
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin 
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

HTS: A Multithreaded Direct Sparse Triangular 
Solver Combining Level Scheduling and 
Recursive Blocking

Andrew M. Bradley

Thanks: E. Boman, J. Booth, C. Dohrmann, S. Hammond, W. Held, M. 
Heroux, R. Hoekstra, K. Kim, S. Olivier, A. Prokopenko, S. Rajamanickam

SAND2015-XXXX

SAND2015-9187C



Problem Statement

2

• Solve R P T Q x = b
• upper or lower sparse triangular matrix T
• row scaling R
• permutations P, Q
• solution and RHS x, b

• (Everything that is needed for LDL, LU, 
incomplete factorizations, etc.)

• For many sequential RHS with
• the same T
• the same nonzero pattern pat(T)

• On a multi/many-core node



Solution Approach

3

• Direct
• (Not iterative)

• Symbolic phase
• Find parallelism in pat(T), the graph of T

• Numerical phase
• Load data structures with numbers

• Solve phase



Algorithms: Level Scheduling

4



Algorithms: Level Scheduling

5



Algorithms: Pruned Point-to-Point

6

Park, J., M. Smelyanskiy, N. Sundaram, and P. Dubey., "Sparsifying synchronization 
for high-performance shared-memory sparse triangular solver." In Supercomputing, 
pp. 124-140. Springer International Publishing, 2014.



Algorithms: Recursive Blocking

7



Algorithms: Hybrid

8



Algorithms: Hybrid

9



Algorithms: Hybrid

10



HTS

11

• Level schedule solve: Park et al.’s method
• Recursive blocking

• Also with point-to-point

• Switching method
• Currently: smoothed level size with threshold

• Currently: OpenMP and C++98



12



13



14



Ordering

15



16



17



Future Work

18

• Point-to-point level scheduling
• Group rows into tasks to minimize #dependencies
• Size tasks to reflect level of synchronization

• Hybrid
• Switching method(s)
• Does not have to be 3 blocks; could alternate

• HTS
• Kokkos interface
• Support a variety of input formats
• Pure Kokkos implementation?

• Direct sparse methods on GPU?


