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Introduc.on'

- Welding engineers and metallurgists are 
often confronted with questions we don’t 
know the answers to: 

-  “We need to make a laser spot weld next to an 
extremely heat sensitive component – will welding 
damage it”  

-  “We going to make this assembly out of an alloy 
we’ve never welded before – will the welds crack”  

-  “We’d like to use this new alloy to make a welded 
structural part for a one-off test – will it be strong 
enough”  

- There usually isn’t time for full up welding trials or simulations, 
and guessing is never a satisfying or reliable option 

- All of us have developed tools to address these situations 
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Some'examples'

-  Energy absorption in 
pulsed laser welds 

-  Dynamics of weld hot 
cracking 

-  HAZ softening in a 
high strength steel 
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Energy'absorp.on'in'pulsed'laser'welds'

-  Method requires rigorous 
characterization and calibrations 
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-  Understanding energy transfer is critical for estimating welding 
temperatures and process optimization 

-  Basic concept: Capture and measure the reflected light by welding 
inside an integrating sphere 
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Results'and'phenomenology'

-  Initial reflection is 
high as melting 
and keyhole are 
established  

-  Absorption 
increases and 
ultimately 
saturates 
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Effect'of'peak'power'

-  Initial transfer efficiency about 50%, 
defines the mode transition and 
�coupling� 

-  For low power welds transfer efficiency 
remains low throughout pulse 

-  The absorption measurements provide 
a quantitative description of this 
evolution 
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Effect'of'pulse'dura.on'

-  Keyhole develops at same initial rate 

-  Absorption increases logarithmically in 
time toward a steady value 

-  Instantaneous transfer efficiency 
approaches 70% 

-  Longer time in the high absorption 
regime increases energy transfer 
efficiency 
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Efficiencies'and'Process'Selec.on'
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-  Transfer efficiency provides a method for assessing 
temperatures adjacent to spot welds 

-  Higher power pulses generally 
preferred as they achieve higher 
energy transfer efficiencies sooner  

-  Likely to provide a more efficient 
(lower overall temperature, lower 
distortion etc.) weld  
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Pulse'shaping'

-  Pulse shaping allows for gradual 
collapse of the keyhole, reducing 
porosity

-  Measurements provide an 
engineering basis to select schedules 
with respect to penetration, porosity 
and other thermal constraints
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Summary'–'energy'absorp.on''

-  Energy transfer determinations can be used to 
estimate welding temperatures, and also reveal 
important clues about the phenomena associated 
with the weld pool  

-  The balance of transfer (and melting) efficiencies 
can be manipulated with pulse shape, thereby 
providing a basis for optimization of penetration, 
defect mitigation, and weld thermal characteristics 

-  In the next section we look further into the material’s 
response to the process inputs 



11 

Hot'cracking'dynamics'in'Varestraint'tes.ng'

-  Attempt to gain insight into 
process/material 
interactions and cracking 

-  Varestraint test on IN718 
observed by high speed 
video 

-  Strain applied to partially 
molten region of weld 

Alloy 718 – Nominal Composition  
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Longitudinal'Varestraint'test'in'Alloy'718'

Alloy 718 – Nominal Composition  
-  Crack initiates behind S/L 

interface 

-  Crack grows in both 
advancing and retreating 
directions 

-  Cracking can be 
monitored in time 
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Image'measurements'

1 mm 

Local strain Longitudinal strain 

Leading crack length 

Trailing crack length 

-  Measurements similar to those 
developed by Matsuda et.al. 

-  Strains determined relative to 
lengths when trailing edge of 
pool crossed initiation site 

-  Local strain is approximately 
tangential to S/L interface and 
perpendicular to crack 

Initiation site location 
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Cracking'dynamics'

-  Cracking initiates at about 1% strain 
and grows at irregular velocities 

-  Advancing crack tip moves at the 
travel speed (i.e. follows an isotherm) 
like a real hot crack 

-  Advancing crack tip does not 
intersect liquidus 
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Backfilling'

Alloy 718 – High Carbon  

-  Backfilling is very difficult to capture optically 
-  Cracking appears to initiate closer to S/L interface, and to be approximately 

marked by end of backfilled region 

-  Frame by frame analysis implies that filling is a continuous event 
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Crack'ini.a.on'in'Alloy'718'
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-  Temperature associated with 
crack initiation obtained from 
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Rela.onship'to'frac.on'liquid'

-  Crack initiation occurs in the vicinity of 0.10 fraction liquid for both alloys 

-  Cracks which backfill initiate after eutectic-like reaction starts, consistent with eutectic 
in backfilled region 

-  Backfilling appears to be related to interplay of strain development, liquid fraction, and 
solidification constituent present at advancing opening 
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Phenomenology'

Initiation Propagation Termination 
Liquidus 

Solidus 

FL = 0.10 

NbC Start 

Normal C High C 

For both unfilled and backfilled solidification cracks: 

-  Cracking initiates at ≈ 1% local strain and fraction liquid = 0.10 
-  Forward propagation occurs at approximately constant temperature, and thus 

constant fraction liquid 
-  The trailing crack tip propagates in the increasing strain field, and terminates 

near the solidus 

For backfilled solidification cracks, the presence of eutectic composition liquid at the 
leading opening promotes backfilling, and backfilling appears continuous  
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Summary'V'Varestraint'cracking'

-  High speed video analysis coupled with thermal and 
solidification assessments provide interesting insight 
into weld cracking phenomenology  

-  Some potentially useful engineering approximations:  

-  Hot cracking in Ni alloys initiates at about 1% local strain 
and a liquid fraction of about 0.10 

-  The advancing crack grows at constant temperature 
(constant distance behind the pool)  

-  For alloys where eutectic initiates ahead of this criteria, 
backfilling is likely and appears continuous 

 
 -  In the final section we look at some approximations associated 

with the development of materials properties in welds 
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-  AerMet 100 is a weldable precipitation hardening Fe-
Ni-Co martensitic steel 

-  Hardness profile in as-welded aged plate shows 
minima in FZ, near HAZ, and far HAZ 

-  FZ and near HAZ respond to post-weld aging 

-  Gleeble simulations replicate this response – 
hardness minima occurs near 700°C 

-  What if you don’t have a Gleeble? 

HAZ'soXening'in'an'ultrahigh'strength'steel'
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-  Handbook or other available data is 
usually in the form of isothermal heat 
treatment information 

-  Not easily adapted to thermal cycles 

 

- Identify a simple analytical approach 
for estimating the extent of softening 

Goal'
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Overaging'microstructure/proper.es'model'

Basic Assumptions 

-  Hardness 
proportional to 
shear strength 

 

 

 

-  LSW theory 
applies for 
overaging (initial 
hardening not 
explicitly 
considered) 

-  Factors other than 
D are not 
functions of 
temperature 
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H = hardness
τ = shear strength
α = geometric factor
µ = shear modulus
b = burgers vector
λ = interparticle spacing 
r = particle radius
For overaging,
λ ∝ r (volume fraction constant)

D = diffusivity
σ  = interfacial energy
Vm = molar volume of ppt
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(∞) = solubility of solute   
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- Plot of H versus K2 should be linear 
- Search for r0, K1, and Q which maximize linearity 

Coarsening'model'con.nued'

Combining and rearranging leads to: 

H∝ 1
r

rt
3 = r0

3 +K1t
exp -Q

RT

!

"
#

$

%
&

T
and 

H
ar

dn
es

s 

K2 



24 

-  K2 parameter linearizes AerMet 100 aging data over a 
wide range, including peak hardened region 

-  Can be adapted to complex thermal cycles 

AerMet'100'aging'correla.ons'
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Additivity Rule 

-  Time/Temperature path is 
approximated by isothermal segments 

-  Goal seeking routine used to find the 
HRC value which satisfies the 
summation 

-  Can also be solved sequentially 

Applica.on'to'nonVisothermal'cycles'
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- Additive coarsening model accurately predicts softening in 
softened region of HAZ 

- Cutoff associated with reaustenitization must be determined 
by another means  

Comparison'with'Gleeble'simula.ons'
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-  Dilatometry used to determine 
transformation temperatures 

-  Evaluation at different heating rates 
allows for assessment of 
transformation kinetics 

Austeni.za.on'kine.cs'
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- On-heating transformation behavior is complex 
- Appears to consist of two distinct heating rate regions 
- Solute redistribution appears to be important up to 300-400°C/sec 

Con.nuous'hea.ng'diagram'
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-  Additive model accurately predicts softening in 
overaged region of HAZ 

-  Incorporation of on-heating kinetic data defines bound 
of softened region 

-  Gleeble simulations 
of GTA weld in 
aged plate 

Comparison'with'Gleeble'simula.ons'
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Conclusions'–'HAZ'soXening'in'AerMet'100'

-  The softened region in AerMet 100 Alloy 
welds is controlled by overaging and 
austenite formation 

-  Weld HAZ softening can be estimated by 
combination of a simple overaging model and 
the additivity rule 

-  Austenite formation in this alloy is complex, 
dependent on heating rate, and affected by 
solute redistribution, but can be used to 
estimate the extent of the softened region 
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Summary'and'conclusions'

-  Many complex dynamic phenomena in 
welding and welding metallurgy can be 
reasonably described in comparatively simple 
engineering terms 

-  These engineering approximations can 
provide a bridge between guesswork and 
more complex simulations or experimental 
trials, and can help when time and other 
resources are not available 
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