
Adaptive Energy
Forecasting and
Information Diffusion for
Smart Power Grids

Contribution
Yogesh Simmhan, Viktor Prasanna
Department of Electrical Engineering, USC
Los Angeles, CA, USA

Vaibhav Agarwal, Saima Aman, Alok Kumbhare, Sreedhar Natarajan, Nikhil Rajguru,
Wei Yin, Qunzhi Zhou
Computer Science Department, USC
Los Angeles, CA, USA

Ian Robinson, Samuel Stevens
Green Technologies Program, USC
Los Angeles, CA, USA

Acknowledgement
This material is based upon work supported by the Department of Energy under Award
Number DE-OE0000192 and funding from the Los Angeles Department of Water and
Power.

Disclaimer
This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, the
Los Angeles Department of Water and Power, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or reflect
those of the United States Government or any agency thereof.

.

1

Adaptive Energy Forecasting and Information
Diffusion for Smart Power Grids

Yogesh Simmhan∗, Vaibhav Agarwal†, Saima Aman†, Alok Kumbhare†, Sreedhar
Natarajan†, Nikhil Rajguru†, Ian Robinson‡, Samuel Stevens‡, Wei Yin†, Qunzhi Zhou†

and Viktor Prasanna∗
∗Department of Electrical Engineering †Computer Science Department

‡Green Technologies Program
University of Southern California, Los Angeles CA 90089

Email: {simmhan, agarwalv, saman, kumbhare, sreedhan, nrajguru, imrobins, spsteven,
weiyin, qunzhizh, prasanna}@usc.edu

I. INTRODUCTION

Smart Power Grids exemplify an emerging class of Cyber Physical Applications that exhibit dynamic,
distributed and data intensive (D3) characteristics along with an always-on paradigm to support operational
needs. Smart Grids are an outcome of instrumentation, such as Phasor Measurement Units and Smart Power
Meters, that is being deployed across the transmission and distribution network of electric grids. These
sensors provide utilities with improved situation awareness on near-realtime electricity usage by individual
consumers, and the power quality and stability of the transmission network.

One of the characteristic applications of Smart Grids is demand response optimization (DR). The goal
of DR is to use the power consumption time series data to reliable forecast the future consumption profile
for individual consumers, and to use this information to detect potential demand-supply mismatch. Further,
such a detection should trigger load curtailment strategies that will use incentives communicated to the
consumer to shape, shift or shed load during the predicted period of duress to avoid brownouts.

As part of the Los Angeles Smart Grid Demonstration project, we are investigating scalable software
infrastructure to support DR applications in the largest public utility in the United States. The University
of Southern California (USC) serves as a microgrid testbed to deploy and test the DR software components
and algorithms, with the intent to scale these applications to a city of 1.4 million customers. Specifically,
we address (1) the adaptive scalability required by the information integration pipeline to continuously
ingest sensor data, and (2) the ensemble scaling required to train machine learned forecasting models on
accumulated sensor data. The former utilizes our Floe continuous dataflow engine to scale on a Eucalyptus
Private Cloud to dynamically meet application quality of service needs; the latter utilizes our OpenPlanet
Hadoop application for ensemble training in a cluster. The integrated information and training models are
accessed through a web portal for decision support to the USC microgrid operations and for information
diffusion in the USC community for energy awareness.

In the rest of this paper, we present details of the Smart Grid DR application and portal (Section II),
describe and analyze the novel features of the adaptive software architecture (Section III), and illustrate
the demonstration scenario for the challenge (Section IV).

II. SMART GRID DEMAND RESPONSE MANAGEMENT

The Smart Grid DR application is decomposed into three phases: information ingest, data analytics,
and information diffusion. Here, we describe their characteristics.
A. Information Integration Pipeline

The DR application uses a variety of information sources that characterize the Smart Grid or microgrid
for enhanced situation awareness and analytics. These sources pass through an information processing
pipeline that retrieves data from realtime sources, parses the response into a canonical data structure,

2

annotates the data tuple with semantics, and inserts the RDF triples into a semantic repository. Semantics
help manage the information complexity of diverse entities that affect energy use, such as the power grid,
electrical equipment, building, academic and facility schedules, organizational details, and weather.

The information integration pipeline needs to adapt to several forms of dynamism. Sensors are a primary
data source in the microgrid and include power meters in individual buildings or floors, equipment and
lighting reporting operational status, and Heating Ventilation Air Conditioning (HVAC) units emitting
setpoint and ambient temperature. These collectively number in the order of 50,000 but the ones that are
monitored at a point in time depend on the current DR application needs (e.g. proximity to a peak load
time period may cause additional sources to be monitored). Further, the sampling rates of these sensors
may vary from once every minute to once an hour depending on the electric load (e.g. night times are
less interesting since the energy use is limited). Hence, the macro- and micro-scopic spatial and temporal
scales of data acquisition are determined dynamically, with a corresponding need to scale the ingest up
and down. Slow changing data about buildings and equipment installation arrive in bulk mode, with low
frequency but large sizes. Occasionally, historical sensor data may also be loaded from archives. The
pipeline needs to respond to these variations while meeting the latency/data freshness needs of the DR
application for operations and to optimize resource usage.
B. Machine Learned Demand Forecasting Models

The DR application requires forecasting of power demand that is robust over time and evolves as
the microgrid behavior changes. Hence, we adopt machine learned forecasting models that use indirect
indicators for power usage prediction. Specifically, we use regression tree learning that predicts building
and campus level power consumption at 15-minute and daily granularities. The model operates on features
like temperature and humidity, academic semester, weekday/holiday, and building type to make the
forecast.

Constructing the regression tree model requires training it on historical time series data on these features
and the power consumption. This data itself is extracted from the semantic repository being updated by
the pipeline. We use 3 years worth of training data for the training; for the 170 buildings on campus and
using 15-min time granularities, the training data is on the order of 20 Million tuples. In addition, distinct
models can be constructed for different combinations of spatial collections (each building, collection
of buildings, the whole campus), temporal granularities (15-min, 1-hour, 24-hour) and combinations of
features to determine the ones that offer the best prediction accuracy. This requires the ability to perform
ensemble runs of training that further need to be refreshed when newer data is accumulated. The training
can happen in batch mode or on-demand when a new spatio-temporal combination is required – the larger
models take on the order of several days to train on a single machine.
C. Information Diffusion Portal

There are three primary types of information consumers within the USC microgrid – campus facility
operations, data analysts and the USC faculty/staff/students. Operators visualize realtime information in the
repository and energy forecasts to decide on operational changes such a initiating direct energy curtailment
in specific buildings by changing its thermostat temperatures. Analysts evaluate the effectiveness of
different forecasting models to select and configure appropriate ones for use. The USC public use the
current energy profile of buildings, their carbon footprint and the forecast power loads to understand
energy use within the campus and voluntarily take actions to limit their energy impact for sustainability.
A web portal serves as a central service for this information diffusion. It offers a campus map interface,
heatmap overlays, and graphical plots to explore the energy use and forecasts for different buildings and
time periods (Figure (b)). It relies on data present in the repository and realtime predictions made using
models that have already been trained.

III. ADAPTIVE ARCHITECTURE

Our scalable software architecture to support the D3 needs of the DR application is centered on two
frameworks, Floe and OpenPlanet, that we discuss here and analyze their innovative scalability features.

3

Information
Integration

Pipeline

Semantic
Repository

Web Portal

Machine
Learning

Model Training

Forecast Model

Heatmap &
Analytics

M

M

M

M

R

R

FutureGrid Cluster

VM VM

VM

VM VM

Tsangpo – Eucalyptus
Private Cloud

Floe Dataflow
Framework

OpenPlanet Ensemble

(a) Information Integration and Model Training (b) USC Smartgrid Portal

A. Information Ingest Pipeline using Floe
“Floe” 1 is a continuous data flow framework that incorporates adaptability and adaptivity to dynamic

application characteristics and the underlying infrastructure. Floe is used to model the information in-
tegration pipeline for DR. Floe goes beyond traditional workflow engines in using hybrid edge types
between tasks that can refer to both file and streaming data for uniform composition of continuous as
well as batch processing applications. Floe also allows a limited form of dynamic recomposition of the
data flow at runtime to allow new data sources to be incorporated. The Floe runtime consists of a data flow
coordinator for orchestration and a resource manager for provisioning. These are particularly suited to
leverage the elasticity offered by public and private Cloud infrastructure. The resource manager acquires
virtual machine (VM) instances on-demand from a Cloud provider for a data flow execution and the
coordinator instantiates and activates the data flow on these. Elastic support for multi-cores ensures CPU
resource for tasks can be incrementally scaled up and down to meet QoS needs. Adaptability knobs present
in the coordinator allow the parallelism of the tasks to be raised or lowered to improve core utilization.
QoS may be specified in terms of the latency for processing each unit of work and as a cost metric
for bounding core-mins used. These features allow us to dynamically scale out the data ingest from a
few hundred to over 50,000 sensors at data rates of every 5–15 minutes, ensuring that the required data
freshness is maintained while optimizing VM resource utilization.

Floe offers novel properties of hybrid data models, continuous and batch execution, dynamic recompo-
sition and autoscaling on Cloud resources. There is limited work on such hybrid data flow models 23 and
few if any workflows allow runtime recomposition needed for dynamic applications. A constrained form
of autoscaling is offered by providers like Amazon EC2 for simple transaction processing applications,
but not for complex data flows.
B. Regression Tree Learning using OpenPlanet MapReduce

The regression tree algorithm is a compute and memory intensive algorithm. This limits its possibility
to scale up to meet large training datasets. As an example, the algorithm implemented using the popular
Weka machine learning library uses 7GB RAM for a 6 Million tuple training dataset, beyond which the

1Floe: Designing a Continuous Data Flow Engine for Dynamic Applications on the Cloud, Yogesh Simmhan, Sreedhar Natarajan, Alok
Kumbhare and Viktor Prasanna, Under Review

2Daniel Zinn, Quinn Hart, Timothy M. McPhillips, Bertram Ludäscher, Yogesh Simmhan, Michail Giakkoupis and Viktor K. Prasanna,
Towards Reliable, Performant Workflows for Streaming-Applications on Cloud Platforms, CCGrid , 2011

3Chathura Herath and Beth Plale, Streamflow - A programming model for data streaming in scientific workflows, CCGrid, 2010

4

time complexity increases super linearly due to virtual memory swapping. OpenPlanet4 is our distributed
implementation of the PLANET MapReduce algorithm 5 for training regression trees using Hadoop.
OpenPlanet uses a form of iterative MapReduce, where each iteration constructs one level of the decision
tree by performing a full data scan on the training data file present in HDFS. There can be three
MapReduce job types that are scheduled in every iteration, depending on the size of the training data
partition corresponding to each leaf node introduced in the previous iteration. For leaf nodes whose data
partition fits in a host’s memory, an InMemoryWeka Hadoop job extracts that data partition from the
training file and builds the rest of that subtree using the Weka Machine Learning Java Library. For leaf
nodes whose data partitions do not fit in memory, a Histogram Hadoop job samples the data for candidate
split points followed by an ExpandNodes Hadoop job that evaluates the best split point for each leaf node
to generate the next level of its children. We make two unique contributions that exhibit the scalability
characteristic of OpenPlanet. One, we optimize HDFS block sizing and memory threshold to switch from
ExpandNodes to InMemoryWeka that significantly improves the speedup of OpenPlanet. Two, we support
ensemble runs of OpenPlanet to allow construction of models with different configurations while using
the same training data.

Existing statistical and machine learning packages such as Weka and Matlab are restricted to a single
machine implementation of regression tree which does not scale out. Apache Mahout which offers a
scalable machine learning toolkit does not support the regression tree model.

IV. DEMONSTRATION

Our online demonstration of the DR Application will show case the scalability of the information
integration pipeline using Floe and forecast model training using OpenPlanet through the portal interface.
Figure (a) shows the architecture of the demonstration setup. Sensor, weather and building data from
the USC campus will be ingested by the integration pipeline that is instantiated by Floe on our private
Cloud, Tsangpo, running the Eucalyptus v2 fabric. This Cloud infrastructure located at USC provides
seventeen nodes, each with 8-core AMD Opterons rated at 2 GHz each and 16 GB RAM, for a total of
136 available cores. Floe will scale out on this Cloud through VM resource acquisition, CPU core-scaling
and task parallelism as the stream rates increase at runtime, and, conversely, scale in when the load is
lighter. This dynamism in ingested sources will be visible through the portal that can query and present
information from the repository, itself hosted on a server co-located with Tsangpo. The scalability metrics
of latency, core allocation and utilization, and pending messages will be plotted on an administrative
portal. The OpenPlanet ensemble runs will be launched on the Sierra cluster at UCSD that is part of
FutureGrid project. These nodes have an 8-core Intel Xeon 2.5GHz CPU and 32GB memory. A Hadoop
environment is configured on these nodes on-demand using MyHadoop. The portal interface will allow
a data analyst to select the parameter space for the ensemble training and launch the runs. Training data
will be staged from USC to HDFS on the Sierra cluster nodes. The trained models will be moved back to
the repository server and be used for forecasting power consumption for USC campus buildings. Multiple
runs can be launched as an ensemble.

ACKNOWLEDGMENT

This material is based upon work supported by the United States Department of Energy under Award
Number DEOE0000192 and the National Science Foundation under Award CCF-1048311. The views and
opinions of authors expressed herein do not necessarily state or reflect those of the US Government or any
agency thereof. We thank FutureGrid for resources provided to run these OpenPlanet experiment, under
NSF Award 0910812.

4Scalable Regression Tree Learning on Hadoop using OpenPlanet, W. Yin, Y. Simmhan and V. Prasanna, MapReduce Workshop, 2012
5PLANET: Massively Parallel Learning of Tree Ensembles with MapReduce, Biswanath Panda, Joshua S. Herbach, Sugato Basu, Roberto

J. Bayardo, VLDB 2009

	Introduction
	Smart Grid Demand Response Management
	Information Integration Pipeline
	Machine Learned Demand Forecasting Models
	Information Diffusion Portal

	Adaptive Architecture
	Information Ingest Pipeline using Floe
	Regression Tree Learning using OpenPlanet MapReduce

	Demonstration

