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A Tensor is an N-Way Array 
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Vector 
N = 1 

Matrix 
N = 2 

3rd-Order Tensor 
N = 3 

4th-Order Tensor 
N = 4 

5th-Order Tensor 
N = 5 



Tensor Decompositions are the 
New Matrix Decompositions 
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Singular value decomposition (SVD), 
eigendecomposition (EVD), 

nonnegative matrix factorization 
(NMF), sparse SVD, etc.  

Viewpoint 1: Sum of outer products,  
useful for interpretation 

Viewpoint 2: High-variance subspaces,  
useful for compression 

CP Model: Sum of d-way outer products, 
useful for interpretation 

Tucker Model: Project onto high-variance 
subspaces to reduce dimensionality 

CANDECOMP, PARAFAC, Canonical Polyadic, CP 

HOSVD, Best Rank-(R1,R2,…,RN) decomposition 

Other models for compression include 
hierarchical Tucker and tensor train. 



Tensor Fibers, Mode-n Unfolding, 
and Mode-n Multiplication 
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Tensor “mode-n fibers” analogous to 
matrix rows and columns 

Mode-1 Fibers Mode-2 Fibers Mode-3 Fibers 

X(n) denotes mode-n unfolding, arranges 
mode-n fibers as matrix columns 

5   7 

6   8 
1   3 

2   4 

Tensor-times-matrix (TTM) in mode-n 
multiplies mode-n fibers times matrix 

Equivalent to matrix operation: 



Tucker Decomposition 
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Data Tensor 
Core 

Tensor 

Factor 
Matrix 

1 

Factor 
Matrix 

2 

Factor 
Matrix  

N 

Tucker (1966); Kapteyn, Neudecker, Wansbeek (1986) 

If Rn ¸ rank(X(n)) for all n, then decomposition is exact. Else, it’s lossy. 

WLOG, assume U(n) has orthogonal columns for all n. 



Optimization Problem 
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Homework: (1) At an optimum, it must be the case that 

(2) The minimization problem above can be written as 

Solution to (*) is to choose U(n) has  to be the Rn leading left singular vectors of W(n). 



Truncated HOSVD Chooses Ranks 
for Requested Error 
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Also known as “Tucker1” method. 

Tucker (1966); De Lathauwer, De Moor, Vandewalle (2000); Vannieuwenhoven, Vandebril, and Meerbergen (2012) 



Sequentially Truncated HOSVD 
improves further 
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Vannieuwenhoven, Vandebril, and Meerbergen (2012) 

Smaller at each step. 



Higher-Order Orthogonal 
Iteration (HOOI) improves again 
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Kroonenberg and De Leeuw (1980); Kapteyn, Neudecker, Wansbeek (1986); De Lathauwer, De Moor, Vandewalle (2000) 



Key Kernels in ST-HOSVD are 
TTM and Gram 
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Vannieuwenhoven, Vandebril, and Meerbergen (2012) 

Gram 

TTM 



Tensors in Scientific Applications 
are Huge, Need Parallel Methods 
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3D Spatial 
Grid 

5123 

Time 128 

Variables 64 
8TB  (double precision) 

240 elements 



Tensor Distribution: Cartesian 
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Unfolded Tensor Distribution 
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Global Unfolded Tensor:  

Global Tensor Size:  

Processor Grid Size:  

Processor Grid:  

Local Layout: 2 x 2 x 2 x 2 



Redundant Factor Matrix 
Distribution 
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Factor matrices are replicated on each processor fiber 
and 1D row-distributed on each fiber 



Parallel TTM “shrinks” the 
Tensor 
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Global Tensor Size:  

Processor Grid Size:  



Parallel Gram 
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Application Results: 
Compression versus Accuracy 
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Compression ratio: 

Ranks depend on error: 

Simulation of an autoignitive premixture of air and 
ethanol in Homogeneous Charge Compression Ignition 

HCCI-628: 672 x 672 x 33 x 628, 72 GB 
 Temporally-evolving planar slot jet flame 

with DME (dimethyl ether) as the fuel 

TJ-A-13: 300 x 500 x 240 x 35 x 13, 122 GB  
TJ-B-16: 460 x 700 x 360 x 35 x 16, 512 GB 

Thanks to Hemanth Kolla and Ankit Bhagatwala 
for combustion application data, from Sandia’s 

S3D direct numerical simulation code 



Sample Results for one Species 
in HCCI: Error is Negligible 
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910MB ) 1.5MB 

Compression: 586 

672 x 672 x 33 x 8 48 x 48 x 20 x 3 



Sample Results for “Derived” 
Quantity: Error is Negligible 
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910MB ) 1.5MB 

Compression: 586 

672 x 672 x 33 x 8 48 x 48 x 20 x 3 



Sample Results for one Species 
in 3D HCCI: Error is Negligible 
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52 GB ) 52 MB 

Compression: 1000 

500 x 500 x 500 x 11 x 5 50 x 50 x 50 x 11 x 5 



Partial Reconstruction 
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Reconstruction requires as much space 
as the original data! 

Pick out  
kth species 

Pick out  
lth time 

But we can just reconstruct the portion that 
we need at the moment: 



Parameter Choices: Processor Grid 
Configuration & Mode Order 
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I: 384 x 384 x 384 x 384 
R: 96 x 96 x 96 x 96 

Processor Grid Configuration 

I: 25 x 250 x 250 x 250 
R: 10 x 10 x 100 x 100 

Mode Order 



Strong & Weak Scaling 
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Strong Scaling with 24 x 2k processors 
I: 500 x 300 x 240 x 35 
R: 42 x 115 x 81 x 19 

83% Peak 

40% Peak 

Weak Scaling with 24 x k4 processors 
I: 200k x 200k x 200k x 200k 

R: 20k x 20k x 20k x 20k 

70 secs 
15 TB 



Parallel Tucker Compression 
 First-ever implementation of 

distributed-memory parallel Tucker 
decomposition 
 Avoids unnecessary data 

permutations 

 Up to 105 compression on real-
world data with minimal loss in 
accuracy 

 Scales well – achieving 17% of peak 
on 1000s of processors 

 Future work 
 Detailed application studies 
 Use QR instead of Gram  
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W. Austin, G. Ballard, and T. G. Kolda, Parallel Tensor Compression for Large-Scale 
Scientific Data, arXiv, October 2015, submitted for publication  

For more information: 
Tammy Kolda,  

tgkolda@sandia.gov 
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http://www.sandia.gov/~tgkolda/TensorToolbox/
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Parallel Filesystem 

DVD 




