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Uncertainty Quantification and Computational Science

y = f(x) y = f(x) 
x y

Forward problem
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Uncertainty Quantification and Computational Science

y = f(x) 

z = g(x) z = g(x) 

y = f(x) 
x y

zd

yd

y ={f1(x), f2(x) fM(x)}

Inverse & Forward UQ
Model validation & comparison, Hypothesis testing
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Forward propagation of parametric uncertainty

Forward model: y = f(x)

Local sensitivity analysis (SA) and error propagation

∆y =
df
dx

∣∣∣∣
x0

∆x

This is ok for:
– small uncertainty
– low degree of non-linearity in f(x)

Non-probabilistic methods
Fuzzy logic
Evidence theory – Dempster-Shafer theory
Interval math

Probabilistic methods – this is our focus
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Probabilistic Forward UQ – y = f(x)

Represent uncertain quantities using probability theory
Random sampling, MC, QMC

Generate random samples {xi}Ni=1 from the PDF of x, p(x)
Bin the corresponding {yi} to construct p(y)
Not feasible for computationally expensive f(x)

– slow convergence of MC/QMC methods
⇒ very large N required for reliable estimates

Build a cheap surrogate for f(x), then use MC
Collocation – interpolants
Regression – fitting

Galerkin methods
– Polynomial Chaos (PC)
– Intrusive and non-intrusive PC methods
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Probabilistic Forward UQ & Polynomial Chaos
Representation of Random Variables

With y = f(x), x a random variable, estimate the RV y

Can describe a RV in terms of its
density, moments, characteristic function, or
as a function on a probability space

Constraining the analysis to RVs with finite variance
⇒ Represent RV as a spectral expansion in terms of orthogonal

functions of standard RVs
– Polynomial Chaos Expansion

Enables the use of available functional analysis methods for
forward UQ
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Polynomial Chaos Expansion (PCE)

Model uncertain quantities as random variables (RVs)
Given a germ ξ(ω) = {ξ1, · · · , ξn} – a set of i.i.d. RVs

– where p(ξ) is uniquely determined by its moments

Any RV in L2(Ω,S(ξ), P ) can be written as a PCE:

u(x, t, ω) = f(x, t, ξ) '
P∑

k=0

uk(x, t)Ψk(ξ(ω))

– uk(x, t) are mode strengths
– Ψk() are multivariate functions orthogonal w.r.t. p(ξ)

With dimension n and total order p: P + 1 =
(n+ p)!
n!p!
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Orthogonality and Projection

By construction, the Ψk() are orthogonal w.r.t. the density of ξ

〈f(ξ)〉 ≡
∫
Ξ
f(ξ)p(ξ) dξ, 〈ΨiΨj〉 = δij〈Ψ2

i 〉

uk(x, t) =
〈uΨk〉
〈Ψ2

k〉
=

1

〈Ψ2
k〉

∫
u(x, t;λ(ξ))Ψk(ξ) p(ξ) dξ

Examples:

Hermite polynomials with Gaussian basis
Legendre polynomials with Uniform basis, ...
Global versus Local PC methods

Adaptive domain decomposition of the support of ξ
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PC Illustration: WH PCE for a Lognormal RV

Wiener-Hermite PCE
constructed for a
Lognormal RV
PCE-sampled PDF
superposed on true
PDF
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Random Fields (RFs)

A random field Z(x, ω) is a function on a product space D×Ω

– a RV at any x ∈ D
– an infinite dimensional object

In many physical systems, uncertain field quantities, described
by RFs, have an underlying smoothness due to correlations

Can be represented with a small no. of stochastic degrees of
freedom

`2-Optimal representation – second-order statistics
– Karhunen-Loève expansion (KLE)
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Random Fields Representation – KLE

KLE for a RF with a continuous covariance function

Z(x, ω) = µ(x) +

∞∑
i=1

√
λiζi(ω)φi(x)

µ(x) is the mean of Z(x, ω) at x
λi and φi(x) are the eigenvalues and eigenfunctions of the
covariance

C(x1, x2) = 〈[Z(x1, ω)− µ(x1)][Z(x2, ω)− µ(x2)]〉

The ζi are uncorrelated zero-mean unit-variance RVs

ζi(ω) =
1√
λi

∫
D
Z(x, ω)φi(x)dx
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RF – 2D Gaussian Process

δ = 0.1
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2D Gaussian Process with covariance:
Cov(x1, x2) = exp(−||x1 − x2||2/δ2)
Realizations smoother as covariance length δ increases
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RF Illustration: 2D KL - Modes for δ = 0.1
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RF Illustration: 2D KL - Modes for δ = 0.2
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RF Illustration: 2D KL - Modes for δ = 0.5
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RF Illustration: 2D KL - eigenvalue spectrum
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RF Illustration: 2D KL - eigenvalue spectrum
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Random Field – SST Variability – work with NOAA

Mean SST 1st KL mode

Sea Surface Temperature (SST) variability – satellite data
Large-scale RF KLE for global SST variability

1/4-degree spatial resolution
Trilinos / parallelized block Krylov Schur solver – NERSC
25 modes sufficient to capture most of the energy in the signal
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Essential Use of PC in UQ

Strategy:

Represent model parameters/solution as random variables
Construct PCEs for uncertain parameters
Evaluate PCEs for model outputs

Advantages:

Computational efficiency
Utility

Moments: E(u) = u0, var(u) =
∑P

k=1 u
2
k〈Ψ2

k〉, . . .
Global Sensitivities – fractional variances, Sobol’ indices
Surrogate for forward model

Requirement:

RVs in L2, i.e. with finite variance, on (Ω,S(ξ), P )
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Intrusive PC UQ – Stochastic Galerkin – no sampling

Given model equations: M(u(x, t);λ) = 0

Express uncertain parameters/variables using PCEs

u =

P∑
k=0

ukΨk; λ =

P∑
k=0

λkΨk

Substitute in model equations; apply Galerkin projection

New set of equations: G(U(x, t),Λ) = 0

– with U = [u0, . . . , uP ]
T , Λ = [λ0, . . . , λP ]

T

Solving this deterministic system once provides the full
specification of uncertain model ouputs
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Example – Intrusive Galerkin PC ODE System

du

dt
= f(u;λ)

λ =

P∑
i=0

λiΨi u(t) =

P∑
i=0

ui(t)Ψi

dui
dt

=
〈f(u;λ)Ψi〉〈

Ψ2
i

〉 i = 0, . . . , P

Say f(u;λ) = λu, then

dui
dt

=
P∑

p=0

P∑
q=0

λpuqCpqi, i = 0, · · · , P

where the tensor Cpqi = 〈ΨpΨqΨi〉/〈Ψ2
i 〉 is readily evaluated
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Laminar 2D Channel Flow with Uncertain Viscosity

Incompressible flow
Viscosity PCE

– ν = ν0 + ν1ξ

Streamwise velocity

– v =

P∑
i=0

viΨi

– v0: mean
– vi: i-th order mode

– σ2 =

P∑
i=1

v2i
〈
Ψ2

i

〉 v0 v1 v2 v3 sd

v0 v1 v2 v3 σ

(Le Maître et al., J. Comput. Phys., 2001)
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Intrusive PC – UQ Pros/Cons

Pros:
Tailored solvers can deliver superior performance

Cons:
Reformulation of governing equations
New discretizations
New numerical solution method

– Consistency, Convergence, Stability
– Global vs. multi-element local PC constructions

New solvers and model codes
– Opportunities for automated code transformation
– New preconditioners

SNL Najm UQ in Computations 21 / 45



Introduction PC ForwardUQ Bayes Comput chall Closure

Intrusive PC UQ – Boundary Value Problem
B. Sousedík, R. Ghanem, USC; E. Phipps, SNL

2D linear elliptic BVP, N d.o.f.
Uncertain diffusivity – random field
FEM spatial discretization
PCE stochastic representation

dim: n = 4, ord: p = 4, 7
Q = (n+ p)!/n!p! = 70, 330

Stochastic Galerkin Matrix QN ×QN

Q×Q blocks, each of size N ×N
Each block has the sparsity structure
of the deterministic FEM problem
matrix

With smart preconditioners ++ :
UQ prob. Cost ∼ O(det. prob.)

p = 4

p = 7

(Sousedík, Ghanem, and Phipps, Numer. Linear Algebra Appl. 2010; IJUQ)
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Non-intrusive PC UQ

Sampling-based
Relies on black-box utilization of the computational model
Evaluate projection integrals numerically
For any quantity of interest φ(x, t;λ) =

∑P
k=0 φk(x, t)Ψk(ξ)

φk(x, t) =
1〈
Ψ2

k

〉 ∫ φ(x, t;λ(ξ))Ψk(ξ)pξ(ξ)dξ, k = 0, . . . , P

Integrals can be evaluated using

A variety of (Quasi) Monte Carlo methods
– Slow convergence; ∼ indep. of dimensionality

Quadrature/Sparse-Quadrature methods
– Fast convergence; depends on dimensionality
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Non-intrusive PC UQ – 1D H2-O2 SCWO Flame
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Fast growth in OH uncertainty in the primary reaction zone
Constant uncertainty and mean of OH in post-flame region
Uncertainty in pre-exponential of Rxn.5 (H2O2+OH=H2O+HO2)
has largest contribution to uncertainty in predicted OH

(Reagan et al. Comb. Flame, 2003)
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UQ in LES computations: turbulent bluff-body flame
with M. Khalil, G. Lacaze, & J. Oefelein, Sandia Nat. Labs

CH4-H2 jet, air coflow, 3D flow
Re=9500, LES subgrid modeling
12× 106 mesh cells, 1024 cores
3 days run time, 2× 105 time steps
3 uncertain parameters (Cs, Prt, Sct)
2nd-order PC, 25 sparse-quad. pts
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Main-Effect Sensitivity Indices

150 mm

Ceramic bluff-body
(50mm)

Fuel jet 108m/s
(3.6mm)

Air co-flow 
35m/s

J. Oefelein & G. Lacaze, SNL
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PC and High-Dimensionality

Dimensionality n of the PC basis: ξ = {ξ1, . . . , ξn}
n ≈ number of uncertain parameters
P + 1 = (n+ p)!/n!p! grows fast with n

Impacts:
Size of intrusive PC system
Hi-D projection integrals ⇒ large # non-intrusive samples

Sparse quadrature methods

Clenshaw-Curtis sparse grid, Level = 3 Clenshaw-Curtis sparse grid, Level = 5
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UQ in Ocean Modeling – Gulf of Mexico
A. Alexanderian, J. Winokur, I. Sraj, O.M. Knio, Duke Univ.; A. Srinivasan, M. Iskandarani, Univ. Miami; W.C. Thacker, NOAA

Hurricane Ivan, Sep. 2004
HYCOM ocean model (hycom.org)
4 uncertain parameters, i.i.d. U

– subgrid mixing & wind drag params

385 sparse quadrature samples

(Alexanderian et al., Winokur et. al., Comput. Geosci., 2012, 2013)
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PC Sparse Quadrature in hiD – Climate land model

Full quadrature: N = (N1D)
n

Sparse Quadrature

Wide range of methods
Nested & hierarchical
Clenshaw-Curtis:
N = O(np)

Adaptive – greedy
algorithms

Number of points can still be
excessive in hi-D

– Large no. of terms
– Reduction/sparsity
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No. of PC Terms

No. of Sparse Quadrature Points
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Other non-intrusive methods

Response surface employing PC or other functional basis

Collocation: Fit interpolant to samples
Oscillation concern in multi-D

Regression: Estimate best-fit response surface
Least-squares

Sparsity via `1 constraints; compressive sensing
Bayesian inference

Sparsity via Laplace priors; Bayesian compressive sensing

Useful when quadrature methods are infeasible, e.g.:
– Samples given a priori
– Can’t choose sample locations
– Can’t take enough samples
– Forward model is noisy
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Inverse UQ – Estimation of Uncertain Parameters

Forward UQ requires specification of uncertain inputs

Probabilistic setting

Require joint PDF on input space
Statistical inference – an inverse problem

Bayesian setting

Given Data: PDF on uncertain inputs can be estimated using
Bayes formula

– Bayesian Inference
Given Constraints: PDF on uncertain inputs can be estimated
using the Maximum Entropy principle

– MaxEnt Methods
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Bayes formula for Parameter Inference

Data Model (fit model + noise model): y = f(λ) ∗ g(ε)
Bayes Formula:

p(λ, y) = p(λ|y)p(y) = p(y|λ)p(λ)

p(λ|y)
Posterior

=

Likelihood

p(y|λ)
Prior

p(λ)

p(y)

Evidence

Prior: knowledge of λ prior to data
Likelihood: forward model and measurement noise
Posterior: combines information from prior and data
Evidence: normalizing constant for present context
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Bayesian inference illustration: noise↑⇒ uncertainty↑

data: y = 2x2 − 3x+ 5 + ε

ε ∼ N (0, σ2), σ = {0.1, 0.5, 1.0}
Fit model y = ax2 + bx+ c

Marginal posterior density p(a, c):
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Exploring the Posterior

Given any sample λ, the un-normalized posterior probability
can be easily computed

p(λ|y) ∝ p(y|λ)p(λ)

Explore posterior w/ Markov Chain Monte Carlo (MCMC)
– Metropolis-Hastings algorithm:

Random walk with proposal PDF & rejection rules

– Computationally intensive, O(105) samples
– Each sample: evaluation of the forward model

Surrogate models

Evaluate moments/marginals from the MCMC statistics
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Surrogate Models for Bayesian Inference

Need an inexpensive response surface for
Observables of interest y
as functions of parameters of interest x

Gaussian Process (GP) surrogate
GP goes through all data points with probability 1.0
Uncertainty between the points

Fit a convenient polynomial to y = f(x)

– over the range of uncertainty in x

Employ a number of samples (xi, yi)
Fit with interpolants, regression, ... global/local
With uncertain x :

– Construct Polynomial Chaos response surface

(Marzouk et al. JCP 2007; Marzouk & Najm JCP 2009)
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Extreme-scale Seismic Inversion
T. Bui-Thanh, O. Ghattas, J. Martin, & G. Stadler, UT Austin

linearized 3D global seismic inversion

1.07M earth model parameters

630M wave propagation unknowns

100K cores on Jaguar (ORNL)

2000× reduction in effective problem
dimension due to low rank approx

Top row: Prior samples

Bottom row: Posterior samples

Difference between rows indicates
information gained from (and
uncertainty reduced due to) data

Gordon Bell Prize finalist, SC12

(Bui-Thanh et al. Proc. IEEE/ACM SC12; SISC 2013)
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UQ from a Computational Perspective

UQ involves significant computational cost
Generally (many times)× the deterministic code
Run case cannot be the single largest capability problem

UQ enables extraction of additional information on the
physical system at hand

Effectively a parametric study over uncertain model inputs
Enhances scientific discovery from computations

Computational elements of interest
Scalability and Performance
Fault tolerance
Code failures
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Computational Character of UQ Codes

Bayesian inference
MCMC algorithms, serial, parallelism
many model samples
high dimensional parameter space

Intrusive UQ methods
new math, algorithms, solvers, code
compiler relevance: automatic source code transformation

non-intrusive UQ methods
deterministic sampling
high-dimensional integrals
embarrassingly parallel
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High dimensionality challenge – Forward UQ

Consider a forward model

y = f(x)

Let x ∈ Rn be uncertain, represented as a random vector,

x ∼ p(x)

Estimate moments of y

Mq =

∫
[f(x)]qp(x)dx

Forward UQ is an integration problem.
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Integration in High Dimensions

Monte Carlo (MC) methods
well suited for high-D integrals – convergence rate
independent of dimensionality
nonetheless they require large numbers of samples for good
accuracy

Quadrature
Tensor product quadrature is useless in hi-D

– Say m points in each of n dimensions: mn points
Adaptive sparse quadrature

– Much more feasible
– Can beat MC – dep. on smoothness of integrand

Greedy algorithms
Dimensionality reduction

Low rank and sparse representations
Global sensitivity analysis
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Model Complexity challenge

If a single model run is a challenge then UQ is infeasible
Most physical model output quantities of interest depend on
only a “small” number of parameters, however:

Global sensitivity analysis itself requires many samples
Even after reduction of dimensionality to, say, 5 parameters,
O(100) samples may be necessary

Large number of independent samples
– ideally suited for HPC

Multifidelity UQ methods are useful – forward UQ
Use combinations of many low-resolution/low-fidelity runs
with a few high-resolution/high-fidelity runs

Parallel MCMC methods – inverse UQ
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Data Scarcity Challenge

Even in a “big-Data” context, it’s common to find no
information in the data on many big-model parameters

Situation is typical in statistical inversion for field quantities
Bayesian inference of optimal random field constructions
Use adaptive MCMC methods that focus on data-informed
parameters

Usually, raw data is not published
Published “data” is essentially processed data products, being
statistics on

– the data, or functions of fitted model parameters
Use Maximum-Entropy and Approximate Bayesian
Computation (ABC) methods – DFI

– Discover posterior density on model parameters
consistent with published statistics
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Bayesian inference – High Dimensionality Challenge

Judgement on local/global posterior peaks is difficult
Multiple chains
Tempering

Choosing a good starting point is very important
An initial optimization strategy is useful, albeit not trivial

Choosing good MCMC proposals, and attaining good mixing, is
a signficant challenge

– Likelihood-informed proposals
– Dimention adaptive
– Adaptive proposal learning from MCMC samples
– Hessian informs best local multivariate normal

approximation of posterior
– Adaptive, Geometric, Langevin MCMC . . .
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Bayesian inference – Model Error Challenge

Quantifying model error, as distinct from data noise, is
important for assessing confidence in model validity
Available statistical methods for accounting for model error
have shortcomings when applied to physical models
New methods are needed/under-development for assessing
how best to model model error such that

– physical constraints are satisfied
– feasible disambiguation of model-error/data-noise
– calibrated model error terms adequately impact all

model outputs of interest
– uncertainties in predictions from calibrated model

reflect the range of discrepancy from the truth
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Model Evidence and Complexity

Let M = {M1,M2, . . .} be a set of models of interest
Parameter estimation from data is conditioned on the model

p(θ|D,Mk) =
p(D|θ,Mk)π(θ|Mk)

p(D|Mk)

Evidence (marginal likelihood) for Mk :

p(D|Mk) =

∫
p(D|θ,Mk)π(θ|Mk)dθ

Model evidence is useful for model selection
Optimal complexity – Occam’s razor principle
Compromise between fitting data and model complexity
Avoid overfitting
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Closure

Probabilistic UQ framework – PC & KLE
Forward UQ

Polynomial Chaos representation of random variables
Intrusive and non-intrusive forward PC UQ methods

Inverse UQ
Parameter estimation via Bayesian inference

UQ and HPC
Scalability, Performance, Fault tolerance, Code failures

UQ Challenges
High dimensionality
Model complexity
Data scarcity
Model error
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