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Introduction i) s

- Welding engineers and metallurgists are
often confronted with questions we don’t
know the answers to:

- “We need to make a laser spot weld next to an
extremely heat sensitive component — will welding
damage it”

- “We going to make this assembly out of an alloy
we’ve never welded before — will the welds crack”

- “We’d like to use this new alloy to make a welded
structural part for a one-off test — will it be strong
enough”

- There usually isn’t time for full up welding trials or simulations,
and guessing is never a satisfying or reliable option

- All of us have developed tools to address these situations




Some examples ) e
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- Energy absorption in - Dynamics of weld hot - HAZ softening in a
pulsed laser welds cracking high strength steel
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Energy absorption in pulsed laser welds rih) i
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- Understanding energy transfer is critical for estimating welding
temperatures and process optimization

- Basic concept: Capture and measure the reflected light by welding
inside an integrating sphere
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Results and phenomenology

- Initial reflection is
high as melting
and keyhole are
established

- Absorption
increases and
ultimately
saturates
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Effect of peak power
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- Initial transfer efficiency about 50%,
defines the mode transition and
“coupling”

- For low power welds transfer efficiency
remains low throughout pulse

- The absorption measurements provide
a quantitative description of this
evolution




Effect of pulse duration
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Keyhole develops at same initial rate

Absorption increases logarithmically in
time toward a steady value

Instantaneous transfer efficiency
approaches 70%

Longer time in the high absorption
regime increases energy transfer

efficiency




Efficiencies and Process Selection ) e
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- Transfer efficiency provides a method for assessing
temperatures adjacent to spot welds
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Square Pulse Ramp-Down Pulse
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- Pulse shaping allows for gradual
collapse of the keyhole, reducing
porosity

- Measurements provide an
engineering basis to select schedules
with respect to penetration, porosity
and other thermal constraints




Summary — energy absorption ) e
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- Energy transfer determinations can be used to
estimate welding temperatures, and also reveal
important clues about the phenomena associated
with the weld pool

- The balance of transfer (and melting) efficiencies
can be manipulated with pulse shape, thereby
providing a basis for optimization of penetration,
defect mitigation, and weld thermal characteristics

- In the next section we look further into the material’s
response to the process inputs
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Hot cracking dynamics in Varestraint testing (i &=
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Alloy 718 — Nominal Composition

- Attempt to gain insight into
process/material
interactions and cracking

- Varestraint test on IN718
observed by high speed
video

- Strain applied to partially
molten region of weld



Longitudinal Varestraint test in Alloy 718 ) e
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- Crack initiates behind S/L
interface

- Crack grows in both
advancing and retreating
directions

- Cracking can be
monitored in time



Image measurements ) e

Longitudinal strain Local strain

} Leading crack length

o8 <— Initiation site location

' { Trailing crack length

v »:‘a

- Measurements similar to those
developed by Matsuda et.al.

- Strains determined relative to
lengths when trailing edge of
pool crossed initiation site

- Local strain is approximately
tangential to S/L interface and
perpendicular to crack




Cracking dynamics ) e,

Laboratories

14 14 £
Total Crack Length E 02
12 1 ‘*.aa.%"""-:'“" e 112 g § 0.0 | Advancing Crack Tip
¢ .oo... ..o.o ° ® 1 Q_) T R
. o 7 & Local Strain 1'° S £ o2l
S 8 o 108 % B o4l
% i | o = i
S st °s 406 35 = |
n - /‘ :’-'.'- Longitudinal Strain . (% e 0 I
4 + w'&$ .....ooo'.°ooo°ooo° -4 04 é\ g 0.8 |
i g o ] 3 e i Retreating Crack Tip
2 | f’ o do2 =2 % 10 |
0 --“°:::...|.. . | . | . | . | 00 é’ 12 I X ! . ! . ! . L
0 50 100 150 200 250 0 50 100 150 200 250
Time Since Application of Strain (msec) Time Since Application of Strain (msec)
0.0
- Cracking initiates at about 1% strain a
. g S vanci i
and grows at irregular velocities g osf fdvaneing CracicTip
©
] . =
- Advancing crack tip moves at the |
travel speed (i.e. follows an isotherm) %
. £
like a real hot crack g s}
Q Retreating Crack Tip
- Advancing crack tip does not |
intersect liquidus ° N
0 50 100 150 200 250

Time Since Application of Strain (msec)

- _________________________________________________________________________________________________________________
14



Backfilling )
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Alloy 718 — High Carbon

- Backfilling is very difficult to capture optically

- Cracking appears to initiate closer to S/L interface, and to be approximately
marked by end of backfilled region

- Frame by frame analysis implies that filling is a continuous event




Crack initiation in Alloy 718 ) i
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Relationship to fraction liquid ) i
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- Crack initiation occurs in the vicinity of 0.10 fraction liquid for both alloys

- Cracks which backfill initiate after eutectic-like reaction starts, consistent with eutectic
in backfilled region

- Backfilling appears to be related to interplay of strain development, liquid fraction, and
solidification constituent present at advancing opening
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Initiation Propagation Termination
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For both unfilled and backfilled solidification cracks:

- Cracking initiates at = 1% local strain and fraction liquid = 0.10

- Forward propagation occurs at approximately constant temperature, and thus
constant fraction liquid

- The trailing crack tip propagates in the increasing strain field, and terminates
near the solidus

For backfilled solidification cracks, the presence of eutectic composition liquid at the
leading opening promotes backfilling, and backfilling appears continuous

- _________________________________________________________________________________________________________________
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Summary - Varestraint cracking rh)

- High speed video analysis coupled with thermal and
solidification assessments provide interesting insight
into weld cracking phenomenology

- Some potentially useful engineering approximations:

- Hot cracking in Ni alloys initiates at about 1% local strain
and a liquid fraction of about 0.10

- The advancing crack grows at constant temperature
(constant distance behind the pool)

- For alloys where eutectic initiates ahead of this criteria,
backfilling is likely and appears continuous

- In the final section we look at some approximations associated
with the development of materials properties in welds



HAZ softening in an ultrahigh strength steel

Hardness (HRC)

AerMet 100 is a weldable precipitation hardening Fe-

Ni-Co martensitic steel

Weld Hardness Testing
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Hardness profile in as-welded aged plate shows
minima in FZ, near HAZ, and far HAZ

FZ and near HAZ respond to post-weld aging

Gleeble simulations replicate this response —
hardness minima occurs near 700°C

What if you don’t have a Gleeble?
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Goal

- Handbook or other available data is
usually in the form of isothermal heat
treatment information

- Not easily adapted to thermal cycles

- Identify a simple analytical approach
for estimating the extent of softening

h
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Overaging microstructure/properties model
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@ o Basic Assumptions oub where:
. ° H xT= L 1 H = hardness
‘ o . - H a rd ness A H e 7 =shear str‘ength
o ® oo ® proportional to ~ — o shear o
‘ ° «® Shear Strength AT r b = burgers vector
. A =interparticle spacing
R . P (] r = particle radius
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A o r (volume fraction constant)
® 0 .
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o overaging (initial -Q
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T . explicitly 9 RT f(‘p) 3 =734 K t RT
® considered) '; - 'E) 1
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‘ Iunctlonst, of a D = diffusivity
emperature - o =interfacial energy
. . exp RT) V_ =molar volume of ppt
. K=K, T C. () = solubility of solute
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R = gas constant
T =temperature




Coarsening model continued

-Q
wfs

Combining and rearranging leads to:

Ho ! and =Kt
r

-1/3

K.t exp(%)
HxK, where K, =|1°+ -

Hardness

- Plot of H versus K, should be linear

Sandia
| Netional
Laboratories

- Search for r,, K;, and Q which maximize linearity




AerMet 100 aging correlations
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- K, parameter linearizes AerMet 100 aging data over a
wide range, including peak hardened region

- Can be adapted to complex thermal cycles



Application to non-isothermal cycles rh) s

Temperature

t =time
t,(T) = time to reach a given hardness isothermally

Time

-1/3
ngﬂ{gi)
H=H,+mK, =H, +m|°+ =

- Time/Temperature path is

approximated by isothermal segments
H, = intercept

m = slope - Goal seeking routine used to find the
, HRC value which satisfies the
T (HmH ) -F03] summation

t=t,(T)= — - Can also be solved sequentially
prp()




Comparison with Gleeble simulations rih) i
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- Additive coarsening model accurately predicts softening in
softened region of HAZ

- Cutoff associated with reaustenitization must be determined
by another means




Austenitization kinetics )
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transformation temperatures
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Continuous heating diagram ks
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- On-heating transformation behavior is complex
- Appears to consist of two distinct heating rate regions
- Solute redistribution appears to be important up to 300-400°C/sec




Comparison with Gleeble simulations rih) i
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- Additive model accurately predicts softening in
overaged region of HAZ

- Incorporation of on-heating kinetic data defines bound
of softened region



Conclusions — HAZ softening in AerMet 100

- The softened region in AerMet 100 Alloy
welds is controlled by overaging and
austenite formation

- Weld HAZ softening can be estimated by
combination of a simple overaging model and
the additivity rule

- Austenite formation in this alloy is complex,

dependent on heating rate, and affected by
solute redistribution, but can be used to
estimate the extent of the softened region
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Summary and conclusions ) S,
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- Many complex dynamic phenomena in
welding and welding metallurgy can be
reasonably described in comparatively simple
engineering terms

- These engineering approximations can
provide a bridge between guesswork and
more complex simulations or experimental
trials, and can help when time and other
resources are not available
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