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Abstract—Cloud storage has become immensely popular
for maintaining synchronized copies of files and for sharing
documents with collaborators. However, there is heightened
concern about the security and privacy of Cloud-hosted data
due to the shared infrastructure model and an implicit trust in
the service providers. Emerging needs of secure data storage
and sharing for domains like Smart Power Grids, which deal
with sensitive consumer data, require the persistence and avail-
ability of Cloud storage but with client-controlled security and
encryption, low key management overhead, and minimal per-
formance costs. Cryptonite is a secure Cloud storage repository
that addresses these requirements using a StrongBox model for
shared key management. We describe the Cryptonite service and
desktop client, discuss performance optimizations, and provide
an empirical analysis of the improvements. Our experiments
shows that Cryptonite clients achieve a 40% improvement in
file upload bandwidth over plaintext storage using the Azure
Storage Client API despite the added security benefits, while
our file download performance is 5 times faster than the
baseline for files greater than 100MB.
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I. INTRODUCTION

Cloud computing has gained immense following in the
business and scientific communities due to the ease of access
and management, combined with a pay-as-you-go model
for elastic on-demand resource usage. Of the diverse Cloud
service offerings, Cloud storage is by far the more popular,
whether used as an laaS like file or BLOB store, PaaS like
SQL Azure or SaaS like DropBo>E|. These storage services
are used for online content distribution, synchronization
across devices, and for document sharing by enterprises and
scientific collaborations.

Despite its success, there is heightened concern about
the security and privacy of Cloud-hosted data [I] to many
eBusiness and eSciences that are considering shifting to
Clouds. These arise from reasons: shared Cloud infrastruc-
ture for storing data from different organizations, co-location
of multi-tenant applications with the storage services, and
malicious insiders at Cloud providers getting access to data.
These do not presuppose ill-intentions by Cloud providers,
who make a best effort (but not guarantees) of data security,
but are rather the consequence of the “shared infrastructure
managed by third party providers’ model of Clouds.
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Existing Cloud storage services only provide basic ac-
cess control mechanismdd, and the limited research on
secure, shared Cloud repositories often require extensive
deployment of infrastructure services that undermines their
manageability[2]. Specifically, there are two classes of cur-
rent solutions. One uses simple file en/decryption on the
client side, managed through shared keys, such that only
encrypted files are hosted in Clouds. While this works
for a small number of files and users, key sharing and
management becomes unsustainable as the number of users
sharing data grows. A second solution is to allow the Cloud
providers or a third-party offer more advanced security
services and manage user credentials such as dropbox.
However, this approach still “trusts” an external service
provider to secure their plaintext data

Consider the following scenario to motivate our work.
Smart Power Grids are giving utilities unprecedented access
to realtime power consumption data on individual customers.
Managing and analyzing this data requires large-scale com-
pute and storage resources such as offered by Cloudd[3].
As part of the Los Angeles Smart Grid Demonstration
project, the University of Southern California (USC) campus
is serving as a testbed to research Smart Grid software
technologies and human behavior to study power usage.
This multi-disciplinary research has several departments and
researchers involved, and data is collected on buildings, oc-
cupants, campus events, classroom schedules, and weather,
in addition to Smart Meter and sensor data. Research regula-
tions require that the different owners of this shared dataset
— including the campus power consumers, who number
in the thousands — have fina control on which research
groups have access to their datasets [4]. A Cloud-hosted
data repository to hold personally identifiable information
for scientific and operational needs should enforce this
single owner/multiple writerssmultiple readers permission on
individual data files with low management overhead, while
ensuring that plaintext data is not stored in the Cloud.

This motivates the need for a data storage service which
retains the persistence and availability offered by public
Cloud storage but with security and encryption that is
controlled by the clients, a low key management overhead,
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and compatibility with existing storage service interfaces
while not sacrificing performance and scalability.

In this paper, we present Cryptonite, a secure Cloud
storage respository that addresses these requirements. Our
design introduced earlier [5] is validated here, to wit we
present an implementation of the Cryptonite service and
desktop client on the Microsoft Windows Azure Cloud
platform. We also discuss optimizations to overcome data
security overheads and provide an empirical analysis of the
improvements. Specifically, our contributions are as follows:

o We implement Cryptonite, a secure data repository that
runs within Azure and provides service APls compati-
ble with existing Cloud storage services,

o We present pipelined and data paralel performance
optimizations to reduce the security overhead caused
through encryption and key management, and

o We experimentally evaluate Cryptonite on the Azure
Cloud, compare it with baseline client storage access,
and demonstrate the efficacy of our optimizations.

The rest of the paper is organized as follows. In Section

[T we review the Cryptonite design. Section [[TI] describes the
service and client implementations. We discuss performance
optimizations in Section TV], and empirically analyze them
in Section [Vl Related work is compared in Section [Vl We
present our conclusions in Section V11l

Il. BACKGROUND: Cryptonite DESIGN

A detailed motivation for Cloud security in Smart Grids
[4] and an initial design for Cryptonite [5] have appeared
in literature. Here, we summarize the Cryptonite design as
background context.

The basic tenets behind the Cryptonite design are to (1)
alow the file owner to encrypt and sign the data at the
client-side before storing it in the Cloud, (2) be able to audit
operations performed in the Cloud, and (3) offer a scalable,
user-friendly model for key management for efficient and
secure data sharing.

For a client to upload a plaintext data file D on behalf of
the owner U,yner, it first generates a random cryptographic
symmetric key KJ¥™ and uses it encrypt the data file to
create an encrypted file F'. Then, it generates a random
cryptographic public/private keypair, < K g’;;ﬁl, Ko >
aso called “file verification key” and “file signature key”
respectively. F' issigned using K./ to get asignature Sr.
A security metadata header M is created with the file's
unique UUID, the unique identifier for a StrongBox file,
SUUID, Kf}éﬁl and fully qualified name of the owner
Uswner- This header isitself signed using the private key of
this owner, K?'t . These steps ensure that the data file is
encrypted on the client side, its content and security header
can be verified using the corresponding signatures, and
coarse grained access control is imposed by the Cryptonite
service using the owner information stored in the security

metadata.

The concept of a StrongBox file enables scalable key man-
agement by securing multiple files that share the same per-
missions using just the single global public-private keypair
for each user. Intuitively, a StrongBox represents a unique
combination of permission (such an access control list), with
a specified owner, list of writers and list of readers. A shared
symmetric key K:¥"" is associated with a StrongBox and used
for en/decryption of all files that have these identical permis-
sions. This symmetric key is itself broadcast encrypted [6]
using the public keys of all authorized readers (inclusive of
writers and owner) K7, and placed in the StrongBox .
Broadcast encryption has the property that any one of private
keys matching the list of public keys used for broadcast
encryption, but no one else, can decrypt the contents. The
StrongBox also contains the shared signature key K7/ used
for signing the updated contents for any write operations,
with the signature key being broadcast encrypted using the
public keys of all authorized writers (inclusive of owner)
K2, .. . The StrongBoxfile is signed using the global
private key of its owner, K?"* and uploaded to the Cloud
storage with unique SUU I D. Thus, only authorized readers
will be able to decrypt the shared symmetric K¢ present
within the StrongBoxusing their private key and use that
shared key to decrypt the contents of the data file they
are authorized for. Likewise, only authorized writers can
decrypt the shared signature key K¢/, required to sign a
valid encrypted data file that is being updated.

Cryptonite uses several standard and proven cryptographic
techniques as its design primitives. It uses symmetric cipher
for en/decryption of data files, and leverages the Public Key
Infrastructure(PKI) with RSA public/private key pairs along
with digital signatures and checksums for user identity and
for checking the integrity of data/metadata and for non-
repudiable auditing. It also uses a Broadcast Encryption
technique for sharing a secret among a subset of the users
which is used by the StrongBox . It allows lazy revocation us-
ing aform of key rotation [[7] for re-encrypting updated files
whose permissions have changed with minimal overhead.

I1l. ARCHITECTURE AND IMPLEMENTATION

The Cryptonite architecture is a validation of the Cryp-
tonite design that was introduced in the previous section. It is
implemented on top of the Microsoft Windows Azure Cloud
platfornﬁ using standard Azure VMs, and Azure BLOB
and table storage services. Here, we describe the various
components of the Cryptonite architecture and the operations
that it supports. These are illustrated in fig. [l

A. Components

The Cryptonite Data Repository is the central service that
runsin the Cloud and exposes interfaces for adding, updating
and retrieving data files. It has two major components. the

Swww.windowsazure.com


www.windowsazure.com

Cryptonite Client

o Azure Web Role VM
Library.

Cryptonite Data P
Repository Service
File Manager
" Download Processor

Cryptonite
Strongbox Files

ryptonite
L DFiles
ol Upload Processor > P— —
I 6a, 12a Azure Table Store
7a, 133 1 ‘AudltTable
— —
1 ——
Audit Manager -

‘ WINDOWS AZURE CLOUD PLATFORM ‘

File Manager

StrongBox Processor

DFile Processor
N
Audit Manager

DESKTOP CLIENT  Trusted PKI [:: L)

Server
Figure 1: Architecture and interaction diagram of the Cryp-
tonite data repository service and desktop client libraries.

File Manager and the Audit Manager. The File Manager is
responsible for interacting with the Azure BLOB Storage
service used for scalable and persistent storage using a
single storage account. In particular, it restricts unauthorized
updates to the stored data or StrongBox files using signature
verification on requests to ensure authorised access, and
also creates single-use URLs for downloading files from
the BLOB storage service. The Audit Manager maintains
a secure audit log in the Azure Table Storage for every
file operation performed by the File Manager on behalf
of a client. Each log entry includes a copy of the request
message signed by the requesting client along with the file
checksum. This is a form of provenance that can be used
to prove that the current repository state were the result of
valid operations.

There are two types of files that are managed in the Cryp-
tonite repository: the DFile and the StrongBox file. The DFile
or “Data File" consists of the original plaintext data file
encrypted using an AES-256 symmetric stream cipher along
with a security header as discussed in the design. The header
contains the qualified name of the owner (eg. 0=USC,
ou=CENG, CN=kumbhare), the UUID for its StrongBox file
(e.g. 52151807-81b4-4db3-8e53-5438d73c43ac) and the file
verification key pair. The encrypted contents are signed using
the file signature key and the header itself is signed using
the owner’s private key. We use RSA-1024 hit keys for the
file signature/verification key pair.

Cryptonite uses a StrongBoxfile for efficient manage-
ment of access control permissions and shared keys.The
StrongBox itself is afile that consists of a header and a body.
The header contains the qualified name of the owner, the
file encryption and the file signature keys — themselves
encrypted using a broadcast encryption scheme, and the
body contains the unique identifiers of DFiles that use this
StrongBox along with a random seed (initialization vector,
or 1V) for each; the IV is used for added security during
symmetric encryption and decryption of each file. Unlike the
DFile, the entire StrongBox file is signed using the owner’'s
private key. This allows only the owner of the StrongBox to

update its contents, and thus add or remove DFiles associ-
ated with it.

The Cryptonite Client Library (CCL) is responsible for
performing cryptographic operations on the client-side on
behalf of the user, and interacting with the Cryptonite
service. While the CCL is provided for convenience, users
or their trusted developers can implement this library them-
selves using standard cryptographic algorithms and web ser-
vice protocols for absolute trust when handling the plaintext
files and the private keys of the users. CCL performs encryp-
tion, signing and header generation to create the DFiles from
plaintext files using the private keys available for the user
and shared public keys available for other users using the
PKI infrastructure. It al'so performs decryption and signature
verification of DFiles to retrieve the plaintext files. The CCL
interacts with the Cryptonite repository and the Azure BLOB
storage service using REST service interfaces. The library
forms the edge of the secure Cryptonite operations.

Our implementation of the Cryptoniteservice and CCL is
done on the .NET platform for convenience, given the native
support for .NET within Windows Azure. However, our
use of standard cryptographic agorithms and web service
protocols for communications ensure that this service can
be ported to other laaS and PaaS Clouds, or clients in other
programming languages used to access the repository. The
open source Cryptonite package is accessible online . A
Java client is currently under development.

B. File Operations

The Cryptonite repository service provides a REST ser-
vice interface that is similar to the one exposed by Azure's
BLOB storage service. This alows existing applications that
use Cloud storage to migrate to Cryptonite's secure service
with limited overhead. There are four key operations that
we provide: POST, PUT, GET and DELETE, with the same
semantics as the HTTP protocol. Here, we describe the steps
for the POST operation in detail.

POST is used by the owner of afile to create and upload
the secure file to the Cryptonite repository with an initial set
of access permissions. The arrows in fig. [ illustrates these
steps. The CreateFile () method in the CCL takes as
input the location of a plaintext file, the initial permissions
for the file in the form of the owner, readers and writers,
and the global private key for the owner. The client creates a
normalized hashcode from the permissions by concatenating
and sorting the list of authorized users and applying a
unidirectional hash function (SHA-1) to get the identifier
of the StrongBoxfile that reflects these permissions. The
client then tries to fetch this StrongBox file by performing
a GET operation on the Cryptonite service (fig. [ step
1(a)). If present, the service returns a one-time use URL for
this StrongBox file in the Azure BLOB storage — a facility
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provided by Azure (step 1(b)), and the client uses this
to download the StrongBox file (step 1(c)). The client then
decrypts the File Encryption key and the File Sgnature Key,
that have been broadcast encrypted into the StrongBox , using
the private key of this user — the owner (step 2a).

If the StrongBox did not exist, the client generates a new
one as follows. It first creates a random symmetric File
Encryption key (using the AESManaged class provided by
the .NET cryptography library), which is used for encrypt-
ing plaintext files, and a pair of asymmetric keys (using
RSACryptoServiceProvider), File Sgnature Key and
File \erification Key, for signing and verifying the integrity.
The encryption key, used by readers, and the signature key,
used by writers, are themselves encrypted using broadcast
encryption (step 2a,2b). Given the lack of standard broadcast
encryption implementation in .NET, we implemented our
own version using the standard RSA algorithms [g].

The client next generates a random UUID as the BLOB
name for the data file (DFile) and a random initialization
vector (1V) integer. The plaintext file is then encrypted using
the stream cipher(AES-256 CBC mode) using the symmetric
file encryption key and the IV (step 3). The DFile is then
prefixed with a security header as described earlier, and
signed using the owner’s private key. An audit log entry is
created with the type of operation (POST), the timestamp,
the UUID of the file, the file's signature and the header
signature, and also signed using the owner’s global private
key (step 4). This DFile and the audit log are uploaded
to the Cryptonite service using a HTTP POST operation
(step 5). We introduce a special HTTP header, x-cryptonite-
audit, to transfer the signed audit entry along with the DFile
to the Cryptonite server. This is followed by updating the
StrongBox with the new file's UUID and a similar audit log
for it (steps 10-11).

On the service-side, when a HTTP POST operation is
received, the Cryptonite service verifies that the file with
the given resource URL (i.e. file UUID) does not exists
in the BLOB storage. It then extracts the owner id from
the file's security header and verifies the header signature
using the owner’s public key (step 6a,6b). We use a trusted
third party PKI server (fig. ) which acts as a certificate
store. It returns signed X.509 public key certificates for a
given fully quaified user id. Next, the service uses the file
verification key present in the header to verify the signature
of the encrypted file body, and the integrity of the audit entry
log (step 7(a), 7(b)).

On successful verification, the entire DFile's header and
body are stored in the Azure BLOB store using the provided
UUID (step 8). The service creates a similar audit entry
log for this operation and signs it using it's own private
key, before storing both the client and service's audit logs
to Azure Table store (step 9(a)). The service's audit log
is returned as a receipt to the client as part of the POST
response header (step 9(b)). The StrongBox file that has been

created or updated is aso received in a separate POST
operation, verified, and stored in the BLOB store (steps 12-
15(b)).

Since the StrongBoxis shared by multiple files, we sup-
port optimistic consistency semantics when the identical
StrongBox gets updated by two concurrent clients after a
POST operation. We use the ETag header, provided by
the Azure BLOB service as a version for a given BLOB
file, to check for stale StrongBox'es. If the StrongBoxfile's
ETag has changed between the start and the end of POST
operation, we fetch the StrongBoxfile again and redo the
StrongBox update.

A DELETE operation is similar to the POST and can
be performed only by its owner since it requires updating
the StrongBoxfor removing the deleted file's entry. The
request and audit verification steps are as before, except
that a DFile is not present in the request body and the
corresponding BLOB file is deleted from the Azure storage
by the Cryptonite service.

A PUT operation, to update an existing file, follows a
convention similar to POST , but can be performed by
any authorized writer. In addition to verifying the header
signature of the DFile, the Cryptonite service also verifies
that the owner id in the updated file header has not been
changed — this prevents ownership hijack by a writer. No
updates to the StrongBox file takes place during a PUT.

The GET operation can be used by any authorized readers
to download and decrypt the shared file. The user sends an
HTTP GET request to the Cryptonite service with the UUID
for the file and is returned a one-time use URL for thisfilein
the Azure BLOB service. This URL can be used to directly
download the DFile. The client then verifies the file using
its signature in the header, and retrieves the StrongBox file
for this DFile whose UUID is listed in its header. The client
similarly downloads and verifies the StrongBox file, and uses
its global private key to broadcast decrypt the symmetric file
encryption key and 1V present in the StrongBox . These can
then be used to decrypt the body of the DFile and get the
plaintext contents.

For all these operations, it should be reiterated that even
if an unauthorized users gets access to the StrongBox or
encrypted data files, without access to the private key of
the owner, authorized readers or writers, the contents of
the files cannot be read or changed. Even a hijack of the
Cryptonite service or the Azure Cloud storage service can
at worst delete the stored files — compromising persistence
— but will not cause data leakage. Any attempt to change
the file contents can be detected by the client using the
signatures and unauthorized operations detected using the
audit log receipts.

IV. PERFORMANCE OPTIMIZATIONS

There are several cryptographic, disk and network opera-
tions that are performed in the client library and Cryptonite
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Figure 2: Performance-tuned Cryptonite implementations.
(a) Basic, (b) Pipelined, (c) Pipelined with BLOB Parallel,
and (d) Fully Pipelined and Parallel

service to provide secure storage. These can lead to sig-
nificant overhead in terms of end-to-end transfer time and
effective bandwidth between client and Cloud. We propose
several performance optimizations to mitigate this overhead.
These are discussed here using POST as the example.

Fig.[2(a) shows the primary processing stages in the basic
Cryptonite implementation, namely, plaintext file read from
disk (F), encryption using AES-256 symmetric stream cipher
(E), hashing and signing of the encrypted file and header
using SHA128-RSA 1024 (S), followed by network transfer
of the DFile header, body and audit log entry (T), on the
client-side. At the service-side running in the Cloud, the
DFile is received from the network (R), the signatures in
the audit log and DFile header verified (V) by hashing the
DFile body, following which the DFile and server-signed
audit log are uploaded (U) to the Azure BLOB and table
services respectively.

We leverage foundational concepts of task pipelining
and data parallel execution to exploit various performance
optimizations over the basic data flow in fig.[2(a). We present
three increasingly sophisticated versions of this data flow:
Pipelined (fig. B(b)), Pipelined with BLOB Paralel (fig.
[Z(c)), and Fully Pipelined and Parallel (fig. 2(d)).

Our first optimization (fig. b)) leverages an Azure
BLOB service feature to upload the file as a collection of
blocks, in any order, and finally commit the blocks in the
desired order. This pipelines the data flow by processing
one file block (e.g. of 4MB size) at a time, in order, and
alows task parallel execution of individual stages of the
flow concurrently. The signature task at the client and the
validation task at the server, however, need to have all blocks
of the file pass through them in order to calculate its hash.

As a result, the DFile header cannot be computed until all
blocks of the file have been accessed, and likewise for the
verification (and hence the file “commit”) on the service-
side.

The next level of optimization (fig.[2(c)) adds data parallel
execution to the block upload (U) on the service-side. The
client continues to send pipelined blocks in order as before.
However, since the BLOB store supports uploading the
blocks in any order, we use multiple, concurrent instances of
the upload task to transfer blocks from the Cryptonite service
to the BLOB store using independent network streams. The
“commit” of the BLOB ensures that the file is accessible in
the correct order.

The final optimization we perform (fig. [(d)) is in extend-
ing data parallelism to other stages in the flow, in particular,
for block encryption (E) on the client side. We also decouple
the validation (V) from the block upload (U) on the service-
side. Both of these introduce additional complexity since
the client signature (S) and service validation (V) depend
on having access to the file blocks in order. We implement
an in-memory thread-safe sorted queue between encryption
(E) and signature (S), and between network read (R) and
validation (V), that ensures decoupled yet consistent oper-
ation. We also address a security vulnerability this would
expose. Encrypting each block independently with the same
key and 1V increases the chances of a plaintext attack. We
fix this by generating and using a random byte array equal
to the width of the encryption block as a prefix to the block
to increase the entropy.

V. PERFORMANCE EVALUATION

In this section, we present a detailed empirical evalu-
ation of the performance characteristics of the Cryptonite
service and CCL, and the impact of different optimization
strategies we have proposed. We use “effective bandwidth”
as our metric, defined as the =" (fg:;;gﬁ:; ideSize — M bits,
since this captures the tangible impact for the user. In our
experimental setup, the Cryptonite service is deployed on a
single Azure Large VM Instance (4 Cores rated at 1.6 GHz,
7 GB Memory, 400 Mbps bandwidth) and the Cryptonite
client runs on a 4 Core, 2.5 GHz workstation with 8 GB
Memory, connected to the USC campus Gigabit network.
We use randomly generated plaintext test data files with
sizes ranging from 100 KB to 1 GB. The results for all
experiments are averaged over at least three runs; more for
very small file sizes. We use the Azure .NET Storage Client
APl (v1.6) for Azure storage service operations.

A. Baseline Analysis

We use the baseline references to evaluate Cryptonite
against. The first just uploads (downloads) plaintext files
between the desktop client and the Azure Blob storage
service with no added security. This illustrates the default
performance that is achieved by a client when using the
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Figure 3: Comparison of Baselines and Basic Cryptonite Implementations for POST(a), PUT(b) and GET(c) operations.

Azure BLOB service. The second baseline adds file encryp-
tion (decryption) using a symmetric key before uploading
to (after downloading from) Azure BLOB storage. This is
a simple encryption approach for securing the data files
from data leakage in the Cloud, and may be sufficient when
only one user is involved. Both these baseline methods are
compared against the basic Cryptonite implementation (fig.
[Z(a)). For Cryptonite, we use file access permissions with
one owner, 3 readers and 3 writers;, however, the actual
users themselves are selected at random for each run since it
impact StrongBox creation/selection. figs. [3d and [30 show the
effective bandwidth achieved using the two baselines and
the basic Cryptonite implementation for POST and PUT of
files that range from 100 KB to 1 GB in size.

For smaller data files (<1 MB), the plaintext and simple
encryption baselines offer better effective bandwidth (~2—
3Mbps) than the basic Cryptonite implementation (~0.15—
1Mbps). However, for moderate sizes (10-100 MB), Cryp-
tonite approaches the baselines. This difference is due to the
small, but static Cryptonite overhead for StrongBox operations
such as downloading, creating/updating and uploading the
StrongBox file. For small data files, this overhead dominates,
but is a smaller fraction for medium sized files. We aso
see that the overhead for symmetric encryption using the
second baseline is not significant compared to the plaintext
baseline. When the data file size grows beyond 32 MB,
the effective bandwidth of Cryptonite plateaus at 4Mbps
while there is a sharp improvement in bandwidth for the
baselines, achieving more than 20Mbps. This is due to an
optimization present within the Azure .NET Storage Client
APl which, for files > 32M B, divides them into blocks of
4AMB and uploads these in parallel. On the other hand, the
basic CCL implementation uploads blocks sequentialy to
the Cryptonite service and also synchronously waits for it to
store it into Azure BLOB storage before uploading the next
block. So for larger files, the network and acknowledgement
time dominates for Cryptonite.

The PUT operation exhibits a similar behavior to POST as
expected since the key operationa distinction is that POST
gets and updates/creates the StrongBox file while PUT only
retrieves an existing StrongBox file. The difference in time for
this is negligible.

Fig. [3d shows the effective bandwidth to download a file

using the baselines and basic Cryptonite implementation. As
before, for smaller files, Cryptonite performs much worse
than the baselines due to the static overhead to process the
StrongBox file. Also, the Azure .NET Storage Client APl does
not implement any optimizations for large file downloads
(unlike the upload), so there is no dramatic improvement
in effective bandwidth for larger files. So the GET for the
baselines are actually worse off than the PUT/POST for
larger files.

B. Analysis of Optimizations

Here, we compare the baseline plaintext and basic Cryp-
tonite implementations against the three optimized imple-
mentations of Cryptonite. Figs. [4d and [4b] show the effective
bandwidth achieved using these five approaches for POST
and GET operations; PUT is omitted for brevity since it is
similar to POST, and we aso skip smaller file sizes since
the benefits are negligible due to static overhead.

We can see aimprovement in effective bandwidth perfor-
mance for POST as we graduate from the basic implemen-
tation to the fully parallel optimization. We make several
notable observations. For file sizes from 10-100MB, the
pipelined optimization is better than the basic Cryptonite
implementation and is comparable to the plaintext baseline.
Introducing data parallelism takes the performance of Cryp-
tonite past the baseline plaintext, making our implementation
of secure data transfer faster than an unsecured version.
Even when the paralel optimization of the Azure Client
API kicks in for larger file sizes (e.g. 1 GB), we see that
the fully pipelined and parallel version of Cryptonite offers
a 40% improvement in effective transfer bandwidth over the
plaintext transfer, at 31Mbps compared to 22Mbps. This
remarkable improvement is achieved through fully utiliz-
ing the network bandwidth between client and the Cloud
VM, made possible by the Cryptonite service buffering the
blocks received from the client through multiple streams and
asynchronously storing them on the Azure BLOB storage.
Despite the asynchrony, the end to end time includes the
final commit operation which ensures that entire file has
been persisted before the operation completes.

For the download scenario (fig. [4D) our optimizations
offer better performance than the basic Cryptonite imple-
mentation. We also see dramatic improvement in effective
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Figure 4: Optimized Cryptonite Implementations.

bandwidth compared to the plaintext baseline. The main
reason for this is that the Azure APl does not perform
paralel download operations while Cryptonite client API
does. However we implemented a parallel download opera-
tion for plaintext data for fair comparison with the the most
optimized Cryptonite implementation and observed that the
latter performs as good as the former with only about 4%
overhead, at 35.5Mbps compared to 37Mbps for a 1GB file.
This can be explained by the fact that the CCL and the Azure
API both perform a download directly from the Azure BLOB
storage.

C. Impact of Client Capability

Since many of the cryptographic operations occur on
the desktop client, we studied the effect of using different
sized client machines on the performance. We run our
most optimized Cryptonite implementation on two client
VMs running within Windows Server Hyper-V, sized with 1
core/2GB RAM and 2 core/4GB VM. These are compared
against the client running on the default 4 core/8GB physical
machine. Fig. shows the results, and we see that there
is negligible performance variation between the different
clients for files up to 100MB. For larger files of 1 GB, the
additional CPU cores and memory available of the physical
machine allows the .NET Task parallel library to create more
concurrent threads; consequently, the compute becomes the
bottleneck for smaller client machines.

D. Client and Server Scalability

Lastly, we study the scalability of the Cryptonite service
as the number of concurrent clients accessing the service
increases. We run the POST experiments for different file
sizes on five physical machines each running between 1 to
10 clients. This alows us to compare the performance of the
Cryptonite service for 1 to 50 concurrent users. Fig. B shows
the average end to end time taken for a POST operation
on a 100 MB file. It is clear that the Cryptonite service
degrades gradually with the number of concurrent clients
performing POST, taking 3 times longer with 10 concurrent
clients as compared to 1. We make two further observations.
As the number of clients on a single machine increases, the
total POST time increases linearly. Looking at the Windows
performance counters shows that this is a bottleneck on

the client caused by reaching the .NET task parallelism
threshold on a single machine. As we increase the total
number of paralel clients, we aso see the time taken for
the final commit increase — after al the file blocks have
been transfered asynchronously to the service and the client
waits for the blocks to be flushed to Azure BLOB store by
the service. This indicates that the service is the bottleneck,
and we confirm that the service hits the bandwidth ceiling of
400Mbps imposed on a large VM. This motivates the need
for running multiple Cryptonite services on-demand to meet
client needs, and we plan to address this in future.

It should be noted that the scalability of the GET operation
is not impacted since CCL directly downloads the file from
Azure BLOB store after the Cryptonite service creates a one
time URL for it.

250

B Total POST Commit
200 -+

Ix1 1x5

5x1 5x2 1x10 5x10
No. of Clients

Figure 5: Client and Server Scalability.
VI. RELATED WORK

Cloud security and privacy research have focused on
identifying threats arising from using Cloud infrastructure,
such as risks due to multi-tenancy, attack surfaces exposed
by interactions between the user and the Cloud provider, and
Cloud integrity issues due to malware injection in VMs [9].
Researchers in eHedthcare and Smart Grid domains have
analyzed Cloud security requirements and raised security
concerns in moving their applications and sensitive data to
Clouds [4], [10]. Zhang, et. al. [10] consider the secure
storage and sharing of a patient’s electronic health records
(EHRs) with a “patient-centric” view — a problem closely
related to the scenario addressed by Cryptonite.

Building a trusted Cloud environment poses a number of
security issues in computing, storage, and communication
infrastructure. CertiCloud addresses issues of detecting
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malware attacks on VMs, using a Trusted Platform Module
(TPM) for certifying remote resources. Li et. al.[12] propose
a system for securing Cloud VM execution without trusting
the underlying Cloud management OS or the hypervisor by
securing the CPU and memory runtime, the network inter-
face, and local secondary storage. Such systems compliment
Cryptonite when clients need to run within Cloud VMs
rather than a secure desktop.

The issues of data security for outsourced data have
been studied for distributed systems. The main distinction
arises from the level of trust on the storage service provider
for access not only to the plaintext data but also on the
correctness of the operations performed on the data. NAS/DS
and SNAD[13] were among the first systems addressing
issues of untrusted remote data storage but assumed a
trusted server that protected data from remote and local
intruders. SIRIUS[8] and PLUTUS][7] systems extended the
concept and did not rely on the storage provider for au-
thentication. Stanton’g[14] and Cachin’g][15] surveys provide
a comparative study of various security regquirements and
different approaches for a secured data storage in traditional
distributed systems and in Clouds.

Recent systems such as Cloud-Proof[[16] and CCY[17]
built specifically for Cloud environments are closely related
to Cryptonite. However, they have been designed at a
lower system abstraction and require changes to the Cloud
platform. We leverage some of their security techniques but
cover a broader set of requirements that we have motivated,
provide compatible service interfaces for data access, and are
transparent with respect to the underlying Cloud platform.

VIl. CONCLUSION

We have described the design and implementation of
Cryptonite, a secure, performant data repository for Cloud
platforms that offers sustainable key management features.
Our empirical analysis shows that the optimizations that we
propose do not have significant overhead and even perform
better than the Azure .NET APIs for plaintext operations.
It provides service compatibility with Azure's BLOB store
and allows easy migration for Cloud data storage clients to
incorporate security.
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