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Problem Statement
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• Solve R P T Q x = b
• upper or lower sparse triangular matrix T
• row scaling R
• permutations P, Q
• solution and RHS x, b

• (Everything that is needed for LDL, LU, 
incomplete factorizations, etc.)

• For many sequential RHS with
• the same T
• the same nonzero pattern pat(T)

• On a multi/many-core node



Solution Approach
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• Direct
• (Not iterative)

• Symbolic phase
• Find parallelism in pat(T), the graph of T

• Numerical phase
• Load data structures with numbers

• Solve phase



Algorithms: Level Scheduling
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Algorithms: Level Scheduling
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Algorithms: Pruned Point-to-Point
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Park, J., M. Smelyanskiy, N. Sundaram, and P. Dubey., "Sparsifying synchronization 
for high-performance shared-memory sparse triangular solver." In Supercomputing, 
pp. 124-140. Springer International Publishing, 2014.



Algorithms: Recursive Blocking
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Algorithms: Hybrid
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Algorithms: Hybrid
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Algorithms: Hybrid
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HTS
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• Level schedule solve: Park et al.’s method
• Recursive blocking

• Also with point-to-point

• Switching method
• Currently: smoothed level size with threshold

• Currently: OpenMP and C++98
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Ordering
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Future Work
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• Point-to-point level scheduling
• Group rows into tasks to minimize #dependencies
• Size tasks to reflect level of synchronization

• Hybrid
• Switching method(s)
• Does not have to be 3 blocks; could alternate

• HTS
• Kokkos interface
• Support a variety of input formats
• Pure Kokkos implementation?

• Direct sparse methods on GPU?


