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A Tensor is an N-Way Array
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Tensor Decompositions are the DR
New Matrix Decompositions |

Singular value decomposition (SVD), CP Model: Sum of d-way outer products,
eigendecomposition (EVD), useful for interpretation

nonnegative matrix factorization Y 4 V 4 V 4
(NMF), sparse SVD, etc. ~
-~ _|_ _|_ PN +
Viewpoint 1: Sum of outer products,
useful for interpretation CANDECOMP, PARAFAC, Canonical Polyadic, CP
o o Tucker Model: Project onto high-variance
. I N . subspaces to reduce dimensionality

Viewpoint 2: High-variance subspaces,

useful for compression I

- HOSVD, Best Rank-(R1,R2,...,RN) decomposition
Other models for compression include

hierarchical Tucker and tensor train.
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Tensor Fibers, Mode-n Unfolding,
and Mode-n Multiplication
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Tensor “mode-n fibers” analogous to
matrix rows and columns
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Mode-1 Fibers Mode-2 Fibers Mode-3 Fibers

X(n) denotes mode-n unfolding, arranges
mode-n fibers as matrix columns

1 3 5 7
X0=12 4 6 8
1.3 12 5 6
3C=2 4 X(2>_:3478:
1 2 3 4
X0=15 6 7 3

n-rank(X) = col-rank(X(,,)

Tensor-times-matrix (TTM) in mode-n
multiplies mode-n fibers times matrix

le---xfnx---xfj\f)v/KxIn

Yy=-XxX x, U

T

Iy x oo XK X xIpn

Equivalent to matrix operation:

K x 1,
/\I x I
K xI,— Y(n) =UX(n) " "
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Tucker Decomposition

X ~ S X1 b x2 uy® Xy g™
Fact Factor
Factor I\/T:t:)i; Matrix
~ Core X1 Matrix X9 5 o XN N
Data Tensor Tensor 1
Iy xIox---x1In RixRox---XRpn 11 x Rq I, X Rs In X Ry

min Z (Zir v — Zirin )2 subject to X =G x { UM}
X in

WLOG, assume U™ has orthogonal columns for all n.

If R, > rank(X,,) for all n, then decomposition is exact. Else, it’s lossy.

Tucker (1966); Kapteyn, Neudecker, Wansbeek (1986)
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Optimization Problem

min Z (Ziy..in — Ziy..in)* subject to X =G x {U(”)}
SO e

Homework: (1) At an optimum, it must be the case that

G=Xx{U™T}

(2) The minimization problem above can be written as

max > 22, subject to 2 =X x {UMT}

max |[U™TW ,,)||% subject to W =X x {U™T}

m#£n

Solution to (*) is to choose U™ has to be the R, leading left singular vectors of W ,,,.
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Truncated HOSVD Chooses Ranks (i (F
for Requested Error

procedure T-HOSVD(X, ¢)
forn=1,...,N do
R, < min R such that 3, » \:(S™) < €2||X||2/N
U™ + leading R,, eigenvectors of S
end for

G+ X x {U™T}
return (G, {U™ 1)
end procedure

Also known as “Tucker1l” method.

) N I,
I¢ — X7 < ( > M(S(”))) < || X

=1 \i=R,,+1

Tucker (1966); De Lathauwer, De Moor, Vandewalle (2000); Vannieuwenhoven, Vandebril, and Meerbergen (2012)
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Sequentially Truncated HOSVD e (=
improves further

procedure ST-HOSVD(X, ¢)
Y+~ X
forn=1,...,N do
S(n) — Y(n)Y(n)
R, < min R such that ) _ A A (S™) < €2||X||2/N
U™ + leading R,, eigenvectors of S
YeYx, UM o

end for
Gy Swaller at each step.
return (G,{U™ 1)

end procedure

N I,
[RERAEEDY ( > )\i(s(n))) < €[|X]

n=1 \i=R,+1

Vannieuwenhoven, Vandebril, and Meerbergen (2012)
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Higher-Order Orthogonal Wi
Iteration (HOOI) improves again

procedure HOOI(X, ¢)
(G,{ U™ 1) = ST-HOSVD(X, ¢)
repeat
forn=1,...,N do
Y X x{UmTy
S(n) — Y(n)Y-(rn)
U™ + leading R,, eigenvectors of S
end for
G Y xy UNT
until the quantity (||X||* — ||G]|*) ceases to decrease
return (G, { U™ })

end procedure

m#£n

Kroonenberg and De Leeuw (1980); Kapteyn, Neudecker, Wansbeek (1986); De Lathauwer, De Moor, Vandewalle (2000)
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Key Kernels in ST-HOSVD are
TTM and Gram

)

Sandia
National

Laboratories \/ "

procedure ST-HOSVD(X, ¢)
Y+~ X

R, < min R such that ) _ A
U™ « leading R,, eigenvectors of S
Y Y x, UT

end for

5« Y

return (G, { U™ })

end procedure

A (8™) < 1 X||P/N

Vannieuwenhoven, Vandebril, and Meerbergen (2012)
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Tensors in Scientific Applications s (=
are Huge, Need Parallel Methods |

< Variables —

Spatial Spatial
3 . Grid Grid
512 3D Spatial t Il
Grid
T
% Spatial Spatial
= Grid Grid
X :
128 Time Spatial Spatial
Grid Grid

) 240 elements
64 Variables

8TB (double precision)
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Tensor Distribution: Cartesian

Processor Grid: P1 X PQ X P3

/ / /

— J1 =

DAY




Sandia | SIS
National o
Laboratories \/_°

Unfolded Tensor Distribution

Global Tensor Size:  J; xJox-- X Jn, J=[[Jn, Jn=J/Jn
Processor Grid Size: Py X Py x---xXPyn, P =]] Ph, Pn = P/P,
Global Unfolded Tensor: .J,, x jn

Processor Grid: P, X Pn

Local Layout: 2x2x2x 2
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Redundant Factor Matrix DR
Distribution |

Factor matrices are replicated on each processor fiber
and 1D row-distributed on each fiber

Ro Ry
T
I
X

U@ Uu®

Processor Grid: 2 x 3 x 4
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Parallel TTM “shrinks” the DR
Tensor

pé =1d X, V & Z(n) =VY(n)

Global Tensor Size: Jy X Jox---xXJn, J =1][Jn, g, = J/ Iy
Processor Grid Size: Py X Pox---x Py, P =]] P, B, = P/P,

Jn/P, In/Fn Jn/ Py
B | P 1 }F
K . | o = 2 !
3
Vv Y (n) Zy)
procedure TTM(Y,V n)
myProcID — (pl:pQ:n T 7pN)
myPrOCCOJ‘<_(pla-"7pn—l;*7pn+la-"7pN) JK j K
fOI'f:l,...,PndO CTTM:27?+aPnIOan+B(Pn_1) 1r;:;.
Y (€]
W—Yx,V . .
M = " . WK/P+J,K/P.
Z < REDUCE(W, myProcCol, {) Mz i/ﬁ—i_ﬂ—i_i\,/_/—'_u
end for Y v Z w
return %

end procedure

10/29/2015 Kolda - SIAM ALA - Atlanta



@ Sandia
National 2"
Laboratories \/_°

Parallel Gram

procedure GRAM(Y,n) In/Pn
myProcID « (p1,p2,...,PN) %{
myProcCol <= (P1,-- s Pn—1s% Prtls--sPN) || .
myProcRow ¢— (s, ..., %, P, %, ..., *)
Vil e v ¥,
fori=1to P, —1do

j < (pn — 1) mod P, Y(n) Y-(rn) S
k < (pp +1) mod P,
Send Y to process (p1,-..,Pn—1,7---sPN)
Receive W from process (p1,...,0Pn—1,k,..-,PN)
VI — ¥, Wi,
end for

S = All-Reduce(V,myProcRow) _ _
- Cerant =720 /P +2(P, — 1) (a + BJ/P)

end procedure + 2alog P, + 23(P, — 1)J2/P
Mepw =J/P+ J/P+ J?/P, + J2/P,
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Application Results: DD
Compression versus Accuracy

Ranks depend on error: _ |—e—HCCIL-20
S| = HCCI-628
N In —o— TJ-A-13
I - M2 < Y ( > Ai(s(m)) <elx| B} |——TrB16
n=1 \i=R,+1 "

104

Compression ratio:

Compression Ratio
103

N N N
c:an/ [+ LR, z]
k=1 k=1 k=1 f
St
Simulation of an autoignitive premixture of air and > | - _ |
ethanol in Homogeneous Charge Compression Ignition — ‘10_6 105  10-4 10-3 10_2
HCCI-628: 672 x 672 x 33 X 628, 72 GB Max. Normalized RMS Error
Temporally-evolving planar slot jet flame Max. o
with DME (dimethyl ether) as the fuel Dataset Reduced Size Elem. P({’:g;
TJ-A-13: 300 x 500 x 240 x 35x 13, 122 GB Error
TJ-B-16: 460 x 700 x 360 x 35 x 16, 512 GB | HCCL1 (16,16, 4, 1) 3.6e-5 ) 573
HCCI-20 (20, 18, 6, 5) 2.0e-4 7083
Thanks to Hemanth Kolla and Ankit Bhagatwala HCCI-628 (192, 183, 16, 104) 1.2e-3 139
for combustion application data, from Sandia’s TJ-A-1 (257, 139, 186, 20, 1) | 1.7e-3 9
S3D direct numerical simulation code TJ-A-13 (300, 209, 240, 25, 13) | 3.2-3 3
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Sample Results for one Species g (=
in HCCI: Error is Negligible o 1

Compression: 586

Original X Recovered X
672 x672x33x8 48 x 48 x 20 x 3

!

xX-X B
910MB = 1.5MB ! TR ! —3.08 x 1078
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Sample Results for “Derived” M (=
Quantity: Error is Negligible |

Compression: 586

Original X Recovered X
672 x672x33x8 48 x 48 x 20 x 3

Min: 4.214e+05 Min: -4.232e+05

15 — ]|

910MB = 1.5MB TR[ —3.08 x 1078
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Sample Results for one Species g (&
in 3D HCCI: Error is Negligible o

Original X Compression: 1000 Recovered X
500 x 500 x 500 x 11 x 5 50x50x50x11x5

Z-Axis . Z-Axis

Pseudocolor
Var: hrr
Units: K

" 3.0e+09

—2.9e+09

2.7e+09

[ 2.6e+09
2.5e+09

52 GB = 52 MB
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Partial Reconstruction

Reconstruction requires as much space
as the original data!

X =G x; UL x, U x3 UG », UW x, UO

I]_ XIg XI3XI4XI5

But we can just reconstruct the portion that
we need at the moment:

X =G x; U x, U x, UO) x, UWe, x5 U,
— —

Pick out Pick out
kth species  [th time

I xIyxI3x1x1
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Parameter Choices: Processor Grid ~ (f)ien ()=
Configuration & Mode Order

Processor Grid Configuration Mode Order
I: 384 x 384 x 384 x 384 I: 25 x 250 x 250 x 250
R:96 x96 x 96 x 96 R:10x10x 100 x 100
5| [MTT™ | 25| [MTTM
¥ Evecs ¥ Evecs
A B Gram 9| B Gram
3 1.5
2| 1
1 0.5
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Strong & Weak Scaling

Strong Scaling with 24 x 2% processors Weak Scaling with 24 x k* processors
I: 500 x 300 x 240 x 35 I: 200k x 200k x 200k x 200k
R:42x115x81x19 R: 20k x 20k x 20k x 20k
40% Peak [ l g
N —=— HOOI e ST-HOSVD
ST-HOSVD
839% Peak i o = HOOI

% © "

,CE\ o

: ;

S =

& n

g - S

SRS o

O s
i) 70 secs
o™
15TB
T L | L1 |
N 8 64 512 1 256 625 1296
Number of Nodes Number of Nodes
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Parallel Tucker Compression

] ] ) —e— HCCI-20 =
= First-ever implementation of ©F| -« HOCL628 ] ~| [—e_ST-HOSYD
distributed-memory parallel Tucker N ol ==
decomposition g g
. 2 O
= Avoids unnecessary data Cg - 5
permutations 7 S o "
. = Q
= Up to 10° compression on real- = 2
world data with minimal loss in © "
accuracy i
= Scales well —achieving 17% of peak To® 10t 102 1256 625 129
on 10005 Of processo rs Max. Normalized RMS Error Number of Nodes
" Future work
= Detailed application studies For more information:
= Use QR instead of Gram Tammy Kolda,
tgkolda@sandia.gov

W. Austin, G. Ballard, and T. G. Kolda, Parallel Tensor Compression for Large-Scale
Scientific Data, arXiv, October 2015, submitted for publication
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Backup Slicles
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Parallel Filesystem
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