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Abstract—Smart Grid modernizes power grid by integrating
digital and information technologies. Millions of smart meters,
intelligent appliances and communication infrastructures are
under deployment allowing advanced IT applications to be
developed to secure and manage power grid operations. Demand
response (DR) is one such emerging application to optimize elec-
tricity demand by curtailing/shifting power load when peak load
occurs. Existing DR approaches are mostly based on static plans
such as pricing policies and load shedding schedules. However,
improvements to power management applications rely on data
emanating from existing and new information sources with the
growth of Smart Grid information space. In particular, dynamic
DR algorithms depend on information from smart meters that
report interval-based power consumption measurement, HVAC
systems that monitor buildings heat and humidity, and even
weather forecast services. In order for emerging Smart Grid ap-
plications to take advantage of the diverse data influx, extensible
information integration is required. In this paper, we develop
an integrated Smart Grid information model using Semantic
Web techniques and present case studies of using semantic
information for dynamic DR. We show the semantic model
facilitates information integration and knowledge representation
for developing the next generation Smart Grid applications.

Index Terms—Smart Grid, demand response, Semantic Web,
information integration, complex event processing.

I. INTRODUCTION

Smart Grid refers to the modernization of the electric
power grid through the integration of digital and information
technologies. Smart Grids use instruments and sensors for
advanced monitoring capabilities in realtime that can lead to
more efficient and reliable management of electrical power
systems and optimize the operations of its interconnected
elements – from the central and distributed generations,
through the transmission and distribution network, to end-use
consumer equipments. Examples of these instrumentation in-
clude phasor measurement units that can sense grid instability
within seconds, smart meters installed at consumer locations
for realtime bi-directional communication, and programmable
smart appliances that can report their usage and status.

The improved information collection ability from Smart
Grids is leading to novel software applications and tools that
can transform the way power consumption is managed at the
macro and micro scales to meet the increasing demand for
electricity. These include more agile coordination of genera-
tion and transmission by the utility, intelligent charging and
discharging of electric vehicles from and to the power grid,
and third party service providers who help manage home

energy use using realtime pricing. One cornerstone application
is Demand Response optimization (DR), which deals with
curtailing/shifting power consumption during periods of peak
electricity load. The advantages of DR are twofold: (1) it
reduces the maximum power generation capacity required by
a utility to prevent blackouts or brownouts, and (2) it avoids
starting and stopping power generating units by shaping the
power usage to remain relatively constant over time.

Existing DR programs by utilities are typically static, based
on time of use pricing or pre-determined load curtailment
schedules. However, information available in a Smart Grid
allows novel, dynamic DR techniques to be attempted for
finer control over power use. This information goes beyond
details about the power system available from the utility
and incorporates indirect influencers of power usage based
on consumer activities, natural phenomena, and infrastructure
behavior. For example, the current weather, scheduling of a
convention, age of a building, or a public holiday can all
affect power usage in a city or a micro-grid. Dynamic DR
algorithms can locate patterns among a large class of historical
and realtime information to predict power usage and identify
curtailment opportunities. In order for DR programs and other
emerging Smart Grid applications to take advantage of the
diverse data influx, a holistic view of information across
multiple domains is required.

The goal of this work is to develop an integrated Smart
Grid information model using Semantic Web technologies to
support these next generation of Smart Grid applications. The
model needs to be extensible to meet the organic and rapid
growth of information sources in the Smart Grid domain, while
also easily interpretable to manage the diversity of information
and consuming applications. In particular, the semantic model
forms the knowledge base for performing dynamic DR. Our
contributions in this paper are as follows:

1) Information cataloging for DR. We identify and classify
information required to support dynamic DR and other
emerging applications in the Smart Grid domain.

2) Semantic Smart Grid Information Model. We develop
an extensible semantic model based on OWL that inte-
grates existing ontologies with novel ones to a concept
space to support applications and users in the Smart Grid.

3) Use Case Study of Semantic Model. We present a case
study of applying this semantic model in a campus micro-
grid environment, which highlights the extensibility, ver-



satility and easy of use of the model.

The rest of the paper is organized as follows. Section
II illustrates applications from the Smart Grid domain that
motivate the need for and aspects of a semantic informa-
tion model. Section III summarizes knowledge concepts that
are relevant to these applications. Section IV describes the
integrated Smart Grid information model, including existing
and novel Semantic Web ontologies, and relationships that we
introduce. Section V shows the semantic model being used in
a complex event processing framework used for dynamic DR.
Related work is described in Section VI. Finally, we discuss
future work and present our conclusions in Section VII.

II. BACKGROUND AND MOTIVATION

A. Power Grid Information Integration

Improvements to power information systems rely on data
from existing and new information sources within and outside
the power grid. Smart Grids, when viewed from the con-
sumer perspective, consists of three basic components: smart
devices, two-way communication networks and advanced IT
applications. Numerous sensors, smart appliances and smart
meters are under deployment to monitor power use activities.
Emerging Smart Grid applications not only process data from
smart devices, but also need to leverage information from other
relevant domains – weather, traffic, social networks, and so on
[28].

An extensible information integration framework is required
to meet the organic growth of Smart Grid information space.
Smart devices and IT applications are developed by various
software and hardware vendors and utilities. Information from
different sources is heterogeneous in terms of data structures,
semantics, software and hardware platforms used [29]. To
enable communication between data sources and applications
as well as between applications, information needs to be
interpreted in a common way. Traditional power grid infor-
mation integration adopts a one-to-one architecture, in which
applications and data sources from a narrow domain are tightly
coupled in a closed architecture that limits extensibility and
reuse. This approach is not scalable in Smart Grid information
space which is broad and will change often as applications
evolve. When data from several parties are exchanged, and
when new data sources need to be included for legacy appli-
cations, one-to-one integration will not be sustainable.

Model based information integration offers the benefits of
extensibility and reusability of applications over a dynamic
information environment. In particular, Semantic Web [10]
provides a domain-specific ontology language for building
common information models shared across domain and ap-
plication boundaries. Ontologies that can be developed in a
modular manner capture knowledge in individual domains and
provide data exchange standards at a semantic level. Ontology
models are integrated in a loosely coupled architecture by
explicitly describing relations between concepts from different
domains.

B. Dynamic Demand Response Optimization

Existing DR approaches are mostly based on static plans.
Consumption curtailment/shift decisions rely on peak demand
predictions. Traditionally, power demand is only monitored
in a coarse-grained manner spatially and temporally. Con-
ventional meters which record aggregated power usage of
customers are read on a monthly basis. Statistic and mathe-
matic models are built based on such meter data to predict
power consumption in the long-term ignoring intermediate
influencers. Due to the limitations of these forecast models,
existing DR is typically done by static planning (1) using
a priori commitment by consumers to directly control end-
use equipments for load shedding during pre-scheduled hours,
or (2) setting prices that vary by season or time of the
day, offering incentives to consumers for pro-actively tailoring
energy consumption.

In Smart Grid, traditional DR approaches can be comple-
mented by data driven dynamic DR algorithms that locate
patterns among a large class of realtime information to predict
usage and curtail/shift peak consumption. Smart meters and
sensors can monitor power consumption to the equipment level
in the interval of minutes. Finer consumption forecasting can
be made by combining realtime load measurement with obser-
vations of energy use influencers [15]. Consider in a campus
micro-grid, for example, consumption change in a classroom
can be predicted by using meter reading, equipment operation
status and class schedules. Based on realtime consumption
predictions, consumption curtailment/shift strategies can be
applied adaptively in multi-stages, which can help reduce the
system’s latency. In addition, opportunistic curtailment can be
applied to increase the curtailment output. For example, when
it was observed the temperature in a lobby did not decrease
to the HVAC setpoint within a time window, we can reset the
setpoint or turn off the corresponding HVAC unit to prevent
power wastage.

An integrated semantic information model for Smart Grid
can facilitate the development of dynamic DR applications.
Firstly, this allows rapid inclusion (or deprecation) of informa-
tion from multiple domains, loosely coupled through related
concepts. Secondly, it allows users to represent consumption
forecasting and curtailment domain knowledge at high level.
Information patterns used for realtime load prediction and op-
portunistic curtailment need to specify fine-grained constraints
on type of equipments, spaces or customers. This requires the
underlying information model to capture the various domain
concepts and their semantic relations.

Complex Event Processing (CEP) [19] combined with Se-
mantic Web technology is a promising solution to achieve
dynamic demand response. CEP deals with detecting event
patterns in realtime from among a cloud of information repre-
sented as events. CEP has been successfully applied in many
application domains ranging from supply chain management
[26], [27] to financial services [16], [20]. The requirement
of timely response to power use activities in dynamic DR
makes CEP an attractive approach. In Section V, we present



a complex event processing framework based on the semantic
Smart Grid information model for dynamic DR.

III. KNOWLEDGE SPACE OF SMART GRID APPLICATIONS

Smart Grid applications depend on the availability of rel-
evant information for their effective operation. A variety
of information can be leveraged in the context of demand
response optimization and these are considered in our semantic
information model.

Real Time Consumption. Power consumption details, col-
lected from smart meters, will enable us to improve the accu-
racy of forecast models by correcting errors in the prediction
model and improving the model within a short cycle. These
also help monitor the response of curtailment strategies that
are initiated and actively tune them. Different frequencies of
information can be attempted to make tradeoffs against accu-
racy and cost of information collection. For example, smart
meters can collect and report power consumption information
as frequently as once per minute, though once per 15 mins
is more often used. The Complex Event Processing module
can make use of the time series measurement readings to
find out interesting patterns which will help in reducing the
consumption at the observed location. For instance power
consumption information can be useful either at the individual
consumer level or when aggregated over neighborhoods.

Infrastructure Information. Besides information about the
power grid infrastructure, such as the distribution network,
substations and feeders, it is also useful to model information
about environment infrastructure at the city and consumer
scale since they influence power usage. Information at the
level of individual buildings may provide features such as
building structures, orientation (for sunlight), and equipment
installation. At the macro scale, the layout of the road networks
as well as traffic flow can provide pertinent knowledge. For
example, traffic information from road networks provide some
interesting insights about how the consumption would be
affected. When the traffic congestion is higher during the
evening the power demand in households would be shifted
based on the number of people staying at home.

Customer Behavior. Customer behavior provides valuable
insight about electricity consumption and helps in understand-
ing power usage patterns. For instance, a customer’s billing
information over a period of time can be used to predict
his/her electricity consumption for the next billing cycle.
Similarly customer demographics will help understand how
the consumption varies from one demographic to the other as
well as find the similarity between them for clustering response
strategies. Apart from these information Social Network feeds
can be used to understand how a person’s action influence
other people around him. A person might be motivated to
cut down the electricity consumption by reading his friend’s
cost savings through energy conservation. These information
will help in finding out groups which actively perform energy
conservation, and may be early adopters of new tools. These
feeds, when combined with location details that may be

available from mobile phone GPS’s, provide us with ”human
sensors” to report environmental information.

Schedule Information. Scheduling information provides
knowledge about a future occurrence ahead of time. These
information will enable us to estimate the demand at the
particular venue based on the type of event scheduled, as
well as on the number of people expected to turn up for the
event. Schedule information about individual people as well as
facilities are useful. A person planning a vacation from work
may indirectly indicate that they may not be at home either,
thus predicting lower demand while also eliminating a source
of demand reduction during curtailments in that period.

Natural conditions. Environmental factors, such as
weather and seasonal changes, help in determining the elec-
tricity consumption pattern in a region during a particular
weather condition. For instance, when the outside temperature
is around 60 ◦F, the chillers inside the building would be set
to higher temperatures thereby causing a drop in electricity
consumption. Similarly, an impending serious weather condi-
tion, such as a heatwave or a thunder storm, may indicates a
different demand pattern from usual. These details may, once
again, be at different spatial and temporal scale, and include
future events.

Fig. 1. Interplay between information concept spaces that are relevant to
Smart Grid Applications.

As shown in Figure 1, it is interesting to see how each
of these information sources are related or influence other
information sources. It can also be seen that electrical equip-
ments are installed on various infrastructures and people make
a direct impact on how these equipments are used which would
ultimately determine the total consumption at a place at any
point in time.

IV. SEMANTIC SMART GRID INFORMATION MODEL

We propose to use Semantic Web ontologies to model Smart
Grid information, providing an integrated information view for
DR applications.



A. Model Architecture

The Smart Grid domain being diverse in nature involves a
wide range of concepts from various domains. It is not possible
to build one single model from scratch which encapsulates
all the relevant concepts. Hence, our approach to finding a
solution is to identify well defined and understood ontologies
in the candidate domains and integrate these by just fill in
the gaps. This modular and extensible strategy leverages the
features provided by Semantic Web technologies, allows us to
build on top of domain expertise, provides familiar conceptual
terms for users, and potentially helps us leverage existing tools
for knowledge sharing and reuse.

Depending on the level of knowledge representation present
in these domain, we may have access to (1) complete ontolo-
gies that capture all concepts that are required by the smart
grid applications, (2) partially complete ontologies with some
concepts or relationships missing, (3) absence of an ontology
but existence of well defined metadata schemas, or (4) just a
glossary of terms without a well defined structure or semantics.
Each of these require a different level of intervention on our
part. This includes identifying common or related concepts
across domains and introducing relationships between them,
introducing new, relevant concepts that are missing from a
domain ontology, mapping existing metadata schemas to an
ontology framework, or construct a new domain ontology from
the domain dictionary.

Our Smart Grid information model is represented using Web
Ontology Language(OWL), one of the standards known for
knowledge representation. We have retained the namespaces
of all the component ontologies we have reused, and for the
ontologies and concepts we have introduced we have main-
tained our own namespace. The ontologies were integrated
using Protege [9] and the instances were populated using Jena
[6] Semantic Web Framework for Java. The Ontology schema
as well as the instance data were stored in MySQL Database
using Jena API and querying was performed using SPARQL
[11].

B. Component Ontologies

The various a component ontologies does not exist in
isolation. The relationships between concepts from individual
ontologies have been carefully established so that they form
a single coherent Ontology which can be used as the Smart
Grid Information model. Instead of developing the component
ontologies from scratch we have reused some of the very well
developed and standard ontology for each domain.

Electrical Equipments Ontology. The main domain On-
tology we are interested in is the one pertaining to Electrical
Equipments and Electrical Measurements. These information
being the crux of the Smart Grid needs to be captured in the
information model. The International Electrotechnical Com-
mission’s Common Information Model [1] is a standard that
describes the components of a power system at an distribution
level and defines information exchange between them. We are
interested in the Equipments at the Consumer side and how
much consumption the equipment records at each point in

time. CIM describes these domain features in a structural form
but does not describe their semantics. Hence, we transform the
CIM standard to an ontology representation tailored to our
needs. The Ontology captures different types of equipments,
as well as measurement units used by these equipments. Figure
2 shows the different categories of equipment like Lighting,
Refrigeration, Sensor, and so on. Each of the category has
subcategories or specialization of equipment,for example CO2

sensor is a type of sensing element which help in detecting
the CO2 level in area at a point in time.

Fig. 2. Electrical Equipments Ontology

Organization Ontology. It is essential to classify different
classes of organization since the electricity consumption for
them would be different. For instance the consumption pattern
of an airline is going to be different from that of an educational
institution. The presence of these added information will
induce some prior knowledge to the forecast models as to
what the consumption pattern would be for each category of
organization. Along with the organization information it is also
essential to capture people involved in the organization as well
as their roles within the organization. Information about people
and their respective roles are relevant since they also help in
understanding the consumption pattern, as also their response
to request for curtailing power consumption. For instance, the
holidays for an organization or its departments may depend
on their type, while the response of its members to demand
reduction may depend on who in the organization sends such
a request (facility manager, head of organization, immediate
supervisor, etc.). These relevant concepts are included in the
DBPedia Ontology [2] and we have reused this ontology in our
information model to capture the corresponding information.

Infrastructure Ontology. The Smart Grid information
model also captures environment concepts including trans-
portation networks, buildings and so on, besides the Power
Grid infrastructure. These concepts will improve demand
response applications by bringing in context about the type
of infrastructure which consumes electricity. For instance,
an office building that has 20 floors would consume more
electricity than an office building with 5 floors, and likewise
the traffic in freeways will help evaluate the shift in demand.
The DBPedia ontology integrated in our model covers a broad
range of infrastructure specific concepts at the same time
provides specialization of various infrastructures like Office
Buildings, Hospitals etc.



Weather Ontology. Weather information is one of the
crucial part of our Information model which will help in
understanding the electricity consumption pattern in a partic-
ular geography. We integrated the NNEW Weather Ontology
[8] which uses SWEET 2.0 [12], JMBL [7], and WordNet
[14] Ontologies in a coherent manner, to provide a rich
set of vocabularies to define various weather phenomenon.
The SWEET Ontology captures concepts pertaining to earth
sciences like Physical Phenomenon, Space, Human Activities
etc., where as WordNet provides large set of domain indepen-
dent lexical database. NNEW Ontology makes an attempt to
reuse the concepts mentioned in other ontologies and carefully
extend those concepts which are essential to describe weather
phenomenon. The NNEW covers various low level domain
specific concepts like ThunderStorm, Hurricane, Precipitation
as well as high level concepts which are not domain specific
like Phenomenon. While not all concepts from the domain
are required by the Smart Grid applications, we do not
modify these ontologies to allow us to use and update them
consistently. However, only the relevant parts of the ontology
needs to be populated with instances and used in queries and
inferencing.

Spatial Ontology. Power consumption is linked to specific
equipment or infrastructure at a spatial location drawing power
from feeders supplying at that location. But the usage is
also influenced by people whose locations change or external
influences like weather that have regional impact. The fact
that a building is part of a city’s downtown gives an intuition
that the building will experience decrease in demand during
evening and during weekends. We also go beyond latitude and
longitude; address or zip codes are available some times. We
may also have point co-ordinates or regions, these needs to be
captured in the ontology so that we can perform inferencing
and geo-spatial queries at a later point in time. For example,
mobile phones may report the location of a person but also
add an error boundary that places them within a broader circle.
Just like organizational and infrastructure concepts the spatial
concepts are also covered in the DBPedia Ontology, and the
fact that some of the basic relationships amongst them are
already established makes it a much better choice compared to
other isolated ontologies. Figure 3 shows a small snapshot of
the DBPedia Ontology. The concepts are shown on the left side
while the relationships between different concepts are shown
using arrows between concepts. For instance Person and means
of Transportation share a relationship to show how people use
different means of transportation to commute. It can also be
seen that the ontology relates different infrastructures that are
available to how people make use of them.

Temporal Ontology. Power consumption happens over
time, and demand response applications specifically attempt
to learn from past consumption patterns to predict and control
future consumption. Scheduling information of infrastructure,
electrical equipments as well as of individual people are
relevant in understanding how much the electricity demand
is going to be. For example, the fact that an air conditioner
is scheduled to run everyday for a certain period of time at a

Fig. 3. Infrastructure Ontology

predefined temperature gives a sense how much consumption
is going to be for the scheduled period. The W3C calendar
Ontology [13] provides the set of vocabularies to capture
scheduling and calendering related information. The Ontology
is an attempt to integrate ICalendar [5], a widely used format
for sending meeting requests, data with other Semantic Web
data.

C. Relating Concepts from Different Domains

Since the component ontologies pertain to domain specific
concepts it is necessary to integrate all these into one single
Information model, the Smart Grid Information Model. A
simple integration of the concepts from various domains will
not suffice. It requires establishing concise and meaningful re-
lationships between domains so that we can perform complex
query and inferencing. While a structural schema can help us
perform queries (even complex ones), semantic inferencing
is possible only if adequate relationships across domains
exist. i.e. we perform knowledge capture, not just information
capture. The inferences will help figure out patterns which are
less intuitive and also help in improving the performance of
the entire Architecture.

Figure 4 shows some of the inter domain relationships we
have established as well as how the key concepts in one do-
main is related to key concepts in other domain. A place which
is part of Spatial Ontology will experience certain weather
conditions which is part of Weather ontology and hence we
have established a relationship between Place and Weather
Phenomenon. This relationship would help to query informa-
tion about Infrastructure in various places that are experiencing
certain weather conditions. Similarly Infrastructure at various
places will have many Electrical Equipments installed. It
is essential to establish relationship between these concepts
even though they are part of two separate domains. These
relationships help in understanding the consumption pattern
of the particular Infrastructure as well as in understanding
the consumption at a higher granularity like the consumption
of an area since Infrastructure is related to Places as well.



Similarly, the scheduling information as mentioned before
could be related to people, infrastructure or equipments. All
these concepts are part of different component ontologies, but
we have established relationships corresponding to a person’s
schedule, a venue’s schedule information or an equipment’s
operating schedule to make sure that we capture the correct
relationship as well as provide a platform to make meaningful
inferencing.

Apart from the relationships we have identified, deep linking
between concepts from different domain can also occur. These
linking will be performed as we attempt to capture much more
knowledge about different domains. Although we do not have
any relationships of this category, we would be able to do this
selectively as the need for them arises over time.

Fig. 4. Integrated Ontology

V. CASE STUDY - SEMANTIC COMPLEX EVENT
PROCESSING FOR DYNAMIC DR

In this section we show how the semantic model can be
easily extended and combined with complex event processing
to develop dynamic DR algorithms.

Complex event processing deals with detecting event pat-
terns from an event cloud. Continuous data from a wide
variety of data sources within Smart Grid can be abstracted as
events. These may be from sensors and appliances (Space-
SetpointChange event), smart meters (MeterReport event),
weather phenomena (WeatherForecast event) or consumer
activity (ClassSchedule event). Meaningful combinations of
events are formulated as pattern queries over event streams to
predict power demand and identify curtailment opportunities
in realtime.

A. Semantic Event Model

The state-of-the-art CEP systems process events as rela-
tional data tuples characterized by a time point or a time
interval, i.e.,

event e ::=< attributes; timestamp(s) >

Using the above event model, event patterns are normally
defined as a group of events with constraints on attributes
presented in the data tuples. Event patterns are hence only
matched by evaluating syntactically identical attribute values.
Defining DR event patterns over plain data tuples can be
very tedious and time consuming. For example, if interested
in aggregating power consumption from all classrooms on
campus, the pattern designer needs to know the details of
meters and submeters, their locations, data structures and
define patterns using data level pecifications.

We extend the semantic Smart Grid information model
to capture Smart Grid events and their relationships with
domain concepts and entities, e.g., physical infrastructures and
equipments. The semantic Smart Grid event model and domain
models prepare the ground for high level pattern specification
for dynamic DR.

Fig. 5. Semantic Smart Grid Event Model

As shown in Figure 5, we model Smart Grid events using
Semantic Web ontology linked with domain concepts and
entities captured in the integrated Smart Grid information
model. We organize the ontologies in a modular architecture
for easier extension. The event ontology captures concepts and
relationships between events, such as the time the event occurs
and which domain entities it happens to. The notion of an
event is classified into domain specific classes corresponding
to different types, like SpaceSetpointChange, MeterReport and
so on. The Smart Grid information ontology stack contains the
subjective domain ontologies capturing electrical equipments,
infrastructure, organization, weather, spatial and time concepts.
Relations between concepts in the event ontology and Smart
Grid information ontologies are modeled using properties such
as eventHasSource and eventHasLocation, whose domain is an
event and value is a domain entity. For example, a meterReport
that was generated from a meter is a concept defined in the
electrical equipment ontology.

B. Semantic Event Patterns for Dynamic DR

Semantic pattern queries can be defined over the event
ontologies for the use of predicting demand and identifying
curtailment opportunities in realtime. The benefits of a seman-
tically enhanced event model for complex event processing
include,



• Facilitating high level knowledge representation. DR
event patterns are defined over an abstract information
model instead of raw data streams.

• Improving expressiveness of pattern queries. Not just lim-
ited concepts in power grid standards but concepts across
multiple domains including physical spaces, weather fore-
cast and campus event schedules can be easily integrated
and used for specifying DR patterns.

Complex event queries over semantic events can be
expressed using SPARQL triple patterns combined with
continuous CEP patterns. Event data are expected to be
represented in RDF, i.e., as RDF triples, additionally
accompanied with timestamps. The overall structure of a
semantic event pattern is:

[PREFIX <namespace>]
[Target event streams]
[CEP constraints]
[Semantic constraints]

In the following, we explain the various constructs of
the semantic event pattern through examples and show its
abstraction and expressiveness in modeling dynamic DR
applications.

Example 1. Opportunistic Curtailment. Consider two event
data streams, SpaceSetpointStream as setpoint temperature
from thermostats and SpaceTempStream as space temperature
measurements from ambient temperature sensors. This pattern
detects in a Lobby, the temperature measurement is 5’F
higher than the setpoint in 15-minutes time window. The
situation specified by this pattern indicates there is power
wastage if the HVAC unit is on, which can be curtailed upon
detection. The curtailment strategy can be expressed as an
intuitive query over the event streams as below,

PREFIX bd:<http://cei.usc.edu/Building.owl#>
PREFIX evt:<http://cei.usc.edu/Event.owl#>
PREFIX rdf:<http://www.w3.org/1999/02/22-
rdf-syntax-ns#>

FROM SpaceSetpointStream, SpaceTempStream
SEQUENCE {

(?stsEvent, ?stmEvent)
(?stmEvent.reading -

?stsEvent.setpoint>5)
TIME_WINDOW(15min)

}
SPARQL {

(?stsEvent hasSource ?src) .
(?stmEvent hasSource ?src) .
(?src hasLocation ?loc) .
(?loc rdf:type bd:Lobby)

}

Enhanced with semantic information, the CEP framework
allows users to specify domain constraints over abstract
models. As shown in the SPARQL clause, the semantic
concept Lobby was captured in Infrastructure ontology.
Events sent from sensors located in a room annotated
with type Lobby or its subclass type will be filtered and
evaluated against the CEP temporal constraints specified in
the SEQUENCE clause.

Example 2. Realtime Prediction. Consider three event
streams, AirflowStream as airflow rate measurements from
HVAC units, WeatherForecastStream as weather forecast from
an online weather service and ClassScheduleStream from the
campus class schedules. This pattern detects in a Classroom
which has a class scheduled in one hour, the airflow rate is
lower than 100 cfm while the outside air temperature reaches
the Heatwave temperature limit. This pattern indicates the
power demand from the classroom will reach its peak in 1
hour. We have the following pattern,

PREFIX bd:<http://cei.usc.edu/Building.owl#>
PREFIX wth:<http://cei.usc.edu/Weather.owl#>
PREFIX evt:<http://cei.usc.edu/Event.owl#>
PREFIX rdf:<http://www.w3.org/1999/02/22-
rdf-syntax-ns#>

FROM AirflowStream, WeatherForecastStream,
ClassScheduleStream

AND {
(?aflEvent, ?wthEvent, ?clsEvent)
(?aflEvent.flowRate<100)
(?clsEvent.nextSchedule<1)

}
SPARQL {

(?aflEvent hasSource ?src) .
(?wthEvent hasSource ?src) .
(?clsEvent hasSource ?src) .
(?src hasLocation ?loc) .
(?loc rdf:type bd:Classroom)
FILTER(?wthEvent.airTemp >

wth:HeatwaveTemp)
}

Semantic CEP system can be easily extended to correlate
events from multiple domains such as weather and class
schedules captured in the Smart Grid ontology to detect DR
situations. The FILTER construct in the above SPARQL sub-
pattern evaluates the outside air temperature against a domain
concept HeatwaveTemp captured in the weather ontology.
Thus, we see how the integrated Smart Grid ontology that
combines multiple domain concepts helps us build a novel
semantic CEP application that detects patterns for DR opti-
mization. The model allows us to use a higher level language
abstraction, operate across domain concepts and provides easy
extensibility.



VI. RELATED WORK

There have been many efforts for Smart Grid information
integration using a one-to-one architecture, especially for
consumer facing interface applications. These interfaces to
energy data provides histogram of energy usage or equipment
operations over time. Examples include Google’s PowerMeter
[3] application and Honeywell’s Enterprise Buildings Integra-
tor (EBI) [4]. While this approach is common, they do not
facilitate extension to integrate external information sources
and applications to cooperate in a plug-and-play manner.

The existing Smart Grid standards designed by different
organizations including IEC and NIST for power grid assets
including generation systems, delivery networks and electri-
cal appliances have influenced our selection of the domain
ontologies. These standards are specified in structural formats
such as XML. In particular, IEC has been working on creating
a Common Information Model (CIM) to resolve data incon-
sistency in the power industry. CIM series standards define
data exchange specifications for power grid components so that
the interoperability between various platforms and applications
can be achieved. However, information that was proven to be
crucial to Smart Grid applications also include those from
domains such as organization, weather and physical spaces.
A framework that enable seamless integration of concepts and
knowledge from other domains is required.

Semantic Smart Grid information modeling discussed in
this paper enhances standards based information integration.
Semantic modeling is an active research area that has been
studied in many domains including Smart Oilfield [30],
eHealthCare [17], [25], biology [18], [24] and transportation
[21], [22]. Different from existing Smart Grid standards, the
semantic Smart Grid information model allows us to describe
data semantics as well as represent domain knowledge using
a description language and automate data and knowledge
transforms based on reasoning. This enables smart grid par-
ticipants to focus on making innovative use of information
for application design, shielding them from low level data
specifications and integration.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present our work on a semantic Smart Grid
information model. The semantic model is extensible to meet
the growth of the Smart Grid information diversity with the
provision to easily integrate new information sources and do-
main concepts. We also introduce use cases of the information
model in a dynamic DR context. We show the semantic model
allows information integration across multiple domains, and
facilitates knowledge representation in developing dynamic
DR algorithms. Future work includes transforming additional
Smart Grid standards to Semantic Web ontology representa-
tions. We are also on the progress of developing a Semantic
Complex Event Processing (SCEP) engine [23], used for
dynamic DR. The SCEP system allows domain experts specify
realtime consumption prediction and opportunistic curtailment
strategies as semantic level queries and evaluates queries over
continuous Smart Grid data streams.
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