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Abstract—The rising global demand for energy is best
addressed by adopting and promoting sustainable methods
of power consumption. We employ an informatics approach
towards forecasting the energy consumption patterns in a
university campus micro-grid which can be used for energy use
planning and conservation. We use novel indirect indicators
of energy that are commonly available to train regression
tree models that can predict campus and building energy use
for coarse (daily) and fine (15-min) time intervals, utilizing 3
years of sensor data collected at 15min intervals from 170
smart power meters. We analyze the impact of individual
features used in the models to identify the ones best suited for
the application. Our models show a high degree of accuracy
with CV-RMSE errors ranging from 7.45% to 19.32%, and a
reduction in error from baseline models by up to 53%.

Keywords-energy forecast models; energy informatics

I. INTRODUCTION

One of the critical challenges confronting modern soci-
eties is the need to attain energy sustainability. Buildings
account for about 40% of the total urban energy consumption
worldwide [6] and electricity forms 38% of total energy
usage in the US [2]. Adoption of energy- efficient measures
in buildings and institutional campuses can significantly
contribute to energy conservation. The rollout of smart grids
with the capability for real-time electricity usage sensing
and bi-directional communication with power consumers
provides electric utilities opportunities to better manage
available capacity and curtail its usage during peak demand
periods using pricing incentives. Reliable building energy
forecast models can help predict energy use over short and
long time durations, and inform residents and facility man-
agers in planning electricity usage and facility improvements
with an eye on reducing their energy footprint and power
usage costs.

Energy analysis modeling of buildings is either based
on steady state or dynamic conditions that physically char-
acterize a building, or are based on measured building
performance data. Smart meters have made available a large
corpus of electricity consumption data at fine granularities
[1]. Statistical analysis and machine learning methods can
be used to mine sensor data and extract forecast models.

In this paper, we analyze the use of machine learnt
models for energy use forecast at the University of Southern
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California (USC) in Los Angeles, which is a mini-city in
the diversity of its buildings and number of occupants, and
is a micro-grid test-bed for the DoE sponsored Los Angeles
Smart Grid Demonstration Project [11]. These model predic-
tions are meant both for fine and coarse granularities of time
and space: at the building and campus levels, and for daily
and 15-min time periods, to assist with different planning
goals and provide insight into daily load requirements, peak
demand periods for possible curtailment, and energy con-
sumption drivers, such as seasonal variation, usage patterns,
building types and functions.

Our work is novel in utilizing both direct and indirect
indicators of energy use that are commonly available, such as
energy usage information from smart meters, attributes from
the universitys academic calendar that indicate occupancy
patterns, static knowledge of buildings such as surface
area, and historical weather information as attributes in our
prediction models. Our study uses real world datasets from
an operational campus to analyze the impact of different
features in improving the model accuracy, and evaluates the
efficacy of using global and bespoke forecast models for
different building categories.

We make the following specific contributions.

1) We train regression tree models using electricity us-
age data and other features collected between 2008
and 2009 for 170 buildings on USC campus in Los
Angeles to predict energy usage for the campus. The
campus-scale models are tested for daily and 15-min
energy use prediction for the year 2010, and compared
against baseline predictions made using energy use
averaging techniques. The results are analyzed and
improvement from using novel indirect energy use
indicators is evaluated.

2) We also develop building-scale models for predicting
daily energy use for a representative group of 23 indi-
vidual buildings from three different usage categories.
Energy usage data and other features of these buildings
for the years 2008 - 2009 are used to train the model
and evaluate it by predicting the daily energy use
for these buildings for the year 2010. In addition,
we compare the effectiveness of global building-scale
models and local models for individual building types.



II. RELATED WORK
A. Modeling Methods

Several researchers have studied the problem of the mod-
eling and prediction of building energy consumption. An en-
ergy prediction model is based on several parameters that are
estimated using existing data that typically include energy
consumption and temperature measurements recorded in the
past. Prediction models proposed in literature belong to
three categories: regression models, artificial neural network
models and time-series models [14]. Each of these modeling
approaches has its advantages and disadvantages, and the
choice of a model is often application dependent.

Regression models have been found suitable for predicting
average consumption over longer periods such as days or
months [14]. These models can be developed quickly as
they require calculation of only a few parameters. Models
based on Artificial Neural Networks (ANN) have also been
effective for building energy predictions as demonstrated
by Olofsson and Andersson [9] to predict building energy
use for both short and long term periods and for hourly
energy use. Dong, Cao, and Lee [5] have used Support
Vector Machines for building load forecasting. Yu et. al.
[14] have used decision trees to model building energy use
intensity (EUI) levels. In our work, we have used regression
tree models that are a type of decision tree model.

B. Data used in Models

Besides training models using static data, some re-
searchers have also focused on models that are capable of
adapting to changing patterns of incoming data streams for
real-time, on-line energy prediction [13].

Several experiments and analyses are based on synthetic
data using building energy simulation programs, such as
DeST and EnergyPlus ' . In some studies, utility bills
have been used to establish a baseline model of energy
consumption [5]. In our experiments, we use real world
energy use data and other publicly available attributes that
are indirect indicators of energy use for both training and
evaluation.

Researchers have tried different categories of attributes to
characterize training data for building energy use models.
These features typically belong to the following categories:

1) Weather Data: These include temperature and humid-
ity measurements, heating degree days (HDD), cool-
ing degree days (CDD), and temperature difference
between indoors and outdoors.

2) Building Data: Studies have included a variety of
physical building data, including wall insulation thick-
ness, heat transfer coefficient of external walls and
roof, orientation of windows, window to wall ratio

Uhttp://apps1.eere.energy.gov/buildings/tools_directory/doe_sponsored.
cfm

in each orientation, building shade coefficient, and
shading coefficient of windows, solar absorption.

3) Occupancy Data: With improvement in the quality
of thermal properties of buildings due to energy
regulations, the energy use contributed by building
characteristics is decreasing and making the role of
the occupants more significant [9]. Occupant behavior
can cause variation in energy consumption in different
building units. However, this data is not easily avail-
able as not all buildings are equipped with sensors to
monitor occupant’s energy usage activity. It is also
difficult to predict occupant behavior at the design
stage of a building. Yalcintas [12] and Agarwal et.
al. [4] have incorporated occupancy data using sensor
data and heuristics, such as open/closed state of the
doors.

In our experiments, we make use of several additional
indirect indicators of energy use attributes, such as the aca-
demic schedule, that reduces our dependence on specialized
data collection and increase the relevance of our models.
These are described in more detail in Section IV.

Our work is unique in the following aspects:

1) We build a single, unified building energy use predic-
tion model that is applicable to diverse buildings on an
academic campus, both current and planned. Other re-
search work has focused exclusively on homogeneous
buildings, such as commercial or residential. Such a
uniform model allows us to eventually extrapolate to
a city scale where building diversity is common.

2) We take an information-driven approach that leverages
diverse sources and indirect indicators that comple-
ment domain-specific attributes. Using data that is of-
ten available publicly makes our models more globally
and easily applicable.

3) We identify attributes that can be applied during the
design as well as the operation phase of the buildings,
allowing modeling of the impact of current and future
buildings.

III. REGRESSION TREE LEARNING

The regression tree method generates a decision tree with
leaves of the tree ending in a regression function. In a
decision tree, a path from the root to a leaf node describes
the sequence of tests that are performed in arriving at
the decision present in the leaf node. Decision trees are
generated in a top-down fashion by choosing the most likely
attribute for decision-making at each level. Each attribute
that is chosen partitions the remaining training data into
subsets depending on the value of the decision made. This
method of recursive partitioning leads to smaller regions
where simple models can be applied.

One of the advantages of the decision tree based methods
is their flowchart style tree structure that is easy to interpret
from a domain perspective (as opposed to, say, ANN).



Another advantage is that once the model is trained, making
predictions is fast, as it just requires looking up the values in
the tree. For many application areas, such as real-time energy
predictions, a fast operation is of significance since the mod-
els operate on streaming sensor data for online predictions
for operational use. Regression trees have been successfully
applied in several domains, including atmospheric science
[8], public health [7] and environment [10], etc.

IV. CAMPUS AND BUILDING-SCALE ENERGY USE
MODELS

A. CampusEnergy Use Dataset

We use the energy-use data collected every 15 minute by
the Facilities Management Services (FMS) from the smart
meters installed in 170 buildings at USC campus for 3
years”. For daily energy consumption, we aggregate the 15-
min data for each day for each building. For campus-level
energy consumption, we aggregate the data for individual
buildings at 15-min and day-level granularities. As with any
other sensor network data stream, there are missing values
in the dataset. We adopt interpolation and extrapolation
methods to fill in the missing values. We observe <5% of
data points requiring such corrections.

For the building-scale energy use models, we identify and
select 23 representative buildings on the campus. Energy
use of these buildings from 2001-2009 was studied as part
of the USC’s Greenhouse Gas Emissions (GHG) report
[3]. The report categorizes buildings into three groups:
Academic, Residential, and Other. The buildings we chose
for our study exhibit different characteristics: 9 buildings
have predominantly classrooms and offices, 6 are student
residential buildings and dormitories, and 8 buildings of the
type Other include Auditorium, Library, Parking Structures,
and Gymnasium buildings.

B. Selection of Indirect Energy Use Indicators

Several aspects affect the energy consumption patterns in
buildings. The other datasets that we use in our models are:

1) Weather conditions: We used maximum and average
temperature data as well as humidity data to model
weather conditions. We obtain weather data from
Weather Underground website® using a web form that
returns a CSV file for the given date ranges. The
weather and humidity data is available at one-hour
granularity. For our fine-grained models, we interpo-
lated the values to 15-min durations.

2) Building-specific parameters: We use Gross Area, Net
Area in use, and Year of construction to characterize
each building. This data is publicly available from the
USC website*. In addition, we also use a categorical

2The data is available for use in academic projects on request from the
university’s Sustainability Office.

3http://www.wunderground.com

“http://fmsmaps.usc.edu/mapguide6/upcmaps/Web/cfm/bl_list_no.cfm

attribute: Type of Building, which is obtained from the
USC’s GHG report. The year of construction for the
buildings used in our experiments varies from 1919 to
2006.

3) Occupancy Patterns: To incorporate occupancy related
information, we used three categorical attributes: day
of the week, semester, and holiday, which are indirect
indicators of energy use in a campus environment
and publicly available from the universitys academic
calendar for the past three years. To highlight the
relevance of this information, Figure 1 shows the fall
in demand for every weekend across the whole year
while Figure 7 shows the fall in demand during the
summer months for a residential building when only a
few students remain on campus. It is also evident from
the plots that energy demand falls during the holidays,
such as the Spring Break in March and Thanksgiving
in November.

C. Model Training and Testing Framework

We build this model using MATLABs Statistics toolbox
package. We process and load the input training and test data
values as comma separated value (csv) files and the output
prediction results are also saved to csv files. The scripts take
between a few seconds to less than 2 minutes to complete the
training and testing. We use MATLABs classregtree function
that builds regression trees and provides numerical output
as required for our experiments. The classregtree function
creates a decision tree based on the training dataset and
predicts response values using regression. The tree is a
binary tree and each decision node evaluates an attribute
of the data. The scripts are run on a Macbook Pro laptop
with a 2.03GHz processor and 4GB RAM, running OS X.
We use MATLAB version R2010a.

Generally, the performance of regression methods is eval-
uated using the coefficient of variation of the root mean
squared error (CV-RMSE) and mean bias error (MBE) [4,
11]. The CV-RMSE is similar to an R? error and gives a
measure of the degree of scatter. It is given by:

Z" (0i—pi)?
=1 n
0

CV — RMSE =

where, o; is the i*" observed value, p; is the i*" predicted
value, n is the number of values being predicted, and o is
the mean of the n observed values.

The MBE gives a measure of the bias in the model. A
positive MBE indicates a model that tends to over-predict
while a negative MBE indicates under-prediction. We use
CV-RMSE as a measure of the precision of our model and
also study the role of bias in our models.



Observed Daily Energy Use for 2008 and 2009 used for Training the Model
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Figure 1. Campus daily energy use observed for 2008 and 2009. Used as
training data for model.
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Figure 2. Campus daily energy use for 2010. Both observed and predicted
values are shown. CV-RMSE =7.45%, r = 0.816, p < 0.001.

V. EXPERIMENTS

A. Campus-Scale Daily Energy Use Model

The campus-scale daily energy use model is used to
predict the energy consumed (KWh) each day for the entire
campus. This is useful for long term planning of energy
use (e.g. pricing levels to sign up with the electric utility,
purchasing energy storage, etc.) and for day ahead planning
(e.g. provisioning backup generators). The model uses Day
of week, Semester, Maximum Temperature, and Holiday as
features of a given day for the prediction. The model is
trained using these features and the observed daily energy
usage for the years 2008 and 2009, and it is used to predict
the daily energy usage for 2010. Fig. 1 plots the daily energy
usage for 2008 and 2009 used for training, and Fig. 2 shows
the observed and predicted energy use for 2010 (till Nov,
2010 for which data was available).

As we can see from the training data, a cyclic high and
low energy use trend is observed during the weekdays (Mon-
Fri) and the weekends (Sat-Sun), and similarly during the
semester (Jan-May, Aug-Dec) and during the summer and
winter breaks. However, there is significant variability in the
energy used even for similar weeks of the year in 2008 and
2009. For e.g., there is higher energy consumption during
the month of Jan, 2009 compared to Jan, 2008, and lower
during the month of Jun-2009 compared to Jun-2008.

The prediction from the regression tree model we train
closely matches with the observed energy usage. The X-Y
scatter plot between observed and predicted values shows

Table I
PREDICTION ERRORS FOR BASELINES AND REGRESSION
TREE MODELS FOR DAILY CAMPUS ENERGY USE FORECAST

Model Used CV-RMSE
Annual Mean 11.32%
Day of Week Mean 14.39%
Day of Year Mean 12.62%
Regression Tree 7.45%

a Pearsons correlation coefficient r = 0.816, a confidence
interval greater than 99.99% for a two-tailed test (i.e. p <
0.001), and a slope of 1.051 when the intercept is set to
(0,0). The CV-RMSE for the prediction is 7.45%.

1) Comparison with Baseline Models: We compare our
regression tree model against three baseline models that
are commonly used and are constructed using the historical
energy use values: annual mean, day of week mean (DoW)
and day of year (DoY) mean. Annual mean is a single
number that is the average of the daily energy use on all
days in 2008 and 2009. This value is: 11.32%. DoW mean
averages the energy use for each day of the week (Sun, Mon,
..., Sat) across all two years, and uses the resulting 7 values
as the predictors. DoY mean averages each day in the year
(1...365) across the two years and uses these 365 values as
the predictor. Table I shows the CV-RMSE of the predictions
made by the baseline models and our regression tree model.

As we can see, the regression tree model performs signif-
icantly better than the other models and reduces the CV-
RMSE of the next best model (Annual mean) by 34%.
The reason the other model make reasonable predictions
can also be explained. DoY mean captures the energy use
variability due to the seasonal temperature, and may thus be
able to partially capture the “Temperature” feature used in
our regression tree model. It can also partially capture the
”Semester” variation and to a limited extent, the “Holiday”
feature, when they occur on the dame day each year. The
DoY mean captures the “Day of Week” feature we use and
can account for the class schedules since the class pattern
within a week repeats across all weeks of the semester.
But the schedule change across semesters is not capture.
By explicitly adding these features to our regression tree
model, we are able to better predict the daily energy use
that is affected by them.

2) Discussion of Outliers: There are several outliers
in the prediction that can be interpreted using available
knowledge of the domain. Some of the outliers in prediction
can be explained in terms of certain events/dates of the year,
which mainly deal with holidays and transitions between
semesters. For instance, if we look at the top two absolute
prediction errors at the campus level, they occurred on
30 May, 2010 and 5 Sept, 2010, which precede Memorial
Day and Labor Day holidays, respectively. Even though the
holiday information is captured as a feature of our model, the
prediction error is high. This indicates additional handling



Table II
PREDICTION ERRORS FOR BASELINES AND REGRESSION
TREE MODELS FOR DAILY CAMPUS ENERGY USE FORECAST

Weekday  Semester  Temperature  Holiday = CV-RMSE
¢ ¢ ¢ ¢ 7.40%
¢ ¢ ¢ 7.60%
¢ ¢ 7.95%
¢ ¢ ¢ 8.05%
¢ ¢ ¢ 8.37%
¢ ¢ 8.54%
¢ 8.86%

¢ 10.48%
¢ 11.05%
[ 11.54%

that may be necessary for holidays and transition points
within features.

3) Relative Impact of Features: One novel aspect of our
modeling approach is to use indirect indicators of energy
use that are unique to a campus environment to help make
better predictions. We evaluate the impact that each of these
features has on the accuracy of model prediction by training
and testing the regression tree model for all combinations of
the features and comparing their CV-RMSE values. Table 11
highlights some of these 15 combinations that were trained
and tested, sorted in the order of lowest to highest errors.
Rows shaded gray indicate the use of just a single feature
by the model. The row that is underlined indicates the use
of all features in the model.

We see that the use of the day of the week feature provides
consistently lower error values by the models, making it
the most important feature that affects the daily energy use
prediction. In fact, using weekday just by itself in the model
provides an error of 8.86%, which is only greater by 1.46%
than a prediction model that uses all four features with an
error of 7.40%. This is understandable given the campus
environment where weekends and weekdays have sharply
different energy use profiles. The next important feature that
lowers the error is temperature a hot day ends up causing
higher energy use due to increased effort by A/C units in
cooling the campus buildings.

While temperature has been conventionally used in energy
use forecast models, we find that the use of additional
indirect indicators by our model reduces the error when
just using temperature from 10.48% to 7.40% a 29%
improvement in error. However, temperature is still a useful
feature for the daily energy use predictions since it improves
a model that does not use temperate, but all other features,
from an error of 8.37% to 7.40%. We see that the use of
semester and holiday attributes also help improve a model.

4) Possible Corrections for Over Estimation: Of the 325
days we predict for the year 2010 using our machine learnt
regression tree model, we observe that the predictions are
predominantly overestimating the daily energy use for 279
days and underestimating it for 46 days. This indicates that

the regression tree model has potential of improvement. As
a naive attempt at improving the model by reducing the
overestimation skew, we apply a negative correction factor
to the predicted results as a post processing step of the model
prediction. We use two methods: one reduces the predicted
energy use value by a constant value of 24,000KWh that
was chosen by trial and error, while the other uses a relative
correction that reduces each predicted value by 7.40% that
corresponds to the CV-RMSE that is seen. (For context, the
daily energy use average that is observed is 460,154KWh
over the 3 years.)

We see that the constant correction of -24,000KWh re-
duces the CV-RMSE to 5.10%, with over and underesti-
mations becoming 152 and 166, while using a fractional
correction of -7.40% gives a CV-RMSE of 5.63%, with over
and underestimations becoming 94 and 231. While these
were ad-hoc methods to improve the prediction, it suggests
that the machine learnt regression tree model that we use can
be further improved by automatically determining constant
or relative corrections to account for over or underestimation
skews.

B. Campus-Scale 15-min Energy Use Model

The campus-scale 15-min energy use model is used to
predict the energy consumed during short intervals of time
during a day. Such predictions are useful for programming
the duty cycles of A/C and ventilator units in a building man-
agement system or responding to load curtailment signals
sent to the campus by a power utility. The model uses Day
of Week, Semester, Maximum Temperature, and Holiday
features as in the daily energy use model discussed before,
and in addition adds Humidity for the campus as a feature.
The model is trained on these features using 15-min interval
data from the years 2008 and 2009, and used to predict
the 15-min energy use for the year 2010. Figure 3 plots
the observed and predicted energy usage at 15-min intervals
for the first week 2010, with 96 values per day. We omit
showing the full years prediction for brevity. Instead, the X-
Y scatter plot of all observed and predicted 15-min energy
use values for the year 2010 (till Nov, 2010 for which data
was available) are plotted in Figure 4.

The observed energy use in Figure 3 shows the energy use
cycling between low, high and low from midnight to noon
and back to midnight. We also see that the holiday (1 Jan,
2010) and weekend (2-3 Jan, 2010) consumer lower energy
than the weekdays (4-7 Jan, 2010). There are also sharp
spikes in energy use just before midnight on the weekdays
that indicate pre-cooling of chilled storage units to make use
of lower pricing at nights.

The 15-min energy use predictions made by our regression
tree model tracks the observed values. The Pearsons corre-
lation coefficient between observed and predicted values is
r = 0.637, with a confidence interval greater than 99.99%
for a two-tailed test (i.e. p < 0.001), and a slope of 1.069
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Figure 3.  Campus 15-min energy use for the first week of 2010. Both
observed and predicted values are shown. CV-RMSE =13.70%, r = 0.637,

p < 0.001.
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Figure 4. X-Y scatter plot of observed and predicted 15-min energy use
values for Jan-Nov, 2010. 31,200 points are plotted, with a trend line set
to pass at (0,0).

when the intercept is set to (0,0). The CV-RMSE for the
prediction is 13.70%.

1) Comparison with Baseline: The regression tree model
that we train is compared with three baseline models that just
use historical energy usage information to make predictions.
The annual 15-min mean model uses the average energy
used over all 15-min periods for 2008 and 2009 as a single
value prediction. The Time of Week (ToW) model uses the
average energy used during each 15-min time period in a
week as a predictor (7 days * 24 hours * 4 periods). The
Time of Year (ToY) model uses the average time during
each distinct 15-min time period in the year, averaged over
two years (365 days * 24 hours * 4 periods) as a prediction
for the corresponding time periods in future years. Table III
shows the CV-RMSE of the predictions made by the baseline
models and our regression tree model.

The regression model we train performs relatively bet-
ter than the baseline models with an improvement in the
absolute errors of between 1.37% and 3.67%. The baseline
models also perform respectably. Intuitively, the ToW model
is able to account for the weekend/weekday feature used in
our regression tree model, as well as the variation in tem-
perature during the day. Similar days of the week and time
periods during these days will correspond to similar classes
being scheduled and rooms being occupied. Likewise, the

Table IIT
PREDICTION ERRORS FOR BASELINES AND REGRESSION
TREE MODELS FOR 15-MIN CAMPUS ENERGY USE

FORECAST
Model Used CV-RMSE
Annual 15-min Mean 17.37%
Time of Week Mean 16.00%
Time of Year Mean 15.07%
Regression Tree 13.70%

temperature variation during the day is also a function of the
time of the day. The ToY model can capture the seasonal
as well as daily temperature variations, as also the holidays
that occur on the same days across different years (e.g. July
4) and the semester. This logical overlap with most features
that is considered by our regression tree model causes the
ToY model to better the ToW and Annual mean models,
and fall close to the performance of our model. As we shall
see, the use of Humidity in our model actually reduces our
model prediction power: using attributes other than humidity
allows us to reduce the error to 13.02%, which is better than
the ToY model by 13.6

2) Discussion of Outliers: We plot the absolute error
percentage (i.e (observed - predicted)/ observed) for each
15-min energy use prediction by our model against the actual
observations for the year 2010 in Figure 5 using a “radar”
chart for compact representation. This shows the clustering
of errors and helps analyze unique causes of errors. As
can be seen, most of the errors fall within the 20% error
circle. There are a number of places where the error values
for concurrent time periods increase (or decrease) sharply.
These can be seen as streaks of dots moving away from the
center, like the spokes of a wheel. We can correlate these
with the actual and predicted values (e.g. in Figure 3) and
see that these are regions where our regression tree model
provides a single value for a period of time while the actual
energy use during that period is increasing (or decreasing).
This is illustrated for the time period around noon of 2 Jan,
2010 in Figure 3 where the prediction is flat at 4500KWh
while the actual observation is increasing from 2500KWh to
3900KWh and down again. This corresponds to the streak
at the 12’0 clock position in Figure 5 that reaches the 40%
error circle.

There are other outliers that are the result of the predic-
tions failing at crossover points in the parameter space.

3) Relative Impact of Features: The five features used
by the regression tree model for predicting 15-min energy
use contribute disproportionately to the prediction error of
the model. We analyze their relative impact by training and
testing the regression tree model using all combinations of
the five features, as before, using years 2008 and 2009 as
training data and year 2010 as test. Table IV shows some of
the key results from the 31 models that were built, sorted by
low to high CV-RMSE values. The rows that are shaded in
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Figure 5. Absolute error % of all the campus 15-min energy use predictions
for 2010 as compared to their observations. Circumference is the time axis
while the radius of the circles is the absolute error %. 31,000 points are
shown.

gray represent those using just a single feature while the row
with the error underlined is the model that uses all features.
Temperature is the most consequential feature and appears
consistently in the models with the least error. While the
temperature used in the campus daily energy use model was
the maximum daily temperature, the temperature used here
is the hourly maximum temperature. It is also, along with
humidity, the feature whose value changes the most within
a day as the others are constant for a given day. So it proves
effective in capturing the energy use variation within a day.

Weekday is the next best predictor for reasons similar to
the campus daily energy use model. In fact, just weekday
and temperature are able to provide a marginally better
prediction than all the features together. But this is due to
the fact that humidity has a negative influence on the model
prediction. This is unlike the campus-scale daily energy
use model where adding a feature improved the model
prediction. We see a CV-RMSE of 13.02% using features
other than humidity while it is 13.70% when using it. This
disproves our initial expectation that humidity will affect
campus energy use.

When compared to traditional energy use prediction mod-
els that reply exclusively on temperature for forecasting, our
use of the additional indirect indicators weekday, semester
and holiday helps reduce the error from 14.87% to 13.03%.

4) Possible Corrections for Over Estimation: We make
some simple attempts to examine if the regression tree
model can be improved to provide more accurate results.
Specifically, of the 31,200 15-min time periods we predict
the energy use for in 2010, we observe that the predictions
are predominantly overestimating for 24,667 periods and
underestimating for 6,531 periods. The observed values have
a mean of 4,535KWh for each 15-min period in 2010.
Subtracting a constant correction value of 360KWh from
all prediction results reduces the CV-RMSE from 13.70%
to 11.34%, provides a more even distribution of over and
underestimations of 15,300 and 15,897, and improves the

Table IV
PREDICTION ERRORS FOR BASELINES AND REGRESSION
TREE MODELS FOR 15-MIN CAMPUS ENERGY USE
FORECAST

Weekday  Semester Temperature = Humidity Holiday = CV-RMSE

¢ ¢ 13.02%

¢ 13.30%

13.39%

13.57%

13.70%

14.22%
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14.65%
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14.72%

¢ 14.87%

15.96%

16.59%

L 2R 4
L 4
L 4

L 2R 4

16.69%

¢ 17.30%

¢ 17.63%

correlation coefficient r from 0.637 to a more accurate
0.679 leaving the precision unchanged. While this is an
arbitrary correction value arrived at by trial and error, it
offers potential for improving the model we use.

C. Building-Scale Daily Energy Use Models

Building-scale daily energy use forecast models help
identify total power consumed by individual buildings on
campus. Such models can be used by facility managers to
plan building level operations such as pre-cooling of rooms
before working hours to minimize peak power usage, for
scheduling classes to ensure uniform energy use, and iden-
tify buildings that have low carbon footprint per occupant.

We train the regression tree model for building-scale
daily energy use prediction using the following features:
Weekday, Semester, Holiday, (Maximum) Temperature, Av-
erage temperature, Gross Building Area, Net Area in Use,
Year of Construction, and the Type of building. We use
data for 23 buildings on campus for 2008 and 2009 for
training and test it on data from 2010 (Jan-Nov). We build
a single (global) model for all these 23 buildings. The CV-
RMSE for the daily energy use predictions by our model
is shown in Table VI under Global Model, while the plot
of observations and predictions for 3 buildings, one each of
academic (OHE), residential (DMT) and other (PSB) type,
are shown in Figures 6 - 8.

1) Comparison with Baseline: We use three baseline
models for evaluating the prediction power of our regression
tree model. These are similar to the baseline models used
for the campus daily energy use, with the difference being
we use the means over each building rather than the entire
campus. For brevity, we examine results for three buildings.

Table V lists the CV-RMSE for the predictions using the
baseline and regression tree models for the three buildings.
The regression tree model outperforms the baseline models
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Figure 6. Daily energy use for the OHE academic building for Jan-Nov
2010. Both observed and global model predicted values are shown.
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Figure 7. Daily energy use for the DMT residential building for Jan-Nov
2010. Both observed and global model predicted values are shown.

for the residential building, OHE, recording an 8% or
better difference in absolute error compared to the next best
baseline model. The improvement is less marked for the
other building type, PSB, but still better at 19.32% as com-
pared to next best at 23.39%. Despite the building features
being intrinsic to the baseline model (since each model is
for a specific building), the use of the indirect indicators
of weekday, holiday, semester and temperatures help the
regression tree model outperform the baselines. The only
exception is the accuracy of prediction for the residential
building, DMT, where the day of the year performs better at
9.62% error than our global regression tree at 11.77% error.
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Figure 8. Daily energy use for the PSB other building for Jan-Nov 2010.
Both observed and global model predicted values are shown.

Table V
PREDICTION ERRORS FOR BASELINES AND REGRESSION
TREE MODELS FOR DAILY BUILDING ENERGY USE
FORECAST

OHE DMT PSB

Annual Mean 20.55 19.77 23.39
Day of Week 26.13  20.09 23.65
Day of Year 24.64 9.62 27. 48

Regression Tree (Global)  12.09  11. 77 19.32

This may be attributed to the fact that the baseline model is
specific to the DMT building while the regression tree model
cannot differentiate between residential buildings that may
vary in their energy use.

2) Discussion of Outliers: There are several outliers in
the prediction that can be explained based on additional
domain insight. For example, if we look at the absolute
prediction errors for the residential category, many of them
occur in the period 13-16 May, 2010 which marks the
transition between Spring and Summer semesters. Also, in
the academic category, among the top prediction errors is
again a period of transition between the Summer and Fall
semesters (17-18 Aug).

3) Comparison of global and local model for each build-
ing type: We build a single regression tree model (the
Global Model) that works for all 23 campus buildings to
perform daily energy use prediction for individual buildings.
However, recognizing that building of different types (i.e.
academic, residential and other) may have unique character-
istics, we also build one regression tree model (the Local
Model) for each building type for comparison. Note that
the global building model does include building type as a
feature. But the local model in a way forces the decision
tree to be partitioned at the root based on the building type.
Table VI lists the performance of the Local and the Global
Models.

We see that the global model performs better than the local
model in a majority of cases (14 of the 22 buildings). This
is particularly true for the academic and the other buildings
where the local model performs better for only one in three
cases. This indicates less homogeneity within the academic
and other building types to warrant promoting building type
to the root of the regression tree. This can be attested to
given the widely varying sizes of the academic buildings and
the different uses for the other building category, ranging
from a library to parking garages. Thus, a local model
may not necessarily be suitable based on the building type.
However, there may be other aspects of the buildings that
may motivate the need for local models for a specific class
of buildings for better performance.

VI. CONCLUSION

We describe energy forecast models for a campus micro-
grid based on machine learnt regression tree models. Besides



Table VI
COMPARISON OF PREDICTION ERRORS FOR GLOBAL AND
LOCAL BUILDING MODELS

Building Code Type CV-RMSE CV-RMSE
(Local Model)  (Global Model)

ASC Academic 11.65% 12.03%
EEB Academic 8.46% 9.19%
JKP Academic 13.63% 13.48%
LAW Academic 8.39% 8.20%
OHE Academic 12.63% 12.09%
RTH Academic 45.48% 5.33%
THH Academic 101.42% 22.28%
VKC Academic 25.33% 26.26%
WPH Academic 51.47% 30.50%
DMT Residential 11.07% 11.77%
DXM Residential 11.08% 11.75%
FLT Residential 28.44% 29.55%
IRC Residential 43.06% 38.59%
PTD Residential 548.44% 26.67%
TRO Residential 2.57e+4% 11.54%
ADM Other 44.28% 44.22%
DML Other 18.32% 20.43%
LRC Other 19.70% 20.09%
PRB Other 24.86% 9.38%
PSA Other 120.18% 11.68%
PSB Other 222.59% 19.32%
PSD Other 61.79% 3.64%
PSX Other 39.01% 5.31%

just energy use trends and common features used for forecast
such as temperature, we introduce indirect energy use indi-
cators such as the academic calendar and building attributes
to provide better predictions.

We observe that there is scope for improving the models
to provide more accurate and precise results. Our naive ap-
proaches for correcting overestimation of energy use values
show potential for advances. Exploratory work on using
ANN models also show promise, though their use will be
limited to better forecasting rather than trying to understand
the causes for energy use that a regression trees structure
would provide.

As smart meters and other ambient sensors are widely
deployed, mining the data collected by them for monitoring
and forecasting of the energy footprint will be important to
ensure energy conservation. Our regression tree prediction
models demonstrate their usefulness for building and campus
energy management to optimize the buildings daily opera-
tion, schedule its use for a semester, and effectively design
and implement university energy policies. These models can
also be applied to buildings in the design stage to perform
cost and energy use trade-offs between constructing new
buildings and retrofitting existing ones to make them energy-
efficient. The goal of this exercise is to eventually provide
machine learnt models that operate on a city scale and can
dynamically adapt to changing conditions.
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