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Abstract—Time series datasets are a canonical form of high
velocity Big Data, and often generated by pervasive sensors, such
as found in smart infrastructure. Performing predictive analytics
on time series data can be computationally complex, and requires
approximation techniques. In this paper, we motivate this problem
using a real application from the smart grid domain. We propose
an incremental clustering technique, along with a novel affinity
score for determining cluster similarity, which help reduce the
prediction error for cumulative time series within a cluster. We
evaluate this technique, along with optimizations, using real
datasets from smart meters, totaling ~700,000 data points, and
show the efficacy of our techniques in improving the prediction
error of time series data within polynomial time.
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|. INTRODUCTION

The unprecedented growth in the ability to collect data from
physical and digital systems has led to a heightened focus on
management and analysis of Big Data. One of the driving forces
in this data explosion has been the pervasive deployment of
sensing instruments within various spheres of our lives, ranging
from personal monitoring devices like FitBit to environmental
monitoring of, say, pollution levels [1]. These “always on”
devices generate large volumes of data and with high velocity —
two of the three pillars of Big Data characteristics [2]. In
particular, the emergence of Cyber-Physical Systems (CPS) such
as smart power grids and smart transportation is leading to
extensive digital sampling of power and road networks [3].
Datasets generated by such CPS have a time series notion that is
valuable when performing data mining and analytics to help
control and optimize such systems for the societal good, be it to
improve energy efficiency or to ease traffic congestion.
However, the time series nature also makes analytics
challenging due to the high dimension of the data and causes
traditional machine learning and data mining techniques to be
computationally intractable [4]. This motivates the need for
domain-driven approximate algorithms that offer heuristics for
making Big Data analytics computationally tractable while
meeting the domain needs [5].

Consider the power grid domain, where millions of power
consumers are being upgraded with Smart Meters that can
sample energy consumption and report them back to the utility
at 15-min granularities, in real-time [6]. This is a 3000x jump in

the volume of data traditionally collected by power utilities. This
also offers unique opportunities for intelligent management of
the power grid to improve efficiency and reliability. One
canonical smart grid application is demand-response (DR) [7],
whereby the utility uses real-time power consumption data from
individual customers in the service area to forecast the future
demand and initiate energy curtailment programs that can avoid
a supply-demand mismatch. These curtailment programs target
individual customers whose power usage is expected to increase
in the near future and offer them incentives to shift their
impending demand in a bid to relieve stress on the power grid.

Time series forecasting models such as ARIMA can be
trained on historical power consumption data to predict the near
future based on recent data available from the real-time smart
meters [8]. However, two domain challenges emerge when
applying such predictive analytics to a large utility service area
such as the Los Angeles Power Grid [9] that has over a million
consumers: (i) training a prediction model per-customer is
computationally costly, and (ii) the variability in the energy
usage per consumer causes the prediction models to have high
errors. Aggregating data from multiple customers into a single
“virtual consumer” helps address both these issues. Besides
reducing the number of (virtual) customers to train and
prediction for, this can also reduce the temporal variability of the
virtual customer, thereby increasing the prediction accuracy
[19].

A key goal of this aggregation is to reduce the prediction
error of the virtual customer represented by aggregating each
cluster of customers. Hence, the novel distance metric used for
clustering is, effectively, the degree to which prediction error is
reduced by that aggregation, i.e., if adding a customer to a
cluster reduces the prediction error, the distance is smaller. This
innovative distance measure, unlike Euclidian distances, is
valuable when clustering time series data not based on similarity
in patterns — which is a very high-dimension problem — but
based on their cumulative ability to reduce the prediction error
for the cluster. Tradition techniques such as k-means clustering
are not directly usable here since there is no distance metric to
find the centroid (or medoid) customer for subsequent iterations
[10]. So we turn to incremental clustering that offers an
approximate but scalable approach.

In this paper, we propose the use of an incremental clustering
technique to group customers together into virtual customers,
with the goal of minimizing the cumulative consumption



prediction error. This is distinct from traditional time series
clustering that intend to find similarity between data points. Our
novel distance metric selects the affinity of a customer (i.e. time
series) to a cluster based on their ability to reduce the cumulative
prediction error of the cluster (Sec. Ill). This approach has
polynomial time complexity that scales for large utility service
areas. We examine factors such as number of clusters and initial
seeding that impact the clustering (Sec. 1V), and analyze these
empirically for clustering and prediction of real time series data
from Smart Meters for ~85 smart meters collected over 3 months
(Sec. V). Our work, while validated for this vital CPS
application domain, is applicable to scalable clustering of other
large-scale time series datasets, and ties together the volume and
velocity of Big Data with the scalable analytics required to make
meaningful use of them.

I1. RELATED WORK

Predictive analytics over time series data is well-studied,
though less so from a scalability perspective that Big Data
entails. Several time series forecasting techniques have been
used in domains varying from weather [20] to finance [21]. One
of the widely used time series forecasting models is
Autoregressive integrated moving average (ARIMA), with
many variations. An ARIMA model is initially trained (or fitted)
over historical time series data to help determine its coefficients.
Subsequently, this model can predict the future time series
values that follow these historical values. For e.g., [12] analyzes
ARIMA for forecasting global temperature for a ten year period
from 2001 to 2010 after training the model for data from 1880
to 2000. The prediction accuracy can be measured using
statistics such as Mean Absolute Percentage Error (MAPE).
ARIMA has also been used to study household electricity
consumption for making daily, weekly and monthly predictions
[13]. In [8], the authors use regression-based time series models
for hourly home peak load prediction. They observe that
variations of ARIMA, like SARMA, have a high prediction
power, offering 30% higher accuracy than Support Vector
Regression (SVR). Our own prior work has also examined
ARIMA for forecasting energy consumption for buildings in a
campus micro-grid [14], and it is shown to be better for making
near term predictions than techniques like regression trees [15].
Hence, we adopt ARIMA as a standard prediction model whose
errors we aim to further reduce through the proposed clustering.

Much work has gone into clustering, which maximizes the
similarity between items within a cluster and dissimilarity
between clusters using Euclidean or Gaussian distance measures
and clustering algorithms such as partitioning, hierarchical and
evolutionary methods [22]. Distance measures used in
partitioning and hierarchical algorithms have been developed for
static data [16] but do not scale to data streams due to their high
dimensionality [23]. Data streams are a type of Big Data which
have ordered data points which, due to the large volume, can
only be scanned once or a few times [24]. Data streams can be
clustered using multilevel algorithms that divide the streams
data into sub-streams to extract feature summaries from them
and subsequently clusters the sub-streams on these features
using partitioning/hierarchical clustering [25, 26].

Time series is another form of Big Data, with high dimension
since each interval is treated as a dimension. Static techniques
such as relocation and agglomerative hierarchical clustering
have been applied on time series data but as the number of
dimensions grow with the length of the time series, these
techniques become computationally expensive. Feature-based
techniques attempt to reduce the problem space by extracting
motifs from the time series and replacing the time series with (a
much smaller number of) motifs, thus achieving dimensionality
reduction. For e.g., wavelets that represent data in terms of
average and differences of a prototype function has been
proposed for motif discovery to approximate a time series [17].
The initial assignment of the time series using k-means is done
at the lower wavelet resolution and the algorithm moves to a
higher resolution after determining a good initial cluster center.
Innovative distance measures have been proposed for time series
data, like Dynamic Time Warping (DTW) [18] that allows non-
linear alignment between two time series, unlike Euclidian.
DTW clustering is cast as a generalizable anytime algorithm
with approximations to trade-off execution time against quality
of results.

These methods treat clustering as an end in itself and also
require the identities of the individual time series within a cluster
to be retained. In fact, k-means needs to identify a time series as
the centroid within each cluster to perform subsequent iterations.
However, we propose to use clustering as a means to reduce the
prediction errors of the cumulative time series within a cluster.
Or, in other words, rather than reduce the dimension of each
time series, we retain these dimensions and sum the values of all
time series within a cluster to offer one virtual time series per
cluster. This is a unique application of clustering and requires
the introduction of a novel distance measure that reduces the
prediction error for this aggregated time series (for a model like
ARIMA) rather than use distance measures based on similarities
between time series.

Incremental clustering algorithms [11] process one data
object in each iteration and assigns it to a cluster based on a
similarity function. The goal is to perform a single scan of the
data and hence reduce the time complexity of clustering. In
particular, this can help new data that arrives to be clustered as
it is available. We adopt an incremental clustering approach in
this paper in combination with our novel distance metric for
clustering the time series data.

1. MOTIVATION & APPROACH

Smart Grids are facing a data explosion, with millions of
customers getting upgraded to smart meters and power utilities
contending with over 100 energy consumption data points per
customer, per day, sampled every 15-mins that they need to
analyze and use for intelligent grid operations. Predicting the
consumption demand for customers in the next few hours or
days helps a utility plan for additional generation, say, by
starting a dormant power generation unit, purchasing power
from the energy market, or targeting customers for demand
reduction. In the latter case, customers are given incentives to
shift their non-critical loads to off-peak hours.
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Figure 1. Median MAPE Forecasting Errors over 30 days for 84
smart meters. Q1 and Q3 error deviations are shown in whiskers.

ARIMA is one of the better performing time series
forecasting models [14] compared to baseline averaging models.
For e.g., Figures 1(a) and 1(b) show the median MAPE
prediction errors of a Time of the Day averaging model (Y Axis)
and an ARIMA model for 84 smart meters in a utility service
area (X Axis) when predicting 1-hour ahead KWh consumption
at 15-min intervals over a 30 day period, compared to the
observed KWh during that period. Two months of consumption
data (Feb-Mar, 2013) were used to train the models and the
predictions were made for Apr, 2013. The ARIMA function is
run using the autoArima() function in the R statistical
package. The customers are sorted based on the average
prediction error, and the error bars show the first and third
quartiles of error deviations.

As can be seen, ARIMA is significantly better than the
averaging model, offering a mean of 32% MAPE across
customers compared to 51% error for the time of day model.
However, the 32% error is still higher than what is acceptable
for utility decisions, which is on the order of 10% or lower. This
higher error is due to the fine time granularity of predictions at
every 15-mins (i.e., a 1-hour forecast of energy consumption
predicts four KWh values at 15-min intervals), as also the size
of the customers. For a residential customer, even switching on
an incandescent bulb or a washing machine can cause a jump in
the energy use within a 15-min interval relative to their overall
consumption. Such rapid changes are hard to detect for time
series models.

Since the time granularity of 15-mins is required by the
utility for decision making, the “granularity” of customers can
be relaxed in order to improve the accuracy of ARIMA,
following the law of large numbers [19]. Furthermore, the time
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Figure 2. Incremental Clustering Approach for Energy Consumption
Time Series Data. The Min function calculates the affinity score.

taken to train the ARIMA model for a single customer is ~2
mins. When scaling to a million customers in a utility region
such as Los Angeles, this is time consuming (despite the
embarrassing parallelism), given that the model has to be
retrained every few weeks when fresh data is available. This is
an additional motivation for clustering customers so that the
retraining is done only for aggregated clusters of virtual
customers rather than for individuals.

Hence, the goal for our clustering is to group customers
whose cumulative energy consumption behaves in a more
predictable way and minimizes the ARIMA prediction error for
the cluster as a whole. A non-goal, compared to other clustering
techniques, is for customers to have “similar” consumption
patterns based on distance measures. In fact, customers who
have complementary consumption time series patterns may help
smoothen the cumulative consumption time series for a cluster.
In this process of clustering, we lose information of the predicted
consumption for individual customers, which can coarsen the
granularity of, say, messaging customers who are good targets
for reducing energy demand. Rather than message individual
customers, the messages will have to be broadcast to all
customers in the cluster. So a secondary goal of our clustering
is to reduce the number of customers per cluster. This,
paradoxically, means that for a given number of customers,
having more clusters is better (without increasing the error per
cluster) as it will provide greater decision making power to
target fine-grained customers for energy curtailment.

This can be achieved by clustering the customers through
supervised or unsupervised learning. These clustering
techniques have two components: the clustering algorithm and
a similarity measure. In order to computationally scale the
problem, we propose to use an incremental clustering algorithm
(Fig. 2). Here, each customer’s time series data is scanned once
and it’s suitability with each cluster determined using an affinity
score. The affinity score is computed as follows. For a cluster
‘i’, let Si be the cumulative time series vector that contains as
many items as the length of the training data (e.g., 60 days x 96
intervals). The value of S; is calculated by summing the time
series for each customer in that cluster.

b
Sl = ¢kl
k=1
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Figure 3. Incremental Clustering with Round Robin Assignment.

where i’ is the cluster number, ‘p’ is the number of customers
in the cluster, ‘j’ is the index of the vector, and Cl-k is the time
series vector for customer ‘k’ in cluster ‘i’.

Also, an ARIMA model is built using this cumulative time
series as training data and let E; be the MAPE for predicting its
future values. This error can be calculated given the future
values for the constituent customers of the cluster, or by using
2/3'% of the cumulative time series data for training and 1/3™
for comparing predictions against observed. For each new
customer time series C? that needs to be assigned to a cluster,
we first calculate the updated cumulative time series vector for
each cluster upon adding the new customer to that cluster, i.e.,
S/ [71 = S:[j] + C#[j]. We also estimate the new MAPE error
by training an ARIMA model using S; and calculating its error,
say, E;. The affinity score is calculated as a function of the old

and new errors, E; and E;. We use the difference between the
two as the affinity score, a; = E; — E;, for a candidate
customer with a cluster, and the customer is assigned to the
cluster that offers the highest affinity score, i.e., the candidate
customer is placed in the cluster that has the best reduction in
its current MAPE prediction error upon adding that customer.

There are several factors that impact this broad approach,
such as initializing the cluster, selecting the number of clusters,
balancing the number of customers in a cluster, order of the
candidate customers, and so on. These will be discussed in the
next section. The time complexity of this approach, for ‘n’
customers and ‘m’ clusters is given by polynomial time of
O(o.n.m), where o is the (constant) time taken to build a single
ARIMA model and estimate its MAPE error.

IV. OPTIMIZATIONS TO INCREMENTAL CLUSTERING

In the simplest manifestation of the above approach, we can
preset the number of clusters to a static value and perform a
round-robin assignment of customers to each cluster. Here, we
do not consider any distance function. This offers a “control”
experiment that can illustrate the value of introducing the
affinity score. Figure 3(a) shows the MAPE error value for 6
clusters change as customers are added to each, in turn. In this
and all other experiments, the order in which customers are
considered is randomized at the beginning to avoid its influence.
As expected, there is an overall drop in the MAPE error % as the
number of customers in a cluster increases. This bears out the
intuition that variability reduces (and hence predictability using
ARIMA increases) as we accumulate more customers into a
cluster’s time series to form a larger “virtual customer”. Hence,
even a naive incremental assignment of customer to clusters has
its benefits. However, we also see that the drop in MAPE is not
monotonic as we add customers. There are many instances
where adding a customer to a cluster increases the MAPE,
though the overall trend is downwards. Figure 3(b) shows the
result of such experiments with 1, 3, 6 and 15 clusters. Here, we
plot the MAPE per cluster as bar plots on the primary Y axis,
and the average across all clusters along with their standard
deviation as line plots on the primary and secondary Y axes. We
notice that as the number of clusters in a run increases, the
average error across clusters also increases. This is a
consequence of having less customers per cluster as the number
of clusters increase. We also see that the standard deviation of
MAPE increases across clusters in a run. This shows that a
round-robin assignment while reducing average error across
clusters can lead to individual clusters with high errors. For e.g.,
the highest and lowest errors in the 15-cluster case range
between 24% and 13%. This offers scope for improvement.
Lastly, in Figure 3(c), we see one of the positive aspects of the
round-robin technique: the number of customers in each cluster
is (near) equal and thus the cluster sizes are balanced. This
meets one of the secondary goals of the domain.

There may be cases where the performance of the round-
robin technique is adequate, e.g., with few customers and a small
number of clusters. However, the value of using the affinity
score and other optimizations proposed below emerge as these



bounds are relaxed. The heuristics are discussed here while their
detailed empirical results presented in the next section.

A. Cluster Seeding

The customer assignment based on affinity score uses the
relative improvement in errors as a metric. Hence, it addresses
cases where there is already one or more customers in each
cluster, thereby giving it a prior prediction error to compare
against. However, the initial customer — also called the seed
customer — that is placed in each cluster can influence the
clustering quality, and this process of selecting the initial
customer for a cluster is called cluster seeding.

In the most basic form, a random customer is selected as the
seed customer for each cluster. This is called random seeding
and it is elegant in its simplicity, similar to the random order in
which customers are incrementally considered for cluster
assignment. There is also no overhead in this process as any
customer can be chosen, and this is an unsupervised technique.
This is also similar to the random partition used as in the initial
iteration of k-means clustering, except that k-means has the
opportunity to select the centroid as the seed in subsequent
iterations. Our incremental clustering does just a single pass.

Another hypothesis is to order the list of customers based on
some measure, evenly partition this ordered space into the total
number of clusters, and pick the medial customer within each
partition as the initial seed for each cluster. We call this
supervised approach as midpoint seeding. The measure used for
ordering is domain specific and can help offer a more balanced
number of customers in each cluster while also reducing their
MAPE error %. In our case, we propose three measures: the
average of the KWh in the time series for each customer, the
standard deviation of the KWh time series for each customer,
and the MAPE error % for each customer’s individual ARIMA
prediction. The former uses the intuition that customers with
similar load sizes (i.e. small, medium and large uses of energy)
may better complement the magnitude of variation in energy
consumption. The latter offers customers with different
variability (hence error %) across the clusters for future
customers to compare against

B. Elasiticy of Number of Clusters

The number of clusters that are created can have an impact
on the MAPE, as also on the domain needs. By default, one can
use a static number of clusters that is specified by the user,
similar to the value of “k” in k-means clustering. This can be
picked either because of the need for a specific number of cluster
in the domain or the need to control the number of customers in
a cluster (assuming a balanced distribution of customer counts,
though not guaranteed). We have considered 1 (trivial), 3, 6 and
15 as the static number of clusters in our experiments.

However, when there is no strong need to pin the number of
clusters to a static value, it may be possible to grow the number
of clusters elastically, based on the need to optimize some
metric. We propose a heuristic for elastic number of clusters that
has a lower and an upper bound on the number of clusters, mjo
and myi. The number of clusters is incremented by one in case
an incoming customer does not improve the MAPE for any
existing cluster by more than a threshold value, t. This offers

flexibility to the domain application, both in the range of cluster
counts as well as the rate at which the errors improve as
customers are added. It also allows the algorithm to grow the
number clusters based on need rather than be bound to an initial
set of static clusters with a static seed customer in each. This can
also help to capture customers who are “outliers” in a separate
cluster rather than force them into an existing cluster, and
thereby make its error worse. For our experiments, we use three
pairs of lower-upper cluster bounds, 1-15, 3-6, and 6-15, and use
two different thresholds, t=0% and t=1%. The former forces the
errors for existing clusters to monotonically decrease as
candidate customers are added, adding a new cluster otherwise.
The latter expects an even faster drop in error, by 1% or more,
for every new customer added.

V.EMPIRICAL RESULTS

For the experimental evaluation of the incremental
clustering technique and its optimizations we use a sample of 84
smart meters from a utility service area as a representative
population. The smart meter’s kWh consumption data is
recorded for 3 month period at 15-min interval or ~3x30x96 =
8,600 intervals, for a total of ~725,000 data points across all
smart meters on which the results were validated.

We used 2 months of data per smart meter as a training for
the ARIMA and the last one month for calculating the MAPE of
the ARIMA model. Besides the training, other optimizations
such as midpoint seed also used the 2-month time series data for
their heuristics. All experiments were repeated multiple times
and the representative results presented. The order of the smart
meters was randomized before each experimental run. All
experiments were scripted using the R statistical package and
run on a server with 16-core Opeteron processors and 64GB
RAM. Each experimental run took between 5-40 hours to
complete using a single threaded process, depending on the
number of clusters. We observed that the total clustering time
was a linear function of the number of clusters, thereby bearing
out our time complexity estimate of O(o.n.m), for n=84 smart
meters, a constant a as the time taken to build a single ARIMA
model, and the number of clusters ‘m’ being the variable.

A. Impact of Cluster Seeding

In our initial experiment, we use the random seeding to
assign a different random initial smart meter (i.e., customer) as
seed to each of the 4 static cluster sizes we consider: 1, 3, 6 and
15 clusters. Note that the 1-cluster case is a trivial scenario
where all customers are clustered into one, and this gives a
nominal “best case” scenario for MAPE from clustering and acts
a lower bound for our clustering experiment. On the other hand,
we use 15 as the upper bound of the number of clusters, with
each cluster having on an average 4 customers — as it can be
observed from figure 3(a), the cluster’s MAPE drop is
significant till 4 customers after which it starts flattening out.
Clusters of 3 and 6 give us reasonable midpoints for comparison
between the upper and low bounds. We use the standard affinity
score for incremental clustering of each customer that looks for
the best error reduction in each cluster. Figure 4 shows the
results of this experiment.
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It is worthwhile comparing these plots against the equivalent
plots from Figure 3, which used a round-robin assignment. In
Figure 4(a), we see just one instance where adding a customer
actually increased the MAPE of a cluster using the affinity
score, as opposed to 6 instances when this happened in the
round-robin assignment in Figure 3(a). Furthermore, we also see
in Figures 3(b) and 4(b) (blue dotted line) that there is a tangible
drop in the average MAPE for each cluster, ranging from 12-
20% improvement in relative MAPE. This is a 1-2%
improvement in absolute MAPE, e.g., 11% vs. 13.8% for the 15-
cluster case for affinity-score vs. round-robin. The improvement
is even more significant when considering the standard
deviation of MAPE between clusters in an experiment (yellow
dotted line). Here, the relative reduction in standard deviation is
as high as 76% for the affinity score assignment compared to
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Figure 5. Incremental Clustering with Midpoint Seed and Affinity
Score based Customer Assignment.

round-robin. This shows the value of our proposed similarity
metric in not just reducing the average MAPE for clusters but
achieving an even error % across clusters. The obvious
advantage of the round-robin technique is of course in its ability
to balance the number of customers in a cluster (Figures 3(c) and
4(c)), whereas the affinity score method has a more imbalanced
19, 24 and 41 customers in the 3-cluster case.

We next compare the random seed method against the
midpoint seed optimization. Three different customer ordering
approaches were used for determining the midpoint for the
partitions, and hence the initial seed for each cluster. The
customers were ordered based on their average KWh for the 2
month time series data, the standard deviation of this 2 month
time series, and the MAPE when predicting their consumption
using an ARIMA maodel built for each customer. We observed
that there was not tangible difference in the MAPE for the
midpoint seed approach compared to the random seed approach
for the different static cluster sizes. However, there was a
noticeable different in the absolute standard deviation of their
MAPE, depending on the ordering chosen for the midpoint seed
compared to the random seed.

Figure 5(a) shows the absolute standard deviations in the
MAPE for the different seed approaches for the different static
cluster sizes of 1, 3, 6 and 15. We see that midpoint seed using
KWh ordering offers a uniform lower standard deviation
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compared to the random seed. While the axis range may seem
small (1%), this translates to a 10% relative range, given that this
deviation is on MAPE that are ~10%. The other midpoint seeds
do not show a consistent improvement. It is understandable that
the midpoint seed helps even out the MAPE errors across the
different clusters (though not reducing their errors). By ordering
customers based on their KWh, each cluster is seeded with a
customer whose average KWh size falls in a different partition.
It is likely that subsequent candidate customers were placed in
clusters whose seed was closer to that customer’s average KWh
since they would be in a better position to balance out the
magnitude of variation in KWh. However, the impact of this is
unlikely to carry over beyond the initial number of candidate
customers since the cumulative KWh value of the clusters will
start to dominate beyond a certain number of customers. The
MAPE using the midpoint seed (KWh ordering) is shown in
Figure 5(b), and is similar to Figure 4(b), but for the reduced
standard deviation.

B. Impact of Cluster Size Elasticity

In this experiment we set the number of clusters to fall
between an upper and lower bound, and the number of clusters
grow elastically when an incoming customer is unable to
improve the MAPE error % of any existing cluster by a certain
threshold. We evaluate lower and upper bounds of 3-6, 6-15 and
1-15 clusters, with thresholds of 0% and 1%. Figure 6(a) shows
this incremental clustering strategy in action for elastic clusters

with lower bound of 6 clusters and upper bound of 15 clusters,
and a 1% threshold. We see that there are initially 6 clusters,
shown by 6 initial MAPE values, and occasionally, an
additional MAPE line springs up, denoting the creation of a new
cluster. Since we have a threshold of 1% here, each addition of
a customer has to either reduce the MAPE for a cluster by 1% or
cause a new cluster to be created.

Figure 6(b) shows the MAPE as bar plots per cluster for each
of these elastic combinations, as also the average and standard
deviations of MAPE error % as line plots for each combination.
The merits of the elastic cluster strategy is in automatically
trading-off the number of clusters against the average MAPE
error % for the clusters, without having the users pick an
unsuitable static number of clusters that can cause either a high
MAPE error % (if more clusters are statically chosen) or fewer
clusters without any improvement in MAPE. Note that in our
domain, more clusters are better. In some cases, such as 3-6
clusters, we do not see any clear improvement of this method.
For e.g., the static 3-cluster, 3-6 elastic cluster (0% and 1%), and
static 6-cluster have average MAPE error % of 5.33%, 7.65%,
7.22%, and 7.20% respectively. So picking an elastic number of
cluster here is as bad (or marginally worse) than picking 6
clusters statically. However, when we consider the MAPE error
% for static 6-cluster, 6-15 elastic cluster (0% and 1%), and
static 15-cluster, with values of 7.20%, 7.76%, 11.54%, and
11.04%, respectively, we see that 6-15 elastic (0%) actually
performed nearly as well as the static 6-cluster case while
offering more number of clusters (7). If the user had instead
stuck to just static 6 or 15, this trade-off in improving the number
of clusters with minimal gain in error may have been missed.
One of the side effects of this elasticity is that there is a higher
standard deviation in the number of customers per cluster. This
is understandable. Since clusters can be created very late, there
is a greater skew in the number of customers present in clusters
that were added early vs. those that were added late.

VI1.CONCLUSION

In this paper, we introduced a novel similarity measure for
performing incremental clustering of time series datasets, with
the goal of using the cumulative values of the clusters for
performing time series predictions. This is a novel application
of clustering as a form of coarsening different time series entities
to perform more accurate predictions, and for which existing
distance-based clustering techniques do not suffice. This is of
unique value for predictive analytics over high velocity Big Data
that often have a time series structure. We have validated our
proposed clustering and optimization techniques for the Smart
Grid domain using real datasets, and in addition to the
qualitative improvements in the prediction errors and cluster
balancing, we observe a poly time complexity with the number
of time series datasets and clusters.
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