain quantities as random variables (RVs)
e Givenagerm &(w) = {&1, -+ ,&,} —asetofiid RVs
- where p(€) is uniquely determined by its moments

Any RV in L?(Q, &(¢), P) can be written as a PCE:

u(x, t,w) = f(x,t,&) ~ Zuk x, 1)V (&(w))

- ug(x,t) are mode strengths
- Wg() are multivariate functions orthogonal w.r.t. p(&)

!
With dimension n and total order p: P+1= (nnTp%?)'

Najm UQ in Computations



PC

Orthogonality and Projection

By construction, the Uy () are orthogonal w.r.t. the density of &

() = / F(&)p(€) de, (W,0;) = 6;;(T2)
wiat) = o = @1@ [ uta s x@)we(6) p(©) o

@ Hermite polynomials with Gaussian basis
@ Legendre polynomials with Uniform basis, ...

@ Global versus Local PC methods
e Adaptive domain decomposition of the support of &
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PC

PC Illustration: WH PCE for a Lognormal RV

Lognormal; WH PC order = 1
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PC

PC Illustration: WH PCE for a Lognormal RV

Lognormal; WH PC order = 2
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PC

PC Illustration: WH PCE for a Lognormal RV

Lognormal; WH PC order = 3
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PC

PC Illustration: WH PCE for a Lognormal RV

Lognormal; WH PC order = 4

L ‘ ‘ ‘ ‘ éxac —P]jF — 4

o Wiener-Hermite PCE PCE PDF

constructed for a 2y

Lognormal RV tr
@ PCE-sampled PDF o5

superposed on true 06T / \

PDF 04 ;
@ Order = 4 021 / N

7 : 2 ; 4 5 6

P
u = Z uk\Ilk(f)
k=0

= g+ ur€ +ug(E2 — 1) 4+ ug(€3 — 36) + ug (et — 662 + 3)

Najm UQ in Computations



PC

PC Illustration: WH PCE for a Lognormal RV

Lognormal; WH PC order = 5
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PC

Random Fields (RFs)

@ Arandom field Z(z,w) is a function on a product space D x (2

- aRVatanyz € D
- an infinite dimensional object

@ In many physical systems, uncertain field quantities, described
by RFs, have an underlying smoothness due to correlations

@ Can be represented with a small no. of stochastic degrees of
freedom

@ /5-Optimal representation - second-order statistics
- Karhunen-Loéve expansion (KLE)
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PC

Random Fields Representation - KLE

@ KLE for a RF with a continuous covariance function
Z(z,w) = p(x) + Y VAGi(w)ei(z)
i=1

@ s (x)is the mean of Z(z,w) atx

@ )\; and ¢;(x) are the eigenvalues and eigenfunctions of the
covariance

Clar, 22) = ([Z(x1,w) — p(1)][Z (22, w) — p(x2)])

@ The (; are uncorrelated zero-mean unit-variance RVs

1

| Z@wyin(oyds
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PC

RF - 2D Gaussian Process

@ 2D Gaussian Process with covariance:
Cov(x1,12) = exp(—||z1 — 22||?/5?)
@ Realizations smoother as covariance length ¢ increases
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PC

RF Illustration: 2D KL - Modes for § = 0.1
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PC

RF Illustration: 2D KL - Modes for é = 0.2
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PC

RF Illustration: 2D KL - Modes for é = 0.5
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PC

RF Illustration: 2D KL - eigenvalue spectrum
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PC

RF Illustration: 2D KL - eigenvalue spectrum

6=0.2
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PC

RF Illustration: 2D KL - eigenvalue spectrum
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PC

Random Field - SST Variability - work with NOAA

Mean SST 15t KL mode

@ Sea Surface Temperature (SST) variability - satellite data
@ Large-scale RF KLE for global SST variability

o 1/4-degree spatial resolution
e Trilinos / parallelized block Krylov Schur solver - NERSC
e 25 modes sufficient to capture most of the energy in the signal
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Essential Use of PC in UQ

@ Represent model parameters/solution as random variables
@ Construct PCEs for uncertain parameters
@ Evaluate PCEs for model outputs

@ Computational efficiency

o Utility
o Moments: E(u) = ug, var(u) = Y1, uZ(¥2), ...
o Global Sensitivities - fractional variances, Sobol indices
e Surrogate for forward model

Requirement:
@ RVsin L2, ie. with finite variance, on (22, &(&), P)

Najm UQ in Computations



ForwardUQ

Intrusive PC UQ - Stochastic Galerkin - no sampling

M(u(x,t);\) =0

Given model equations:

Express uncertain parameters/variables using PCEs

P P
u = Zukllfk; A= Z )\k\I/k
k=0 k=0

Substitute in model equations; apply Galerkin projection

New set of equations: G(U(z,1),A) =0
- withU = [ug, ..., up]", A =[Ao,..., Ap]”

Solving this deterministic system once provides the full
specification of uncertain model ouputs

Najm UQ in Computations



Example - Intrusive Galerkin PC ODE System

du
o fu; A)
P P
A=) NT () = w)W
1=0 =0
du;  (f(u; \)¥y) _
E = <\II—22> 1 = 0, 50 ,P

Say f(u; A) = Au, then

du P P
S o= > Y MugCpgi, i=0,---,P

p=0 ¢=0

where the tensor Cp,; = (¥, ¥, V,)/(¥?) is readily evaluated
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ForwardUQ

Laminar 2D Channel Flow with Uncertain Viscosity

@ Incompressible flow
@ Viscosity PCE
- v = F 1k

@ Streamwise velocity

P
- V= E Vi\I/Z‘
=0

- Vp: mean
v;: i-th order mode

vi v2 sd

P

2 _ E : 2 2

o° = Vi <\IJZ> Vo Vi Vo V3 g
i=1

(Le Maitre et al., ]. Comput. Phys., 2001)
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ForwardUQ
Intrusive PC - UQ Pros/Cons
@ Tailored solvers can deliver superior performance

Cons:

@ Reformulation of governing equations

@ New discretizations
@ New numerical solution method

- Consistency, Convergence, Stability
- Global vs. multi-element local PC constructions

@ New solvers and model codes

- Opportunities for automated code transformation
- New preconditioners

Najm UQ in Computations



ForwardUQ

Intrusive PC UQ - Boundary Value Problem
B. Sousedik, R. Ghanem, USC; E. Phipps, SNL

@ 2D linear elliptic BVP, N d.of. p=4
@ Uncertain diffusivity - random field
@ FEM spatial discretization
@ PCE stochastic representation
o dm:n=4,ord:p=4,7
Q= (n+p)!/nlp! =70,330
@ Stochastic Galerkin Matrix QN x QN
e @ x @ blocks, each of size N x N
o Each block has the sparsity structure
of the deterministic FEM problem
matrix
@ With smart preconditioners ++ :
e UQ prob. Cost ~ O(det. prob.)

(Sousedik, Ghanem, and Phipps, Numer. Linear Algebra Appl. 2010; JUQ)
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ForwardUQ
Non-intrusive PC UQ

@ Sampling-based

@ Relies on black-box utilization of the computational model
@ Evaluate projection integrals numerically

@ For any quantity of interest ¢(x,t; \) = Zf:o Or(x, t) Vi (8)

or(@,t) = @ / o(, 1 A(€)) Uk(E)pe(€)dE, k=0,..., P

@ Integrals can be evaluated using

@ A variety of (Quasi) Monte Carlo methods
- Slow convergence; ~ indep. of dimensionality

e Quadrature/Sparse-Quadrature methods
- Fast convergence; depends on dimensionality

Najm UQ in Computations



1D H»-0, SCWO Flame

ForwardUQ
Non-intrusive PC UQ
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@ Fast growth in OH uncertainty in the primary reaction zone
@ Constant uncertainty and mean of OH in post-flame region
@ Uncertainty in pre-exponential of Rxn.5 (H,0,+OH=H,0+HO,)

has largest contribution to uncertainty in predicted OH
(Reagan et al. Comb. Flame, 2003)

X (cm)
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ForwardUQ

UQ in LES computations: turbulent bluff-body flame
with M. Khalil, G. Lacaze, & J. Oefelein, Sandia Nat. Labs

@ CHy-Hs jet, air coflow, 3D flow

@ Re=9500, LES subgrid modeling

@ 12 x 10% mesh cells, 1024 cores

@ 3daysruntime, 2 x 10° time steps
@ 3 uncertain parameters (C, Pry, Sct)
e 2"¥-order PC, 25 sparse-quad. pts

RMS axial velocit rline * 108mis
1 1 ; nm) \\
Somm) .
Zosk o Zosp ] - ‘ e cortow
2 <, ] CEA SN
z 2z &
Z 06k 4 Z 06 g <]
i 04 @ 0.4 B R
g E
202 | I Z02H | |
1007 ol 1 L | |
5 10 15 5 10 15

Axial location (cm) Axial location (cm) J Oefelein & G. Lacaze, SNL

Main-Effect Sensitivity Indices
SNL Najm UQ in Computations 25/45



ForwardUQ

PC and High-Dimensionality

Dimensionality n of the PC basis: £ = {&1,...,&,}
@ n ~ number of uncertain parameters
@ P+1=(n+p)!/nlp! grows fast withn
Impacts:

@ Size of intrusive PC system
@ Hi-D projection integrals = large # non-intrusive samples
e Sparse quadrature methods

Clenshaw-Curtis sparse grid, Level = 3 Clenshaw-Curtis sparse grid, Level =5
. . ; .
. e o . . e o
°
°
°
. . ° .
°
°
°
e o . . ° e o 0000000 00000000000 0000000m
°
°
°
. . ° .
°
°
o
. e o . e . e o
L o i o
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ForwardUQ

UQ in Ocean Modeling - Gulf of Mexico

A. Alexanderian, J. Winokur, I. Sraj, O.M. Knio, Duke Univ.; A. Srinivasan, M. Iskandarani, Univ. Miami; ~ W.C. Thacker, NOAA

@ Hurricane Ivan, Sep. 2004

@ HYCOM ocean model (hycom.org)
@ 4 uncertain parameters, i.i.d. U
- subgrid mixing & wind drag params

@ 385 sparse quadrature samples

(Alexanderian et al., Winokur et. al., Comput. Geosci., 2012, 2013)
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ForwardUQ

PC Sparse Quadrature in hiD Climate land model

Full quadrature: N = (Nip)"

Sparse Quadrature 80-D Surrogate
. T T T B
@ Wide range of methods st l
e+07 E
@ Nested & hierarchical ]
) le+06 No. of Sparse Quadrature Points 7'
@ Clenshaw-Curtis: E
N = O(n?) 321&05;
@ Adaptive - greedy Z
. 10000 No. of PC Terms |
algorithms E
Number of points can still be 1000 E
excessive in hi-D wy” ]
- 1 2 3 4
Large no. of terms PC Order

- Reduction/sparsity
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ForwardUQ

Other non-intrusive methods

@ Response surface employing PC or other functional basis

@ Collocation: Fit interpolant to samples
e Oscillation concern in multi-D

@ Regression: Estimate best-fit response surface
o Least-squares
@ Sparsity via ¢, constraints; compressive sensing
e Bayesian inference
@ Sparsity via Laplace priors; Bayesian compressive sensing
o Useful when quadrature methods are infeasible, e.g.:
- Samples given a priori
- Can't choose sample locations
- Cant take enough samples
- Forward model is noisy

Najm UQ in Computations



Bayes

Inverse UQ - Estimation of Uncertain Parameters

Forward UQ requires specification of uncertain inputs

Probabilistic setting

@ Require joint PDF on input space
@ Statistical inference - an inverse problem

Bayesian setting

@ Given Data: PDF on uncertain inputs can be estimated using
Bayes formula

- Bayesian Inference

@ Given Constraints: PDF on uncertain inputs can be estimated
using the Maximum Entropy principle

- MaxEnt Methods

Najm UQ in Computations



Bayes
Bayes formula for Parameter Inference

@ Data Model (fit model + noise model): y=f(\)*g(e)
@ Bayes Formula:

p(Ay) = p(Ay)p(y) = p(y|A\)p(N)

Likelihood  Prior

A A
b0l PO P
Posteri
osterior p(y)
Evidence

Prior: knowledge of A prior to data
Likelihood: forward model and measurement noise
Posterior: combines information from prior and data

Evidence: normalizing constant for present context

Najm UQ in Computations



Bayes

Bayesian inference illustration: noise{ = uncertainty

. \‘\.\z\\; 45 105 0 g&c) 1152 5
% Ny, " L
o data:y =222 —3x +5+e¢ us
@ ¢~ N(0,02),0 ={0.1,0.5,1.0} o T M
@ Fitmodely = az? + bz + ¢ y -
Marginal posterior density p(a, c): 5 Qi D)
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Exploring the Posterior

@ Given any sample A, the un-normalized posterior probability
can be easily computed

P(Aly) o< p(y[A)p(A)

@ Explore posterior w/ Markov Chain Monte Carlo (MCMC)
- Metropolis-Hastings algorithm:

e Random walk with proposal PDF & rejection rules

- Computationally intensive, O(10°) samples
- Each sample: evaluation of the forward model

e Surrogate models

@ Evaluate moments/marginals from the MCMC statistics

Najm UQ in Computations



Surrogate Models for Bayesian Inference

@ Need an inexpensive response surface for
o Observables of interest y
e as functions of parameters of interest x

@ Gaussian Process (GP) surrogate

o GP goes through all data points with probability 1.0
o Uncertainty between the points

@ Fita convenient polynomialto y = f(x)
- over the range of uncertainty in
e Employ a number of samples (z;, y;)

o Fit with interpolants, regression, ... global/local
e With uncertain z :

- Construct Polynomial Chaos response surface

(Marzouk et al. JCP 2007; Marzouk & Najm JCP 2009)

Najm UQ in Computations



Bayes

Extreme-scale Seismic Inversion
T. Bui-Thanh, O. Ghattas, |. Martin, & G. Stadler, UT Austin

@ linearized 3D global seismic inversion @ Top row: Prior samples
@ 1.07M earth model parameters @ Bottom row: Posterior samples
@ 630M wave propagation unknowns @ Difference between rows indicates
@ 100K cores on Jaguar (ORNL) information gained from (and

. ) uncertainty reduced due to) data
@ 2000 x reduction in effective problem

@ Gordon Bell Prize finalist, SC12
(Bui-Thanh et al. Proc. IEEE/ACM SC12; SISC 2013)

dimension due to low rank approx
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Comput

UQ from a Computational Perspective

e UQ involves significant computational cost

e Generally (many times) x the deterministic code
@ Run case cannot be the single largest capability problem

@ UQ enables extraction of additional information on the
physical system at hand
o Effectively a parametric study over uncertain model inputs
e Enhances scientific discovery from computations

@ Computational elements of interest
@ Scalability and Performance
o Fault tolerance
o Code failures

Najm UQ in Computations



Computational Character of UQ Codes

@ Bayesian inference

e MCMC algorithms, serial, parallelism
e many model samples
e high dimensional parameter space

@ Intrusive UQ methods

e new math, algorithms, solvers, code
e compiler relevance: automatic source code transformation

@ non-intrusive UQ methods
e deterministic sampling
e high-dimensional integrals
e embarrassingly parallel

Najm UQ in Computations



chall

High dimensionality challenge - Forward UQ

Consider a forward model

y = f(x)

Let z € R™ be uncertain, represented as a random vector,
z ~ p(x)
Estimate moments of y
M1 = [f(e)p()da

Forward UQ is an integration problem.

Najm UQ in Computations



chall
Integration in High Dimensions

@ Monte Carlo (MC) methods

o well suited for high-D integrals - convergence rate
independent of dimensionality

o nonetheless they require large numbers of samples for good
accuracy

@ Quadrature
e Tensor product quadrature is useless in hi-D
- Say m points in each of n dimensions: m™ points
o Adaptive sparse quadrature
- Much more feasible
- Can beat MC - dep. on smoothness of integrand
o Greedy algorithms
@ Dimensionality reduction

o Low rank and sparse representations
o Global sensitivity analysis

Najm UQ in Computations



Model Complexity challenge

@ If asingle model run is a challenge then UQ is infeasible

@ Most physical model output quantities of interest depend on
only a “small” number of parameters, however:

o Global sensitivity analysis itself requires many samples
e Even after reduction of dimensionality to, say, 5 parameters,
O(100) samples may be necessary
@ Large number of independent samples
- ideally suited for HPC
@ Multifidelity UQ methods are useful - forward UQ

e Use combinations of many low-resolution/low-fidelity runs
with a few high-resolution/high-fidelity runs

@ Parallel MCMC methods - inverse UQ

Najm UQ in Computations



Data Scarcity Challenge

@ Evenin a “big-Data’ context, its common to find no
information in the data on many big-model parameters
e Situation is typical in statistical inversion for field quantities
o Bayesian inference of optimal random field constructions
o Use adaptive MCMC methods that focus on data-informed
parameters

@ Usually, raw data is not published

o Published “data’ is essentially processed data products, being
statistics on

- the data, or functions of fitted model parameters
e Use Maximum-Entropy and Approximate Bayesian
Computation (ABC) methods - DFI
- Discover posterior density on model parameters
consistent with published statistics

Najm UQ in Computations



chall

Bayesian inference - High Dimensionality Challenge

@ Judgement on local/global posterior peaks is difficult
o Multiple chains
e Tempering
@ Choosing a good starting point is very important
o An initial optimization strategy is useful, albeit not trivial

@ Choosing good MCMC proposals, and attaining good mixing, is
a signficant challenge
- Likelihood-informed proposals
Dimention adaptive
Adaptive proposal learning from MCMC samples
Hessian informs best local multivariate normal
approximation of posterior
Adaptive, Geometric, Langevin MCMC . ..

Najm UQ in Computations



chall

Bayesian inference - Model Error Challenge

@ Quantifying model error, as distinct from data noise, is
important for assessing confidence in model validity

@ Available statistical methods for accounting for model error
have shortcomings when applied to physical models

@ New methods are needed/under-development for assessing
how best to model model error such that

- physical constraints are satisfied

- feasible disambiguation of model-error/data-noise

- calibrated model error terms adequately impact all
model outputs of interest

- uncertainties in predictions from calibrated model
reflect the range of discrepancy from the truth

Najm UQ in Computations



Model Evidence and Complexity

Let M = {M;, M>, ...} be aset of models of interest

@ Parameter estimation from data is conditioned on the model
p(D|0, My )m (0| M)
p 0 D7 Mk =
61D, My) p(DIMy)

Evidence (marginal likelihood) for M

p(D|M;) = / p(D|0, My)(6M)do

Model evidence is useful for model selection
@ Optimal complexity - Occamss razor principle
@ Compromise between fitting data and model complexity
@ Avoid overfitting

Najm UQ in Computations



Closure
Closure

@ Probabilistic UQ framework - PC & KLE
@ Forward UQ
e Polynomial Chaos representation of random variables
o Intrusive and non-intrusive forward PC UQ methods
@ Inverse UQ
o Parameter estimation via Bayesian inference
@ UQand HPC
o Scalability, Performance, Fault tolerance, Code failures
e UQ Challenges

e High dimensionality
o Model complexity
e Data scarcity

e Model error

Najm UQ in Computations
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