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Introduction

I Goal:
I Develop an accurate, efficient, and robust finite element

method for the weak formulation of nonlocal mechanics
problems.

I Quadrature challenges:
I High-dimension (integration over R2d)
I Discontinuous integrand
I Complicated shape of support of integrand
I Singularities in some cases of interest

Continuous problem

I Strong form: Find u : Ω→ R such that

2
∫

Ω∪ΩI

(u(x)− u(x ′))γε(x , x ′)dx ′ = f (x), ∀x ∈ Ω,

subject to the Dirichlet volume–constraint

u(x) = g(x), ∀x ∈ Ωd ⊆ ΩI,

and Neumann volume–constraint

2
∫

Ω∪ΩI

(u(x)− u(x ′))γε(x , x ′)dx ′ = h(x), for x ∈ Ωn ⊆ ΩI.

Ω
ε

ΩI

I Weak form: Find u ∈ U such that

〈u, v〉γ =

∫
Ω

v(x)f (x)dx +

∫
Ωn

v(x)h(x)dx ,

for all v ∈ V , subject to the Dirichlet volume–constraint.

I Bilinear form:

〈u, v〉γ =

∫
Ω∪ΩI

∫
Ω∪ΩI

(u(x)−u(x ′))(v(x)−v(x ′))γε(x , x ′)dx ′dx

I Energy:

E(u) =
1
2
〈u,u〉γ −

∫
Ω

v(x)f (x)dx −
∫

Ωn

v(x)h(x)dx

I Flux:
fluxj→i = 〈1(Ωi),u1(Ωj)〉γ − 〈1(Ωj),u1(Ωi)〉γ

Strong vs. Weak form

Ω
i

Ωj

ε

Ω
i

Ωj

ε

I Does Ωi interact with Ωj?

I Strong Form: Points interact with volumes (asymmetric)
I “Saved” by low-order quadrature?

I Weak Form: Volumes interact with volumes (symmetric)
I Requires more advanced quadarture!

Nonlocal kernel

γε(x , x ′) =
1

ε2 Vol(PN,ε)

{
ψ(‖x − x ′‖), ‖x − x ′‖ ≤ ε,
0, otherwise

Case 1: ψ(r ) = C (no smoothing)

Case 2: ψ(r ) = C
rd+2s (smoothing; 0 < s < 1)

Discrete problem

I Approximation: Discontinuous constants, linears, ...

uh =
N∑

i=1

αiφi(x), Ω ∪ ΩI =
N⋃

i=1

Ωi

I System of equations[
A B

BT 0

][
~α
~β

]
=

[
~b
~c

]
, βk = Lagrange multipliers

Ai ,j = 〈φi, φj〉γ, Bi ,k =

∫
Ωd

φi(x)φj(k)(x) dx ,

bi =

∫
Ω

φi(x)f (x) dx +

∫
Ωn

φi(x)h(x) dx , ck =

∫
Ωd

φj(k)(x)g(x) dx

Assembly

I Task: Compute

Ai ,j =

∫
Ω∪ΩI

∫
Ω∪ΩI

(φi(x)− φi(x ′))(φj(x)− φj(x ′))γ(x , x ′)dx ′dx

I Difficulty: Support of integrand is complicated

((Ωi × Ωj) ∩ Bε(Ωi,Ωj)) ∪ ((Ωj × Ωi) ∩ Bε(Ωj,Ωi)),

where

Bε(Ωi,Ωj) :=
{

(x , x ′) ∈ Ωi × Ωj
∣∣ ‖x − x ′‖ ≤ ε

}
Curved boundaries in R4 (for 2D) or R6 (for 3D)

Ωi

ε

Ωj

Quadrature

I Approach: Subdivide (or approx. subdivide) the
region of integration into polygonal subregions
and apply Gauss quadrature in each subregion.

I Method:
1. Use polyhedral approx. of spherical horizon
2. Describe convex region, B̃ε(Ωi,Ωj), with linear

inequality constraints
3. Delaunay “triangulate” region with Qhull
4. Apply standard/Gauss quadrature rules on

each high-dimensional simplex

Ωj

Ω
i

ε

I Cost reduction:
1. Use symmetric polyhedral approx. of spherical horizon
2. Combine simplicial quadrature rules to form a simple

low-complexity rule for each pair of elements
3. Bound polyhedral regions with spheres for identification

of completely interacting/noninteracting elements

Quadrature accuracy∣∣∣∣∣
∫

Ωi

∫
Ωj

F (x , x ′)(Sε(x − x ′)− PN,ε(x − x ′))dx ′dx

∣∣∣∣∣ ≤ ‖F‖∞C(N, ε)

where

C(N, ε) ∝ εd 1
Nk with k = 2,1 for d = 2,3

Quadrature derivation complexity

I Number of linear inequality constraints
1. Element distance bounded bounding spheres

|Facets Ωi| + |Facets Ωj|
2. Bounding sphere test fails

|Facets Ωi| + |Facets Ωj| + |Facets PN,ε|
I Overall complexity

O (vertin facetout/vertout)

Simplicial quadrature in Rn

Degree Quadrature Pts. |Pk(Rn)|
k = 1 1 n + 1
k = 2 n + 1 (n + 2)(n + 1)/2
k = 3 n + 2 (n + 3)(n + 2)(n + 1)/6

k ? (n + k)!/(n! k !)

See: N. J. Walkington, 2000

One-dimensional quadrature example

x’

εa−
a−ε

εb+

x b+ε

ε

Ωj

Ωi

Ωi Ωj

x’

εa−
a−ε
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I Support is not a simple Cartesian product

I Can precompute weight, wc, and centroid, (xc, x ′c).

wc =

∫
Ωi

∫
Ωj

γ(x , x ′),

wcxc =

∫
Ωi

∫
Ωj

xγ(x , x ′)dxdx ′, wcx ′c =

∫
Ωi

∫
Ωj

x ′γ(x , x ′)dxdx ′,

for each pair Ωi and Ωj.

I One-point is sufficient for discontinuous linears (i 6= j)

I Higher-order and i = j requires more points

Numerical results

I The nonlocal kernel, γε, is piecewise constant
I h = 1

12, f = 75, C = 9
4
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Convergence ε→ 0
I Piecewise Constant = No
I Piecewise Linear = Yes

L2 Convergence h→ 0
I Piecewise Constant = O(h)

I Piecewise Linear = O(h2)
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Finite Element Solution

Numerical results

I The nonlocal kernel, γε, is piecewise constant
I h = 1

10, f = 1/(x2 − 0.5), C = 9
4

I Singularity aligned with element boundaries

1.2

1

0.8

0.6

0.4

0.2

0

-0.2
-0.2

0
0.2

0.4
0.6

0.8
1

1.2

-0.2

-0.1

0

0.1

0.2

Piecewise Constant, ε = 1
4

1.2

1

0.8

0.6

0.4

0.2

0

-0.2
-0.2

0
0.2

0.4
0.6

0.8
1

1.2

0.2

0

-0.2

Piecewise Linear, ε = 1
4

1

0.8

0.6

0.4

0.2

0
0

0.2
0.4

0.6
0.8

1

0.04

0.02

0

-0.02

-0.04

Piecewise Constant, ε = 1
20

1

0.8

0.6

0.4

0.2

0
0

0.2
0.4

0.6
0.8

1

0.1

0.05

0

-0.05

-0.1

Piecewise Linear, ε = 1
20

References

I S.D. Bond, R.B. Lehoucq, “Quadrature for nonlocal
mechanics problems”, Sandia Technical Report (2012).

I S. A. Silling & E. Askari, Computers & Structures 83
(2005), 1526–1535.

I B. Kilic & E. Madenci, International Journal of Non-Linear
Mechanics 44 (2009), 845–854.

I X. Chen & M. Gunzburger, Computer Methods in Applied
Mechanics and Engineering 200 (2011), 1237–1250.

I K. Yu, X. J. Xin, & K. B. Lease, Modelling and Simulation in
Materials Science and Engineering 19 (2011), 045003.

I B. Aksoylu & M. L. Parks, Applied Mathematics and
Computation 217 (2011), 6498–6515.

I Q. Du, M. Gunzburger, R. B. Lehoucq, and K. Zhou, SIAM
Review 54 (2012), 667–696.

I X. Tian & Q. Du, SIAM J. Numer. Anal., 51 (2013)
3458–3482.

I Q. Du & X. Tian, LNCSE, 100 (2014) 97–113.
I N. J. Walkington, “Quadrature on Simplicies of Arbitrary

Dimension”, CMU Tech Report (2000).

Acknowledgment

Sandia National Laboratories is a multi-program laboratory
managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the
U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.

Sandia National Laboratories Mail: sdbond@sandia.gov WWW: http://www.sandia.gov

SAND2015-9281C


