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Abstract—Time series datasets are a canonical form of high 

velocity Big Data, and often generated by pervasive sensors, such 

as found in smart infrastructure. Performing predictive analytics 

on time series data can be computationally complex, and requires 

approximation techniques. In this paper, we motivate this problem 

using a real application from the smart grid domain. We propose 

an incremental clustering technique, along with a novel affinity 

score for determining cluster similarity, which help reduce the 

prediction error for cumulative time series within a cluster. We 

evaluate this technique, along with optimizations, using real 

datasets from smart meters, totaling ~700,000 data points, and 

show the efficacy of our techniques in improving the prediction 

error of time series data within polynomial time. 

Keywords-velocity; time series; predictive analytics; clustering; 

smart power grids 

I. INTRODUCTION 

The unprecedented growth in the ability to collect data from 

physical and digital systems has led to a heightened focus on 

management and analysis of Big Data. One of the driving forces 

in this data explosion has been the pervasive deployment of 

sensing instruments within various spheres of our lives, ranging 

from personal monitoring devices like FitBit to environmental 

monitoring of, say, pollution levels [1]. These “always on” 

devices generate large volumes of data and with high velocity – 

two of the three pillars of Big Data characteristics [2]. In 

particular, the emergence of Cyber-Physical Systems (CPS) such 

as smart power grids and smart transportation is leading to 

extensive digital sampling of power and road networks [3]. 

Datasets generated by such CPS have a time series notion that is 

valuable when performing data mining and analytics to help 

control and optimize such systems for the societal good, be it to 

improve energy efficiency or to ease traffic congestion. 

However, the time series nature also makes analytics 

challenging due to the high dimension of the data and causes 

traditional machine learning and data mining techniques to be 

computationally intractable [4]. This motivates the need for 

domain-driven approximate algorithms that offer heuristics for 

making Big Data analytics computationally tractable while 

meeting the domain needs [5]. 

Consider the power grid domain, where millions of power 

consumers are being upgraded with Smart Meters that can 

sample energy consumption and report them back to the utility 

at 15-min granularities, in real-time [6]. This is a 3000x jump in 

the volume of data traditionally collected by power utilities. This 

also offers unique opportunities for intelligent management of 

the power grid to improve efficiency and reliability. One 

canonical smart grid application is demand-response (DR) [7], 

whereby the utility uses real-time power consumption data from 

individual customers in the service area to forecast the future 

demand and initiate energy curtailment programs that can avoid 

a supply-demand mismatch. These curtailment programs target 

individual customers whose power usage is expected to increase 

in the near future and offer them incentives to shift their 

impending demand in a bid to relieve stress on the power grid. 

Time series forecasting models such as ARIMA can be 

trained on historical power consumption data to predict the near 

future based on recent data available from the real-time smart 

meters [8]. However, two domain challenges emerge when 

applying such predictive analytics to a large utility service area 

such as the Los Angeles Power Grid [9] that has over a million 

consumers: (i) training a prediction model per-customer is 

computationally costly, and (ii) the variability in the energy 

usage per consumer causes the prediction models to have high 

errors. Aggregating data from multiple customers into a single 

“virtual consumer” helps address both these issues. Besides 

reducing the number of (virtual) customers to train and 

prediction for, this can also reduce the temporal variability of the 

virtual customer, thereby increasing the prediction accuracy 

[19]. 

A key goal of this aggregation is to reduce the prediction 

error of the virtual customer represented by aggregating each 

cluster of customers. Hence, the novel distance metric used for 

clustering is, effectively, the degree to which prediction error is 

reduced by that aggregation, i.e., if adding a customer to a 

cluster reduces the prediction error, the distance is smaller. This 

innovative distance measure, unlike Euclidian distances, is 

valuable when clustering time series data not based on similarity 

in patterns – which is a very high-dimension problem – but 

based on their cumulative ability to reduce the prediction error 

for the cluster. Tradition techniques such as k-means clustering 

are not directly usable here since there is no distance metric to 

find the centroid (or medoid) customer for subsequent iterations 

[10]. So we turn to incremental clustering that offers an 

approximate but scalable approach. 

In this paper, we propose the use of an incremental clustering 

technique to group customers together into virtual customers, 

with the goal of minimizing the cumulative consumption 



prediction error. This is distinct from traditional time series 

clustering that intend to find similarity between data points. Our 

novel distance metric selects the affinity of a customer (i.e. time 

series) to a cluster based on their ability to reduce the cumulative 

prediction error of the cluster (Sec. III). This approach has 

polynomial time complexity that scales for large utility service 

areas. We examine factors such as number of clusters and initial 

seeding that impact the clustering (Sec. IV), and analyze these 

empirically for clustering and prediction of real time series data 

from Smart Meters for ~85 smart meters collected over 3 months 

(Sec. V). Our work, while validated for this vital CPS 

application domain, is applicable to scalable clustering of other 

large-scale time series datasets, and ties together the volume and 

velocity of Big Data with the scalable analytics required to make 

meaningful use of them. 

II. RELATED WORK 

Predictive analytics over time series data is well-studied, 

though less so from a scalability perspective that Big Data 

entails. Several time series forecasting techniques have been 

used in domains varying from weather [20] to finance [21]. One 

of the widely used time series forecasting models is 

Autoregressive integrated moving average (ARIMA), with 

many variations. An ARIMA model is initially trained (or fitted) 

over historical time series data to help determine its coefficients. 

Subsequently, this model can predict the future time series 

values that follow these historical values. For e.g., [12] analyzes 

ARIMA for forecasting global temperature for a ten year period 

from 2001 to 2010 after training the model for data from 1880 

to 2000. The prediction accuracy can be measured using 

statistics such as Mean Absolute Percentage Error (MAPE). 

ARIMA has also been used to study household electricity 

consumption for making daily, weekly and monthly predictions 

[13]. In [8], the authors use regression-based time series models 

for hourly home peak load prediction. They observe that 

variations of ARIMA, like SARMA, have a high prediction 

power, offering 30% higher accuracy than Support Vector 

Regression (SVR). Our own prior work has also examined 

ARIMA for forecasting energy consumption for buildings in a 

campus micro-grid [14], and it is shown to be better for making 

near term predictions than techniques like regression trees [15]. 

Hence, we adopt ARIMA as a standard prediction model whose 

errors we aim to further reduce through the proposed clustering.  

Much work has gone into clustering, which maximizes the 

similarity between items within a cluster and dissimilarity 

between clusters using Euclidean or Gaussian distance measures 

and clustering algorithms such as partitioning, hierarchical and 

evolutionary methods [22]. Distance measures used in 

partitioning and hierarchical algorithms have been developed for 

static data [16] but do not scale to data streams due to their high 

dimensionality [23]. Data streams are a type of Big Data which 

have ordered data points which, due to the large volume, can 

only be scanned once or a few times [24]. Data streams can be 

clustered using multilevel algorithms that divide the streams 

data into sub-streams to extract feature summaries from them 

and subsequently clusters the sub-streams on these features 

using partitioning/hierarchical clustering [25, 26]. 

Time series is another form of Big Data, with high dimension 

since each interval is treated as a dimension. Static techniques 

such as relocation and agglomerative hierarchical clustering 

have been applied on time series data but as the number of 

dimensions grow with the length of the time series, these 

techniques become computationally expensive. Feature-based 

techniques attempt to reduce the problem space by extracting 

motifs from the time series and replacing the time series with (a 

much smaller number of) motifs, thus achieving dimensionality 

reduction. For e.g., wavelets that represent data in terms of 

average and differences of a prototype function has been 

proposed for motif discovery to approximate a time series [17]. 

The initial assignment of the time series using k-means is done 

at the lower wavelet resolution and the algorithm moves to a 

higher resolution after determining a good initial cluster center. 

Innovative distance measures have been proposed for time series 

data, like Dynamic Time Warping (DTW) [18] that allows non-

linear alignment between two time series, unlike Euclidian. 

DTW clustering is cast as a generalizable anytime algorithm 

with approximations to trade-off execution time against quality 

of results. 

These methods treat clustering as an end in itself and also 

require the identities of the individual time series within a cluster 

to be retained. In fact, k-means needs to identify a time series as 

the centroid within each cluster to perform subsequent iterations. 

However, we propose to use clustering as a means to reduce the 

prediction errors of the cumulative time series within a cluster. 

Or, in other words, rather than reduce the dimension of each 

time series, we retain these dimensions and sum the values of all 

time series within a cluster to offer one virtual time series per 

cluster. This is a unique application of clustering and requires 

the introduction of a novel distance measure that reduces the 

prediction error for this aggregated time series (for a model like 

ARIMA) rather than use distance measures based on similarities 

between time series. 

Incremental clustering algorithms [11] process one data 

object in each iteration and assigns it to a cluster based on a 

similarity function. The goal is to perform a single scan of the 

data and hence reduce the time complexity of clustering. In 

particular, this can help new data that arrives to be clustered as 

it is available. We adopt an incremental clustering approach in 

this paper in combination with our novel distance metric for 

clustering the time series data. 

III. MOTIVATION & APPROACH 

Smart Grids are facing a data explosion, with millions of 

customers getting upgraded to smart meters and power utilities 

contending with over 100 energy consumption data points per 

customer, per day, sampled every 15-mins that they need to 

analyze and use for intelligent grid operations. Predicting the 

consumption demand for customers in the next few hours or 

days helps a utility plan for additional generation, say, by 

starting a dormant power generation unit, purchasing power 

from the energy market, or targeting customers for demand 

reduction. In the latter case, customers are given incentives to 

shift their non-critical loads to off-peak hours.  



ARIMA is one of the better performing time series 

forecasting models [14] compared to baseline averaging models. 

For e.g., Figures 1(a) and 1(b) show the median MAPE 

prediction errors of a Time of the Day averaging model (Y Axis) 

and an ARIMA model for 84 smart meters in a utility service 

area (X Axis) when predicting 1-hour ahead KWh consumption 

at 15-min intervals over a 30 day period, compared to the 

observed KWh during that period. Two months of consumption 

data (Feb-Mar, 2013) were used to train the models and the 

predictions were made for Apr, 2013. The ARIMA function is 

run using the autoArima() function in the R statistical 

package. The customers are sorted based on the average 

prediction error, and the error bars show the first and third 

quartiles of error deviations. 

As can be seen, ARIMA is significantly better than the 

averaging model, offering a mean of 32% MAPE across 

customers compared to 51% error for the time of day model. 

However, the 32% error is still higher than what is acceptable 

for utility decisions, which is on the order of 10% or lower. This 

higher error is due to the fine time granularity of predictions at 

every 15-mins (i.e., a 1-hour forecast of energy consumption 

predicts four KWh values at 15-min intervals), as also the size 

of the customers. For a residential customer, even switching on 

an incandescent bulb or a washing machine can cause a jump in 

the energy use within a 15-min interval relative to their overall 

consumption. Such rapid changes are hard to detect for time 

series models.  

Since the time granularity of 15-mins is required by the 

utility for decision making, the “granularity” of customers can 

be relaxed in order to improve the accuracy of ARIMA, 

following the law of large numbers [19]. Furthermore, the time 

taken to train the ARIMA model for a single customer is ~2 

mins. When scaling to a million customers in a utility region 

such as Los Angeles, this is time consuming (despite the 

embarrassing parallelism), given that the model has to be 

retrained every few weeks when fresh data is available. This is 

an additional motivation for clustering customers so that the 

retraining is done only for aggregated clusters of virtual 

customers rather than for individuals. 

Hence, the goal for our clustering is to group customers 

whose cumulative energy consumption behaves in a more 

predictable way and minimizes the ARIMA prediction error for 

the cluster as a whole. A non-goal, compared to other clustering 

techniques, is for customers to have “similar” consumption 

patterns based on distance measures. In fact, customers who 

have complementary consumption time series patterns may help 

smoothen the cumulative consumption time series for a cluster. 

In this process of clustering, we lose information of the predicted 

consumption for individual customers, which can coarsen the 

granularity of, say, messaging customers who are good targets 

for reducing energy demand. Rather than message individual 

customers, the messages will have to be broadcast to all 

customers in the cluster. So a secondary goal of our clustering 

is to reduce the number of customers per cluster. This, 

paradoxically, means that for a given number of customers, 

having more clusters is better (without increasing the error per 

cluster) as it will provide greater decision making power to 

target fine-grained customers for energy curtailment.  

This can be achieved by clustering the customers through 

supervised or unsupervised learning. These clustering 

techniques have two components: the clustering algorithm and 

a similarity measure. In order to computationally scale the 

problem, we propose to use an incremental clustering algorithm 

(Fig. 2). Here, each customer’s time series data is scanned once 

and it’s suitability with each cluster determined using an affinity 

score. The affinity score is computed as follows. For a cluster 

‘i’, let Si be the cumulative time series vector that contains as 

many items as the length of the training data (e.g., 60 days x 96 

intervals). The value of Si is calculated by summing the time 

series for each customer in that cluster.  

𝑆𝑖[𝑗] = ∑ 𝐶𝑖
𝑘[𝑗]

𝑝

𝑘=1

   

 
(a) Time of Day Averaging Model 

 
(b) ARIMA Model 

Figure 1. Median MAPE Forecasting Errors over 30 days for 84 

smart meters. Q1 and Q3 error deviations are shown in whiskers. 
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Figure 2. Incremental Clustering Approach for Energy Consumption 

Time Series Data. The Min function calculates the affinity score. 
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where ‘i’ is the cluster number, ‘p’ is the  number of customers 

in the cluster, ‘j’ is the index of the vector, and 𝐶𝑖
𝑘 is the time 

series vector for customer ‘k’ in cluster ‘i’.  

 Also, an ARIMA model is built using this cumulative time 

series as training data and let Ei be the MAPE for predicting its 

future values. This error can be calculated given the future 

values for the constituent customers of the cluster, or by using 

2/3rds of the cumulative time series data for training and 1/3rd 

for comparing predictions against observed. For each new 

customer time series Cz that needs to be assigned to a cluster, 

we first calculate the updated cumulative time series vector for 

each cluster upon adding the new customer to that cluster, i.e., 

𝑆𝑖
′[𝑗] = 𝑆𝑖[𝑗] + 𝐶𝑧[𝑗]. We also estimate the new MAPE error 

by training an ARIMA model using  𝑆𝑖
′ and calculating its error, 

say, 𝐸𝑖
′. The affinity score is calculated as a function of the old 

and new errors, 𝐸𝑖 and 𝐸𝑖
′. We use the difference between the 

two as the affinity score, 𝒂𝒊 = 𝑬𝒊 − 𝑬𝒊
′ , for a candidate 

customer with a cluster, and the customer is assigned to the 

cluster that offers the highest affinity score, i.e., the candidate 

customer is placed in the cluster that has the best reduction in 

its current MAPE prediction error upon adding that customer. 

There are several factors that impact this broad approach, 

such as initializing the cluster, selecting the number of clusters, 

balancing the number of customers in a cluster, order of the 

candidate customers, and so on. These will be discussed in the 

next section. The time complexity of this approach, for ‘n’ 

customers and ‘m’ clusters is given by polynomial time of 

O(α.n.m), where α is the (constant) time taken to build a single 

ARIMA model and estimate its MAPE error. 

IV. OPTIMIZATIONS TO INCREMENTAL CLUSTERING 

In the simplest manifestation of the above approach, we can 

preset the number of clusters to a static value and perform a 

round-robin assignment of customers to each cluster. Here, we 

do not consider any distance function. This offers a “control” 

experiment that can illustrate the value of introducing the 

affinity score. Figure 3(a) shows the MAPE error value for 6 

clusters change as customers are added to each, in turn. In this 

and all other experiments, the order in which customers are 

considered is randomized at the beginning to avoid its influence. 

As expected, there is an overall drop in the MAPE error % as the 

number of customers in a cluster increases. This bears out the 

intuition that variability reduces (and hence predictability using 

ARIMA increases) as we accumulate more customers into a 

cluster’s time series to form a larger “virtual customer”. Hence, 

even a naïve incremental assignment of customer to clusters has 

its benefits. However, we also see that the drop in MAPE is not 

monotonic as we add customers. There are many instances 

where adding a customer to a cluster increases the MAPE, 

though the overall trend is downwards. Figure 3(b) shows the 

result of such experiments with 1, 3, 6 and 15 clusters. Here, we 

plot the MAPE per cluster as bar plots on the primary Y axis, 

and the average across all clusters along with their standard 

deviation as line plots on the primary and secondary Y axes. We 

notice that as the number of clusters in a run increases, the 

average error across clusters also increases. This is a 

consequence of having less customers per cluster as the number 

of clusters increase. We also see that the standard deviation of 

MAPE increases across clusters in a run. This shows that a 

round-robin assignment while reducing average error across 

clusters can lead to individual clusters with high errors. For e.g., 

the highest and lowest errors in the 15-cluster case range 

between 24% and 13%. This offers scope for improvement. 

Lastly, in Figure 3(c), we see one of the positive aspects of the 

round-robin technique: the number of customers in each cluster 

is (near) equal and thus the cluster sizes are balanced. This 

meets one of the secondary goals of the domain. 

There may be cases where the performance of the round-

robin technique is adequate, e.g., with few customers and a small 

number of clusters. However, the value of using the affinity 

score and other optimizations proposed below emerge as these 

 
(a) Incremental reduction in MAPE as each new customer is added 

across 6 clusters. 

 
(b) MAPE for each cluster (bar). Experiment is run with different 

numbers of clusters: 1, 3, 6 & 15. Average and Std. Deviation of 

MAPE (line) for each clusters is also shown. 

 
(c) # of customers in each cluster (bar). Experiments run with 

different numbers of clusters: 1, 3, 6 and 15. Average and Std. 

Deviation of # of customers per cluster (line) is also shown. 

Figure 3. Incremental Clustering with Round Robin Assignment. 
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bounds are relaxed. The heuristics are discussed here while their 

detailed empirical results presented in the next section. 

A. Cluster Seeding 

The customer assignment based on affinity score uses the 

relative improvement in errors as a metric. Hence, it addresses 

cases where there is already one or more customers in each 

cluster, thereby giving it a prior prediction error to compare 

against. However, the initial customer – also called the seed 

customer – that is placed in each cluster can influence the 

clustering quality, and this process of selecting the initial 

customer for a cluster is called cluster seeding.  

In the most basic form, a random customer is selected as the 

seed customer for each cluster. This is called random seeding 

and it is elegant in its simplicity, similar to the random order in 

which customers are incrementally considered for cluster 

assignment. There is also no overhead in this process as any 

customer can be chosen, and this is an unsupervised technique. 

This is also similar to the random partition used as in the initial 

iteration of k-means clustering, except that k-means has the 

opportunity to select the centroid as the seed in subsequent 

iterations. Our incremental clustering does just a single pass.  

Another hypothesis is to order the list of customers based on 

some measure, evenly partition this ordered space into the total 

number of clusters, and pick the medial customer within each 

partition as the initial seed for each cluster. We call this 

supervised approach as midpoint seeding. The measure used for 

ordering is domain specific and can help offer a more balanced 

number of customers in each cluster while also reducing their 

MAPE error %. In our case, we propose three measures: the 

average of the KWh in the time series for each customer, the 

standard deviation of the KWh time series for each customer, 

and the MAPE error % for each customer’s individual ARIMA 

prediction. The former uses the intuition that customers with 

similar load sizes (i.e. small, medium and large uses of energy) 

may better complement the magnitude of variation in energy 

consumption. The latter offers customers with different 

variability (hence error %) across the clusters for future 

customers to compare against 

B. Elasiticy of Number of Clusters  

The number of clusters that are created can have an impact 

on the MAPE, as also on the domain needs. By default, one can 

use a static number of clusters that is specified by the user, 

similar to the value of “k” in k-means clustering. This can be 

picked either because of the need for a specific number of cluster 

in the domain or the need to control the number of customers in 

a cluster (assuming a balanced distribution of customer counts, 

though not guaranteed). We have considered 1 (trivial), 3, 6 and 

15 as the static number of clusters in our experiments. 

However, when there is no strong need to pin the number of 

clusters to a static value, it may be possible to grow the number 

of clusters elastically, based on the need to optimize some 

metric. We propose a heuristic for elastic number of clusters that 

has a lower and an upper bound on the number of clusters, mlo 

and mhi. The number of clusters is incremented by one in case 

an incoming customer does not improve the MAPE for any 

existing cluster by more than a threshold value, t. This offers 

flexibility to the domain application, both in the range of cluster 

counts as well as the rate at which the errors improve as 

customers are added. It also allows the algorithm to grow the 

number clusters based on need rather than be bound to an initial 

set of static clusters with a static seed customer in each. This can 

also help to capture customers who are “outliers” in a separate 

cluster rather than force them into an existing cluster, and 

thereby make its error worse. For our experiments, we use three 

pairs of lower-upper cluster bounds, 1-15, 3-6, and 6-15, and use 

two different thresholds, t=0% and t=1%. The former forces the 

errors for existing clusters to monotonically decrease as 

candidate customers are added, adding a new cluster otherwise. 

The latter expects an even faster drop in error, by 1% or more, 

for every new customer added. 

V.EMPIRICAL RESULTS 

For the experimental evaluation of the incremental 

clustering technique and its optimizations we use a sample of 84 

smart meters from a utility service area as a representative 

population. The smart meter’s kWh consumption data is 

recorded for 3 month period at 15-min interval or ~3x30x96 = 

8,600 intervals, for a total of ~725,000 data points across all 

smart meters on which the results were validated. 

 We used 2 months of data per smart meter as a training for 

the ARIMA and the last one month for calculating the MAPE of 

the ARIMA model. Besides the training, other optimizations 

such as midpoint seed also used the 2-month time series data for 

their heuristics. All experiments were repeated multiple times 

and the representative results presented. The order of the smart 

meters was randomized before each experimental run. All 

experiments were scripted using the R statistical package and 

run on a server with 16-core Opeteron processors and 64GB 

RAM. Each experimental run took between 5-40 hours to 

complete using a single threaded process, depending on the 

number of clusters. We observed that the total clustering time 

was a linear function of the number of clusters, thereby bearing 

out our time complexity estimate of O(α.n.m), for n=84 smart 

meters, a constant α as the time taken to build a single ARIMA 

model, and the number of clusters ‘m’ being the variable. 

A. Impact of Cluster Seeding 

In our initial experiment, we use the random seeding to 

assign a different random initial smart meter (i.e., customer) as 

seed to each of the 4 static cluster sizes we consider: 1, 3, 6 and 

15 clusters. Note that the 1-cluster case is a trivial scenario 

where all customers are clustered into one, and this gives a 

nominal “best case” scenario for MAPE from clustering and acts 

a lower bound for our clustering experiment. On the other hand, 

we use 15 as the upper bound of the number of clusters, with 

each cluster having on an average 4 customers – as it can be 

observed from figure 3(a), the cluster’s MAPE drop is 

significant till 4 customers after which it starts flattening out. 

Clusters of 3 and 6 give us reasonable midpoints for comparison 

between the upper and low bounds. We use the standard affinity 

score for incremental clustering of each customer that looks for 

the best error reduction in each cluster. Figure 4 shows the 

results of this experiment.  



It is worthwhile comparing these plots against the equivalent 

plots from Figure 3, which used a round-robin assignment. In 

Figure 4(a), we see just one instance where adding a customer 

actually increased the MAPE  of a cluster using the affinity 

score, as opposed to 6 instances when this happened in the 

round-robin assignment in Figure 3(a). Furthermore, we also see 

in Figures 3(b) and 4(b) (blue dotted line) that there is a tangible 

drop in the average MAPE for each cluster, ranging from 12-

20% improvement in relative MAPE. This is a 1-2% 

improvement in absolute MAPE, e.g., 11% vs. 13.8% for the 15-

cluster case for affinity-score vs. round-robin. The improvement 

is even more significant when considering the standard 

deviation of MAPE between clusters in an experiment (yellow 

dotted line). Here, the relative reduction in standard deviation is 

as high as 76% for the affinity score assignment compared to 

round-robin. This shows the value of our proposed similarity 

metric in not just reducing the average MAPE for clusters but 

achieving an even error % across clusters. The obvious 

advantage of the round-robin technique is of course in its ability 

to balance the number of customers in a cluster (Figures 3(c) and 

4(c)), whereas the affinity score method has a more imbalanced 

19, 24 and 41 customers in the 3-cluster case. 

We next compare the random seed method against the 

midpoint seed optimization. Three different customer ordering 

approaches were used for determining the midpoint for the 

partitions, and hence the initial seed for each cluster. The 

customers were ordered based on their average KWh for the 2 

month time series data, the standard deviation of this 2 month 

time series, and the MAPE when predicting their consumption 

using an ARIMA model built for each customer. We observed 

that there was not tangible difference in the MAPE for the 

midpoint seed approach compared to the random seed approach 

for the different static cluster sizes. However, there was a 

noticeable different in the absolute standard deviation of their 

MAPE, depending on the ordering chosen for the midpoint seed 

compared to the random seed.   

Figure 5(a) shows the absolute standard deviations in the 

MAPE for the different seed approaches for the different static 

cluster sizes of 1, 3, 6 and 15. We see that midpoint seed using 

KWh ordering offers a uniform lower standard deviation 

 
(a) Incremental reduction in MAPE as each new customer is added 

across 6 clusters 

 
(b) MAPE  for each cluster (bar). Experiment is run with different 

numbers of clusters: 1, 3, 6 & 15. Average and Std. Deviation of 

MAPE (line) for each clusters is also shown. 

 
(c) # of customers in each cluster (bar). Experiments run with 

different numbers of clusters: 1, 3, 6 and 15. Average and Std. 

Deviation of # of customers per cluster (line) is also shown. 

Figure 4. Incremental Clustering with Random Seed and Affinity 

Score based Customer Assignment. 
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(a) Standard deviation of MAPE is shown for different midpoint 

seed ordering methods (dotted/dashed), and compared with random 

seed (solid line). Experiments are run for different cluster sizes. 

KWh seed has uniformly better standard deviation. 

 
(b) MAPE for each cluster (bar) when using customer’s KWh as the 

ordering for midpoint selection. Results for different numbers of 

clusters, and their Average and Std. Deviation of MAPE (line) are 

shown. 

Figure 5. Incremental Clustering with Midpoint Seed and Affinity 

Score based Customer Assignment. 
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compared to the random seed. While the axis range may seem 

small (1%), this translates to a 10% relative range, given that this 

deviation is on MAPE that are ~10%. The other midpoint seeds 

do not show a consistent improvement. It is understandable that 

the midpoint seed helps even out the MAPE errors across the 

different clusters (though not reducing their errors). By ordering 

customers based on their KWh, each cluster is seeded with a 

customer whose average KWh size falls in a different partition. 

It is likely that subsequent candidate customers were placed in 

clusters whose seed was closer to that customer’s average KWh 

since they would be in a better position to balance out the 

magnitude of variation in KWh. However, the impact of this is 

unlikely to carry over beyond the initial number of candidate 

customers since the cumulative KWh value of the clusters will 

start to dominate beyond a certain number of customers. The 

MAPE using the midpoint seed (KWh ordering) is shown in 

Figure 5(b), and is similar to Figure 4(b), but for the reduced 

standard deviation. 

B. Impact of Cluster Size Elasticity 

In this experiment we set the number of clusters to fall 

between an upper and lower bound, and the number of clusters 

grow elastically when an incoming customer is unable to 

improve the MAPE error % of any existing cluster by a certain 

threshold. We evaluate lower and upper bounds of 3-6, 6-15 and 

1-15 clusters, with thresholds of 0% and 1%. Figure 6(a) shows 

this incremental clustering strategy in action for elastic clusters 

with lower bound of 6 clusters and upper bound of 15 clusters, 

and a 1% threshold. We see that there are initially 6 clusters, 

shown by 6 initial MAPE  values, and occasionally, an 

additional MAPE line springs up, denoting the creation of a new 

cluster. Since we have a threshold of 1% here, each addition of 

a customer has to either reduce the MAPE for a cluster by 1% or 

cause a new cluster to be created.  

Figure 6(b) shows the MAPE as bar plots per cluster for each 

of these elastic combinations, as also the average and standard 

deviations of MAPE error % as line plots for each combination. 

The merits of the elastic cluster strategy is in automatically 

trading-off the number of clusters against the average MAPE 

error % for the clusters, without having the users pick an 

unsuitable static number of clusters that can cause either a high 

MAPE error % (if more clusters are statically chosen) or fewer 

clusters without any improvement in MAPE. Note that in our 

domain, more clusters are better. In some cases, such as 3-6 

clusters, we do not see any clear improvement of this method. 

For e.g., the static 3-cluster, 3-6 elastic cluster (0% and 1%), and 

static 6-cluster have average MAPE error % of 5.33%, 7.65%, 

7.22%, and 7.20% respectively. So picking an elastic number of 

cluster here is as bad (or marginally worse) than picking 6 

clusters statically. However, when we consider the MAPE error 

% for static 6-cluster, 6-15 elastic cluster (0% and 1%), and 

static 15-cluster, with values of 7.20%, 7.76%, 11.54%, and 

11.04%, respectively, we see that 6-15 elastic (0%) actually 

performed nearly as well as the static 6-cluster case while 

offering more number of clusters (7). If the user had instead 

stuck to just static 6 or 15, this trade-off in improving the number 

of clusters with minimal gain in error may have been missed. 

One of the side effects of this elasticity is that there is a higher 

standard deviation in the number of customers per cluster. This 

is understandable. Since clusters can be created very late, there 

is a greater skew in the number of customers present in clusters 

that were added early vs. those that were added late.  

VI.CONCLUSION 

In this paper, we introduced a novel similarity measure for 

performing incremental clustering of time series datasets, with 

the goal of using the cumulative values of the clusters for 

performing time series predictions. This is a novel application 

of clustering as a form of coarsening different time series entities 

to perform more accurate predictions, and for which existing 

distance-based clustering techniques do not suffice. This is of 

unique value for predictive analytics over high velocity Big Data 

that often have a time series structure. We have validated our 

proposed clustering and optimization techniques for the Smart 

Grid domain using real datasets, and in addition to the 

qualitative improvements in the prediction errors and cluster 

balancing, we observe a poly time complexity with the number 

of time series datasets and clusters. 
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(a) Incremental reduction in MAPE as each new customer is from 

among 6 clusters, initially, and among 15 cluster finally. Spikes 

indicate a new cluster is created. 

 
(b) MAPE for each cluster (bar) for elastic numbers of clusters. 

Results for different numbers of cluster upper and lower bounds, 

along with thresholds, as well as their Average and Std. Deviation of 

MAPE (line) are shown. 

Figure 6. Incremental Clustering with elastic number of clusters. 

Random Seed and Affinity Score based Customer Assignment. 
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