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Abstract

Utilities use Demand Response (DR) to balance supply and
demand in the electric grid by involving customers in efforts
to reduce electricity consumption during peak periods. To im-
plement and adapt DR under dynamically changing condi-
tions of the grid, reliable prediction of reduced consumption
is critical. However, despite the wealth of research on elec-
tricity consumption prediction and DR being long in prac-
tice, the problem of reduced consumption prediction remains
largely un-addressed. In this paper, we identify unique com-
putational challenges associated with the prediction of re-
duced consumption and contrast this to that of normal con-
sumption and DR baseline prediction. We propose a novel en-
semble model that leverages different sequences of daily elec-
tricity consumption on DR event days as well as contextual
attributes for reduced consumption prediction. We demon-
strate the success of our model on a large, real-world, high
resolution dataset from a university microgrid comprising of
over 950 DR events across a diverse set of 32 buildings. Our
model achieves an average error of 13.5%, an 8.8% improve-
ment over the baseline. Our work is particularly relevant for
buildings where electricity consumption is not tied to strict
schedules. Our results and insights should prove useful to the
researchers and practitioners working in the sustainable en-
ergy domain.

Introduction

One of the critical challenges confronting modern soci-
eties is the need to attain energy sustainability. Buildings
account for about 40% of the energy consumption world-
wide (UNDP 2010) and novel energy optimization measures
adopted in buildings can significantly contribute to energy
sustainability. With the advent of Smart Grids, buildings are
now being fitted with smart meters that record electricity
usage every 15 minutes or less (Aman et al. 2015). Min-
ing large amounts of electricity consumption data collected
by smart meters provides insights into peak demand peri-
ods for buildings. Electric utilities can use these insights to
ask building occupants and facility managers to reduce con-
sumption during anticipated peak demand periods, a practice
popularly know as Demand Response (DR). DR is defined
as: “change in electric usage by end-use customers from
their normal consumption patterns in response to changes
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Figure 1: Normal consumption, Reduced consumption,
and DR baseline vis-a-vis a DR event.

in the price of electricity over time, or to incentive pay-
ments designed to induce lower electricity use at times of
high wholesale market prices or when system reliability is
jeopardized” (FERC 2010). We address reduced consump-
tion prediction during DR, which can help utilities in:

e estimating the extent of potential reduction during DR be-
fore the DR event occurs (Chelmis et al. 2015);

e performing dynamic DR at a few hours’ advance notice
whenever necessitated by the dynamically changing con-
ditions of the grid, such as due to the integration of inter-
mittent renewable generation sources (Aman et al. 2015);

e intelligently targeting customers for participation in DR
based on a prediction of their reduced consumption and
modifying such selection in real-time as needed (Ziekow
et al. 2013); and

e estimating the amount of incentives to be given to the cus-
tomers (Wijaya, Vasirani, and Aberer 2014).

Techniques that work well for normal consumption pre-
diction, such as time series models, are ineffective for re-
duced consumption prediction due to 1) abrupt changes in
the consumption profile at the beginning and end of the
DR event (Figure 1); and 2) insufficient recent observations
within the DR window for a time series model to be trained
reliably. Instead, historical data from past DR events can be
used as predictors for reduced consumption. Another chal-
lenge is that reduced consumption is affected by several fac-
tors such as the time of day and day of week, and DR factors
such as curtailment strategy, human behavior, as well as en-
vironmental factors, such as temperature.



Table 1: Normal consumption, Reduced consumption, and DR baseline: Key characteristics and challenges

Prediction Goal Prior work Timing Historical Compute Profile

Task Data Requirements | changes

Normal Planning, DR | Several Outside  the | Readily Oft-line or | Gradual

Consumption DR event available real-time

Counterfactual || Curtailment Several During the DR | Readily Off-line Gradual

DR Baseline calculation event available

Reduced Planning, DR, | None During the DR | Sparse or non- | Real-time for | Abrupt at

Consumption || dynamic DR event existent dynamic DR the DR event
boundaries

Our contributions in this paper are:

o We identify key characteristics and challenges of reduced
consumption prediction problem.

e We use diverse predictors in a novel ensemble that use dif-
ferent sequences of daily electricity consumption on DR
event days, as well as contextual attributes, for reduced
consumption prediction. The low computational complex-
ity of our model makes it ideal for real-time applications
such as dynamic demand response (Aman et al. 2015).

o We evaluate our model on a large real-world dataset from
a university microgrid. Our model achieves an average er-
ror of 13.5%, an 8.8% improvement of over the baseline.

Related Work

Electricity consumption prediction is studied in three con-
texts: 1) normal consumption, 2) reduced consumption,
and 3) DR baselines, which differ greatly in terms of their
scope and characteristics (Table 1). While electricity con-
sumption is a widely studied problem (Martinez Alvarez et
al. 2011), (Mathieu, Callaway, and Kiliccote 2011), (Alzate
and Sinn 2013), the problem of reduced energy consumption
prediction is a new and open problem with little existing re-
search (Chelmis et al. 2015). This can be attributed to fac-
tors such as the unavailability of reduced consumption data;
the human factors causing variance in response to DR; and
cancellation of DR when found violating occupants’ ther-
mal comfort limits. The utilities have so far focused more on
predicting normal consumption or DR baselines. DR base-
lines are calculated during a DR event (Park et al. 2014),
(Coughlin et al. 2009) and estimate the amount of electricity
that would have been consumed in absence of a DR event
(Figure 1). They are counterfactual in that they give a theo-
retical measure of what the customer did not do, but would
have done in absence of a DR event. Utilities generally use
simple averaging models for DR baseline predictions due
to their simplicity and reduced computational requirements
(Coughlin et al. 2009). DR baselines are used to measure the
extent of curtailment achieved during a DR event.

Preliminaries

Definition 1 A DR event for a building is the period dur-
ing which the building’s electricity consumption is reduced

(for e.g. by turning devices off or by turning them down to a
lower consumption setting than normal operation).

A day in which a DR event occurs is called DR day (Wi-
jaya, Vasirani, and Aberer 2014).

Definition 2 A daily sequence of electricity consumption
observations for a building on the i-th DR day, & =
{€i1,€i2,....€; 1}, where e; ; is the observation at time in-
terval j, and J is the number of intervals in a day.

For simplicity, we assume all data to be sampled at the
same frequency; hence all daily sequences are of the same
length J. The set of all daily sequences from DR days for a
building is an I x J matrix, & = (&1, &, ...,Er)T where T
is the number of DR days observed for the given building.

Definition 3 The pre-DR sequence &;1.4-1 =
{ei1,€i2,....eiq—1} with d > 1, is a subsequence of
&; beginning at interval 1 and ending just before d, the
interval at which a DR event begins.

Definition 4 The in-DR  sequence &; 41 =
{ei’d, €idtly s ei,d+L_1}, withd > 1,andd+ L —1 < J,
is a subsequence of &; that begins at time interval d, the
interval at which a DR event begins and is L intervals long.

Contextual Attributes

We consider two types of contextual attributes: time-series
attributes that are defined for each time interval of the day,
and static attributes that remain same for all intervals of a
day. Examples of the former include temperature, humidity,
dynamic pricing, occupancy, etc. while for the latter include
day of week, holidays, etc. For IV, distinct time-series at-
tributes, and N static attributes, we define the following:

Definition 5 The daily context for a building on the i-th DR
day is a tuple, C; = (A;[1], ..., A;[Ny], Bi[1],. .., Bi[Ns]),
where A;[k] = {a;1,0i2,...,a;.5} is the k-th time series
attribute and B; k] is the k-th static attribute.

Definition 6 The pre-DR context for a  build-
ing on the i-th DR day is a tuple, Cii14-1 =
(A1), ... Ay[Ne], Bi[l], ..., Bi[Ns]) where Aj[k] =
{ai1,a:2,....,0;,4-1} is a subsequence of the k-th time
series attribute from interval 1 to just before interval d when
the DR begins, and B;[k] is the k-th static attribute.



Table 2: Notations

‘ Symbol ‘ Description

I Number of DR days observed

J Number of observations in a day

L Length of the DR event window

€ Electricity consumed on day ¢ in interval j
& Daily DR sequence for day 7

Eisi Subsequence of &; starting at s of length [
C; Daily context for day ¢

Cisi Subsequence of C; starting at s of length [
A; K] Vector of k-th time series attribute for day 4
B, [K] k-th static attributes for day i

Problem Definition

We formulate the problem of predicting reduced electricity
consumption for a building during a DR event as the prob-
lem of calculating the values of in-DR sequence &; 4 1, for
DR day i, given the pre-DR sequence &; 1 q—1 and pre-DR
context C; 1,4—1 for the day 4, and the set of daily sequences
£ and daily contexts C from the historical data.

REDUCE Ensemble

We propose REDUCE (Reduced Electricity Consumption
Ensemble) that learns to combine outputs from three
base models using a Random Forest! approach (Breiman
2001) to do reduced consumption prediction. To train
the ensemble, we form a set of predictor tuples
([Ee.a.L)iDs, [€e.a.L]PDS, [Ee.a.L]Dss), Where [Ec q.r]m 1s
the value predicted by base model m; and corresponding set
of responses & 4.1, from the observed values for each day e.

IDS: In-DR Sequence Model

IDS is similar to the approach used by the utility for predict-
ing DR baselines. While utilities average over a set of past
similar (non-DR) days, IDS averages all in-DR sequences
from past DR days. Thus, the in-DR sequence for each build-
ing during the ¢-th DR day is given by:

[€]
[EzdLIDS |E|Z&dL (n

This model offers two key advantages: 1) low computa-
tional complexity, as computation time is independent of the
length of the DR event and the size of the historical data,
making it ideal for real-time predictions for dynamic DR,
and 2) it is a univariate model that only depends on electric-
ity consumption values and does not require additional vari-
ables, which would increase data collection costs (Aman,
Simmhan, and Prasanna 2015).

"Implemented by the randomForest R package (Liaw and
Wiener 2002).

PDS: Pre-DR Sequence Similarity Model

This model considers the contextual attributes and the elec-
tricity consumption values on the DR day before the be-
ginning of DR, for selecting “similar” DR days from the
past data. Our hypothesis is that if two DR days have simi-
lar pre-DR sequences, their in-DR sequences would be sim-
ilar. Thus, for each DR day ¢ in the historical data we
first form a tuple of pre-DR sequence and pre-DR context
(€e1,d=1,Ce,1,a—1)- Similarly, we form a tuple for DR day
1. The similarity score between each DR day e in the histor-
ical data and given DR day ¢ is given by

SimScore(e, i) = sim({Ee.1,d-1,Ce,1,d-1)»
(€i1,d-1,Ci1,a-1))-

where sim can be any similarity measure.

Next, we sort historical days based on their similarity
score to DR day ¢ in descending order. We then predict the
in-DR sequence on a given day as a weighted average of
historical in-DR conditions, such that higher weights are as-
signed to days with a higher similarity score. The weights
are chosen to exponentially decrease with decreasing simi-
larity score. The predicted in-DR sequence is given by

2

[€]
A 1
[€ia.L]lPDs = i@ Zwe X Ee.a,L 3)
e=1

where weights w. = exp(—A), and 0 < A < 1 is the de-
cay rate that determines the rate of decrease of weights with
decreasing similarity score.

DSS: Daily Sequence Similarity Model

This model considers the entire daily sequences and contexts
in the historical data to first discover clusters of daily profiles
for each building. We define daily profiles P, = (&, C.) for
each building to consist of tuples of daily sequences &, and
daily contexts C. for each DR day ¢ in the historical data. We
cluster the daily profiles using k-means clustering (Dudani
1976) into Ny, clusters, C' = {C1, Cs, ..., Cy;, }. The number
of clusters Ny, is estimated by minimizing the within cluster
sum of squares. The centroid ¢, of each cluster C,,, can be
interpreted as the characteristic profile of the cluster:

1 O
m — a7 € 4
m Nk;P )

For a given day 7, we calculate the probability of ¢ belonging
to cluster C,,, using the pre-DR part of the daily profile for
the ¢-th day and finding their similarity to the pre-DR part of
the centroid vector’s profile:

1
Pcmalvd_l ||2

P(i € Cp) = 5)

al|Pi1,d—1 —

where « is a constant used to normalize the probability val-
ues between 0 and 1:

1
Z P ©

i,1,d—1 — cm,17d71||2
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Figure 2: Distribution of DR events across buildings

The in-DR sequence of DR day ¢ can then be calculated
as the weighted sum of characteristic in-DR sequences with
weights equal to the probability of DR day ¢ belonging to
the respective clusters, as follows:

ZPZEC

The clustering step is performed only once for each build-
ing on historical data whose size is small. However, the clus-
tering step can be repeated periodically when more historical
data is accumulated.

[ia.0]pss = XEar (71

Time Complexity

IDS has O(1) run-time complexity. PDS involves a one-
time step of sorting historical days based on similarity, with
O(nlogn) complexity, where n is the number of days in the
historical data. Thereafter, prediction with PDS is of O(1).
DSS involves k-nn clustering as a one time step, while pre-
diction is of O(1). REDUCE uses the random forest method
with time complexity of O(nlogn) for the training step. Pre-
diction is of O(1) complexity. Given this low time complex-
ity, our proposed model is ideally suited for making real-
time predictions.

Experiments

Dataset. Reduced consumption data was collected from
952 DR events (2012-2014) on 32 buildings in a University
microgrid [Anonymized] (Figure 2). Consumption reduction
was achieved via DR strategies (Piette, Kiliccote, and Dud-
ley 2012) that directly reduce the loads or alter temperature
settings. Temperature data was collected from the NOAA
weather station located on the university campus.

Evaluation. We use MAPE (Mean Absolute Percentage
Error) for evaluation. As a relative measure, MAPE is inde-
pendent of the scale of consumption of a building (Aman,
Simmbhan, and Prasanna 2015). It is defined as MAPE =
% Sy Iec;e , where e; and é; represent observed and pre-
dicted electricity consumption respectively. (Our code and
sample data is publicly available [Anonymized].) IDS, being
popular with the utilities, is used as the baseline for compar-
ing the performance of the ensemble.

Parameters. We use 15-minute granularity data resulting
in J = 96 intervals per day. The DR events occurred on
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Figure 3: Cumulative density function (CDF) of MAPE

weekdays during 1 PM (d = 54) to 5 PM, the peak load pe-
riod designated by the local utility [Anonymized]. Thus, the
length of DR events is set at L = 16. We use one time-series
attribute (i.e., N; = 1), temperature, and seven (N; = 7)
static attributes to represent day of week based on a snnple
1-of-7 encoding scheme.

Results. Figure 4 shows the MAPE values for individual
buildings, while Figure 3 shows the cumulative distribution
function of average MAPE of all buildings. We observe that
our ensemble REDUCE outperforms the baseline IDS for
about 70% of the buildings. It also limits prediction error
to < 10% for over half of the buildings, which is consid-
ered highly reliable by domain experts (Aman, Simmhan,
and Prasanna 2015). Overall, it achieves an average error of
13.5% and standard deviation of 7.3%, which is an improve-
ment of 8.8% over the baseline. The baseline IDS performs
reasonably well with 14.8% average error and 7.4% standard
deviation (Figure 3) indicating that historical time of day
averaging is a strong predictor for reduced electricity con-
sumption. Although simple, it derives its predictive power
from the errors being averaged out over the entire dataset, as
well as from electricity consumption being strongly related
to repetitive patterns of human activities. This repetition is
more pronounced for campus buildings where activities are
tightly coupled to class schedules.

Effect of Schedule. We examine two types of buildings:
1) schedule-driven, consisting primarily of classrooms, and
2) non schedule-driven, with few or no classrooms. For
B15, B21, B28, and B29, which are non-schedule driven,
REDUCE gives superior performance (Figure 4). IDS does
not perform well here as there are no significant repetitive
patterns in human activity such as those found in classroom-
only buildings where activities are tightly coupled to class
schedules. To further assess this difference, we analyze three
buildings: B21, a building with large computer labs, and
faculty and graduate student offices, B28, a campus center
building with large meeting spaces, and a grand ballroom
with seating for over 1000 people, and B14, an academic
building with classrooms and few office spaces.

Figures 5a and 6a show that REDUCE gives low error for
both B21 and B28. The error for B21 is low for all days of
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Figure 4: MAPE across buildings

week but one (Figure 5b), while for B28 it is low for all days
of week (Figure 6b). We observe similar behavior across
seasons (Figures 5c and 6¢). On the contrary, IDS outper-
forms REDUCE for B14 (Figure 7a). REDUCE performs
more consistently on Tuesdays, Thursdays, and Fridays, as
compared to IDS (Figure 7b). It is notable that in Fall, when
classes are scheduled, IDS performs well; however, in Sum-
mer when few classes are offered, and a variety of events
may be occurring, REDUCE outperforms IDS (Figure 7c).
Insight 1: REDUCE gives superior performance when
applied to buildings which do not follow a tight schedule.
As a corollary, we expect REDUCE to achieve similar per-
formance for residential buildings, where human activities
do not follow strict schedules, and hence, the performance
of averaging models such as IDS will deteriorate.

Effect of Training Data Size. Contrary to our ensemble
REDUCE, the performance of IDS deteriorates with increas-
ing size of the training data, which can be attributed to noise
being introduced into the training dataset (Figure 8).
Insight 2: The performance of REDUCE is not sensitive
to the training data size. As a corollary, REDUCE would
allow accurate predictions to be made with fewer historical
data which is useful for new buildings as well as for reduc-
ing computational and storage requirements.

Effect of Variance in Consumption. We observe that pre-
diction error decreases with increasing average consumption
for our ensemble REDUCE model, while it does not change
for IDS (Figure 9). This could be attributed to more sta-
ble and predictable behavior for larger buildings, though it
needs further investigation to understand this behavior. Also,
for smaller buildings, the electricity consumption values are
small; so even when the predicted value is offset by a small
amount, it translates to a large percentage error.

Insight 3: The performance of REDUCE slightly im-
proves for larger buildings.
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Figure 5: MAPE values for B21: a building with large computer labs, and faculty and graduate student offices
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Figure 6: MAPE values for B28: campus center with meeting and event spaces and a grand ballroom
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Figure 7: MAPE values for B14: an academic building with large proportion of classrooms and some faculty offices



Conclusion

We address the reduced consumption prediction problem in
the energy sustainability domain that is relevant for success-
ful implementation of dynamic demand response (DR) by
the electric utilities. Standard models for electricity con-
sumption prediction, such as the time series models, are
unsuitable for this problem due to abrupt changes in con-
sumption profile at the beginning and end of DR events. We
propose a novel ensemble model to make predictions using
pre-DR , in-DR, and all-day consumption sequences, to pro-
vide superior performance, achieving an average error of
13.5%, which is an improvement of 8.8% over averaging
based baseline approach. With low computational complex-
ity, our approach provides a practical solution that can be
applied for real-time prediction. Also, our model provides
a simple and generalizable approach allowing domain ex-
perts to integrate a variety of contextual attributes that could
affect reduced electricity consumption. Our results indicate
that the strength of our model is particularly relevant for: 1)
buildings for which electricity consumption does not follow
a strict schedule (i.e., absence of periodic activities), and 2)
buildings with less historical DR data. We believe that our
results and insights set the foundation for future modeling
and practice of DR programs in the smart grid domain.
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