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Foundational engineering problem — laser welds ) Hona

Surface observations indicate that
the failure of 304-L is a primarily a
necking process. Interrupted testing
will determine the role of crack
initiation.

Hypothesis: Pore size and
distribution can aid the necking
process and crack initiation

» u-CT needed to probe initial and
interrupted pore structures

» Remeshing/mapping needed to
resolve the evolution of pore
structure

= Homogenization not applicable
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experimental data, Boyce
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Pores large relative to the ligament — homogenization n/a Moo
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u-Computed Tomography

Magnification: 9X
Voxel size: 14 um
Energy: 130 keV
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Do the pores dominant the deformation process? Ah) N
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) 100 um |

- What elements of microstructure
dominate the load-bearing

Hoyos & capacity:
Robino)
(Madison)
= \Weh i sheet thickness: 1.6 mm
ypothesize that pores are the ligament length: 508 m
dominant microstructural feature pore diameter: 150 urt

area fraction: 0.066

= We adopt J, plasticity for both the base
material and the weld

=  We have lumped dislocation structures,
deformation twinning, and martensitic phase
transformations into a phenomenological
model for hardening and recovery

NOTE: Unlike experiments, simulation can systematically increase complexity. Pores first. 4




Initial efforts w/pores problematic — remeshing needed Ah) N
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Deeper-penetration welds provide additional motivation ) Netona
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Weld schedule impacts porosity. Porosity impacts performance.
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Pore size/distribution varies with weld schedule Ah) N
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Our approach: maplLL (L, + Lie Group/Algebra)

.......................................................

Interpolate XX i x o oxix
new mesh : :

——————————————————

[ ] source field

—1
Zh = Ao (f )\a)\,gI dV) [
B B

= The variational principle naturally yields an optimal, L, projection
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B, 2, 7] ;=/ W(F,2) dV+f g-(2—2) dV—/ wB-pdv— | T-pds
B B B orB

source field available at global field through

integration points projection

|| target field
)\5 zdV

» The spaces of variables (Lie algrebra, Lie Group) are honored through log() and exp()

= Advocated by Mota, et. al., Computational Mechanics, 2013

Past works: Ortiz and Quigley (1991), Radovitzky and Ortiz (1999), Rashid (2002), Jiao and Heath ( 2004)
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New tetrahedral element technology — gradient operator Ah) N
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Motivated by prior work of Thoutireddy, et. al., [INME (2002)
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Volume-averaged formulation does not lock

Volume-averaged formulation
does not exhibit spurious
pressure oscillations.

F©)= (1) F©

[ Jav
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h=0125
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. . Sandi
Accommodating local remeshing A Nona
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I:' remesh

do ot remesh H _____ This methodology is
completely general to

B element type and
constitutive model.

kinematic
correction

remeshed/mapped
body

tet10 to
lower order tet4
projection needed

new straight edges
reference | in reference
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source nodal fields
with richer basis
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O nodal fields " element fields

. projected fields
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. element fields (Lie groups) ~
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|:| corrected fields (Lie groups) 11




. o Sandi
Can we now model the Ioss of Ic\anl_l\nnrlnn ranacitud Vace mmaﬁm?nl

1.4

We only remesh local
element blocks (blue)

Composite-Tet10
Elements: 110,944
Nodes: 163,444

Yield stress: 196 MPa
Hardening: 2360 MPa
Recovery: 1.3
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Additional interior and exterior views of necking rh) taiona
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undeformed mesh
with notch

necking at
mid-plane

necking at
surface
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. . . Sandi
Progress in modeling the evolution of pore structures i) feor
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What is the impact of “realistic”
void configurations? Employ
tomography + simulation.
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Additional interior and exterior views of necking w/pores
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Increasing the number of mappings () i

Laboratories

Animation illustrating the deformation process with 31 maps
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Conclusions and Path forward

= mapLL ensures a sound theoretical basis

= Tetrahedral elements permit discretization®

= Composite-tetrahedral elements resolve ISVs

= New reference configuration enables solution

= We are able to predict the load-bearing capacity
» General methodology for modeling localization

Path forward

= |ncrease robustness of remeshing T

un-cracked

= Mesh geometry in Cubit problematic e oament
= Re-examine convergence e
= Mesh refinement
. f
= # maps / # intervals

offset

= Model idealized void configurations ~__
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Adopting a new reference configuration i) o

reference
configuration

current
configuration

remesh
remes h map
map remesh
map

znzt - F3F2F1 4
F = F’inchz'nit

= Prior work on hexahedral elements maintained the reference configuration
= Elements degrade in the reference configuration - T-L element integrate in reference

= We now adopt a new reference configuration and map F,; (which lives in a Lie Group)




