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ABSTRACT
In this paper, we describe a system for real-time automated
Dynamic and Sustainable Demand Response with sparse
data consumption prediction implemented on the University
of Southern California campus microgrid. Supply side ap-
proaches to resolving energy supply-load imbalance do not
work at high levels of renewable energy penetration. Dy-
namic Demand Response (D2R) is a widely used demand-
side technique to dynamically adjust electricity consump-
tion during peak load periods. Our D2R system consists of
accurate machine learning based energy consumption fore-
casting models that work with sparse data coupled with fast
and sustainable load curtailment optimization algorithms
that provide the ability to dynamically adapt to changing
supply-load imbalances in near real-time. Our Sustainable
DR (SDR) algorithms attempt to distribute customer cur-
tailment evenly across sub-intervals during a DR event and
avoid expensive demand peaks during a few sub-intervals. It
also ensures that each customer is penalized fairly in order to
achieve the targeted curtailment. We develop near linear-
time constant-factor approximation algorithms along with
Polynomial Time Approximation Schemes (PTAS) for SDR
curtailment that minimizes the curtailment error defined as
the difference between the target and achieved curtailment
values. Our SDR curtailment problem is formulated as an
Integer Linear Program that optimally matches customers
to curtailment strategies during a DR event while also ex-
plicitly accounting for customer strategy switching overhead
as a constraint. We demonstrate the results of our D2R sys-
tem using real data from experiments performed on the USC
smartgrid and show that 1) our prediction algorithms can
very accurately predict energy consumption even with noisy
or missing data and 2) our curtailment algorithms deliver
DR with extremely low curtailment errors in the 0.01-0.05
kWh range.
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1. INTRODUCTION
Technological advances such as bi-directional smart meters
allow remote monitoring and control, thus transforming the
traditional power grids into complex cyber-physical systems [10].
Reliable operation of a power grid requires utilities to dy-
namically meet the fluctuating energy demand with supply
(possibly fluctuating due to the stochastic nature of renew-
able energy generation). If demand exceeds the generation
capacity, the utility must buy extra power from the spot
market at higher rates in order to avoid power outages and
ensure grid reliability. Typically, the power consumption
profiles of the customers are such that their peak power con-
sumptions overlap during certain periods of a day. We refer
to such periods as peak demand periods. The cumulative
demand from customers in the grid might exceed the gener-
ation capacity of the utility during such periods.

Demand Response (DR) is a widely used technique to ensure
grid stability with minimal expenditure. Instead of focusing
on increasing the generation capacity, DR focuses on reduc-
ing the grid consumption by either incentivising or penaliz-
ing customers. Utilities enroll customers into DR programs
and signals them during peak periods in response to which
the customers curtail their demands.

Traditionally, DR implementations require advanced plan-
ning and notification. However, the community is progress-
ing towards Dynamic Demand Response D2R where the util-
ity needs to schedule and implement a DR in few hours of
notice due to dynamically changing grid conditions [3].

The utility needs accurate energy consumption prediction
to determine when to schedule a DR event along with the
amount of curtailment required given the generation capac-
ity. A customer participating in a DR event can adopt
one of the several available strategies to curtail consump-
tion. Strategies are actions such as turning down the air
conditioner, dimming the lights which lead to reduction in
power consumption. The utility needs to accurately es-
timate the reduced consumption/curtailment achieved by
each customer strategy pair to make informed customer-
strategy pair selection to achieve the required curtailment
value.

Accurate and efficient prediction of energy consumption for
individual customers is critical for a successful DR event.



Availability of energy consumption data from smart meters
in finer granularity (15 minutes) offers us a unique challenge
to apply forecasting models. Historically, coarse-grained en-
ergy consumption prediction of total utility area are per-
formed using data available at feeder and sub-station level
that is collected by the SCADA system. Prediction models
at building 1 levels are more prone to intra-day and seasonal
variability and hence pose a greater challenge for developing
accurate prediction models. In [5, 3] and [11], we discuss
challenges, evaluation metrics and prediction models such
as time series models, regression tree based models for accu-
rate prediction of individual building energy consumption.
The various models are discussed briefly in this paper.

Prediction techniques such as time series models are un-
suitable for reduced consumption prediction due to abrupt
changes in customer profile during the DR event start and
end and insufficient recent observations within a DR window
for training a model. Alternate approach is to use the his-
torical consumption profiles of the building-strategy pairs to
predict the reduced consumption (hence curtailment) during
the DR event. A challenge in such an approach is that the
reduced consumption is affected significantly by factors such
as environmental conditions on DR day, day of the week the
DR is observed etc. In this paper, we briefly discuss the Di-
rect Curtailment Forecasting Model [7] which we developed
for accurate prediction of reduced consumption during DR
event.

Selecting the right set of customer-strategy pairs to achieve
a targeted curtailment value is critical for the success of a
DR Event. The availability of smart controllers and me-
ters with fine-grained customer control capability can be
leveraged to offer customers a dynamic range of curtailment
strategies that are feasible for small durations within the
overall DR event. We developed several algorithms for opti-
mal customer selection which are discussed in detail in [26,
15] and [14]. In this paper, we provide a brief description of
such algorithms.

We have implemented a Demand Response program on our
campus micro-grid to demonstrate its large scale feasibility
and identify and resolve the challenges associated with prac-
tical deployment. Our Demand Response technique uses
learning of occupant energy strategy preferences (at fine
grained scales ranging from buildings to floor levels within
buildings) to make accurate electricity consumption pre-
dictions and individual curtailment recommendations using
only a small subset of consumption data.

In this paper, we discuss the architecture of the Demand
Response program implementation. For completeness, we
briefly discuss the prediction and optimization models. These
models have been discussed in detail in the papers referenced
in the respective sections. We qualitatively evaluate one of
the DR event performed in campus and show that an energy
curtailment of 2100 kWh was achieved in the DR event of 4
hours.

In Section 2, we discuss works done in the community related
to energy consumption and reduced-consumption prediction

1In this paper we use the terms building and customer in-
terchangeably

and customer selection. The implementation details are dis-
cussed in Section 3. In Section 3.1, we give an overview of
the various components involved in the DR implementation
on our campus microgrid. The prediction models used are
discussed in Section 3.2. The algorithms used for optimal
building strategy pair selection are discussed in Section 3.3.
We evaluate the various components involved in our imple-
mentation and the entire system in Section 4 and provide
concluding remarks in Section 5.

2. RELATED WORKS
Existing consumption prediction approaches include our and
other works on time series models, regression trees, artificial
neural networks and expert systems. Utilities also use av-
eraging models based on recent consumption due to their
simplicity. In [25], authors evaluate time series methods for
load forecasting by comparing them against other methods.
In [13], authors investigate seasonal time series forecasting
models. We developed regression tree models using weather
and schedule data in [4] and evaluated the effect of feature
combinations on the prediction accuracy.

While electricity consumption prediction has been studied
widely, there has been less focus on the prediction of cur-
tailment during a DR event. The problem of planning short-
term load curtailment in smart grid is discussed in [17, 22].
Our prior work [7] addresses the challenges in curtailment
prediction and provides an efficient algorithm for the same.

Traditionally, customer targeting for DR were performed
based on aggregate customer consumption data obtained
from monthly billing data or surveys [18, 19]. DR algorithms
that perform such customer targeting include dynamic pro-
gramming based peak load minimization [9], particle swarm
optimization based DR algorithms [21] and game theoretic
solutions constrained by real time pricing [8] and customer
comfort levels [6]. However, as shown in [23], such ap-
proaches are highly inaccurate. The aggregate billing data
does not necessarily reflect the consumption profile of the
DR day and moreover, the selection in such works is done
oblivious to the varying load profile through out the day.
Hence, such work do no guarantee the smoothing of peaks
in electricity consumption.

Works using fine grained data from smart meters include [24]
where a quadratic programming formulation is developed
for DR optimization. However, the assumption in the pa-
per that continuous curtailment values can be obtained by
customers runs counter to the discrete curtailment values
obtained in the buildings in USC microgrid. A stochastic
knapsack based algorithm for selecting the right customers
to maximize the probability the desired curtailment value is
achieved over the period of the entire DR event while lim-
iting the utility’s cost is developed in [16]. However, the
algorithm relies on the central limit theorem, normal distri-
bution of curtailment values and has the implicit assumption
that there are a large number of customers are available to
select a subset from.



3. IMPLEMENTATION OF DEMAND RE-
SPONSE ON A CAMPUS MICROGRID

3.1 Overview
3.1.1 Dynamic Demand Response (D2R)

We define Dynamic Demand Response (D2R) as the decision
making about when, by how much and how to reduce elec-
tricity use by the demand side in response to dynamically
changing conditions of generation and consumption [3]. Tra-
ditionally, the timing and the duration of DR event is fixed in
advance and the strategies are pre-determined. D2R brings
flexibility to the timing and duration of the DR event in-
formed by fine-grained data and prediction models. Such a
technique allows the utilities to implement a DR event in
short notice when the expected demand becomes too high
or expected generation capacity drops too low.

3.1.2 D2R Implementation Overview
We have implemented D2R on the University of Southern
California (USC) microgrid. The USC microgrid consists
of over 170 buildings equipped with around 50,000 smart
meters which provide power consumption data in regular
intervals of 15 minutes [2]. Buildings on our campus are
equipped with advanced energy curtailment strategies which
can be administered remotely by the USC Facilities Manage-
ment Services (FMS). Strategies include techniques such as
Global Zone Temperature Reset (GTR), Variable Frequency
Drive Speed Reset (VFD), Equipment Duty Cycling (Duty)
and their combinations. [20]

Figure 1: Control and Data Flow For Dynamic Demand
Response Implementation

A simplified control and data flow diagram of our D2R im-
plementation is shown in Figure 1. The USC FMS initiates
a DR event using OpenADR messages typically for 4 hours
from 1 pm to 5 pm during weekdays. A targeted curtailment
value is provided which needs to be achieved over the entire
DR event. A set of available buildings is also provided by the
FMS. The Policy Engine (PE) accepts the FMS request and
provides campus wide curtailment strategy policy recom-
mendations for each available building. The recommenda-
tions are based on the analysis of the historical consumption
data per building and observed curtailment values per build-
ing strategy pair. The power consumption data aggregated
in 15 minute intervals by the smart meters is stored into a
database to be readily available when required. State-of-the-
art data driven models are used to predict Baseline: energy
consumption by each building during the DR when none of
the energy curtailment strategies are followed and the Re-
duced Consumption: energy consumption by each building
following each available strategy during the DR. The pre-
dictions are performed for each 15 minute interval of the

DR event. This information is then used by the optimiza-
tion module to determine the set of building-strategy pairs
for each 15 minute interval to achieve the targeted curtail-
ment under various constraints which will be discussed later
in this paper. FMS then communicates the selected strat-
egy to each building using direct control to be implemented
during the DR event.

3.2 Prediction Modeling
The Policy Engine (PE) includes a prediction engine which
feeds into the optimization engine as shown in Figure 2. Two
kinds of predictions are performed by the prediction engine:
(1) Baseline consumption prediction and (2) Reduced con-
sumption prediction. The prediction engine consists of a
number of prediction models. One of these models can be
picked for a single DR event for prediction. This allows us
to perform experiments with different models to fine tune
the accuracy of the predictions.

Figure 2: Policy Engine

The baseline consumption prediction models available in the
prediction engine are discussed in the following subsections.

3.2.1 Averaging Consumption Prediction Models
The averaging models predict consumption by taking the
average of the observed consumption in the previous days [3].
We implemented three averaging models in the prediction
engine:

• NYISO: The New York ISO (NYISO) model’s output
is calculated from previous five days with the highest
average kWh value. These days are chosen from a pool
of ten previous days, which are selected starting two
days prior to the event day, and excluding weekends,
holidays, past DR event days or days on which there
was a sharp drop in the energy consumption. In addi-
tion, a day is included in the pool only if the average
consumption on that day is more than 25% of the last
selected day. The process repeats until all ten days



have been placed in the pool of days for baseline calcu-
lation. Days are then ranked based on average hourly
consumption and five days with the highest value are
selected. Finally, the baseline is calculated by taking
hourly averages across these days.

• CAISO: According to the California ISO model (CAISO),
the baseline is the hourly average of three days with
the highest average consumption value among a pool
of ten selected previous days. Selected days cannot be
weekends, holidays, past DR event days. CAISOs per-
formance can be considerably improved by introducing
a morning adjustment factor. We denote this modified
version of CAISO as CAISOm. In our experiments we
consider both versions.

• CASCE: The Southern California Edison ISO model
(CASCE) estimates baseline consumption by averag-
ing over the past ten days. These days cannot include
weekends, holidays or past DR event days. Once ten
days have been selected, the baseline is calculated as
their hourly average. Similar to NYISO, a morning ad-
justment factor is applied to the calculated baseline.

3.2.2 Regression Tree based Consumption Prediction
A Regression Tree (RT) model generates a decision tree with
leaves of the tree ending in a regression function [3]. Regres-
sion trees are generated in a top-down fashion by choosing
the most likely attribute for decision-making at each level.
Each attribute that is chosen partitions the remaining train-
ing data into sub- sets depending on the value of the decision
made. This method of recursive partitioning leads to smaller
regions where simple models can be applied.

3.2.3 Time Series Consumption Prediction Models
The Auto Regressive Integrated Moving-Average model, known
as ARIMA, is represented by ARIMA(p, d, q), where p is
the number of autoregressive terms, d is the number of non-
seasonal differences, and q is the number of lagged forecast
errors in the prediction equation [3]. The parameter d is
the order of differencing needed to make the series station-
ary. The parameters p and q are determined using auto-
correlation and partial autocorrelation functions (using the
Box-Jenkins test).

Readers can refer to [3] paper for a detailed analysis and
comparison of the various baseline consumption models dis-
cussed briefly above.

3.2.4 Reduced Consumption Prediction
For predicting the reduced consumption during a DR event,
the DiCuf: Direct Curtailment Forecasting Model [7] is used.
It is a historical averaging model that uses previous values
for the same time on similar DR days for the same <build-
ing, strategy> combination to forecast future reduced con-
sumption. Specifically, predicted curtailed consumption is
calculated by taking 15 minute averages across values from
past “similar” DR events and placing them into bins of sim-
ilar events. We consider past DR events per building to be
similar if the same strategy was deployed.

3.3 Policy Recommendations
The optimization engine accepts the predicted consumption
and reduced consumption from the prediction engine. It uses
them to create a time varying curtailment matrix denoting
the expected curtailment of the building strategy pairs avail-
able for the DR event. The curtailment matrix is used by
the optimization algorithms to determine the set of build-
ings and the strategies they should adopt and provide this
information as policy recommendation to the FMS for im-
plementation.

Driven by our experience with DR implementation in USC,
several customer (building) selection algorithms were devel-
oped. The model and assumptions used by the algorithms
are discussed in Section 3.3.1. The various algorithms are
discussed briefly in Sections 3.3.2- 3.3.6. Readers can refer
to [26, 15] and [14] for detailed description of the algorithms
discussed below.

3.3.1 Model and Assumptions
We are given a set of M customers (buildings) and N strate-
gies. The entire DR period is divided into T discrete time
intervals. Dynamic customer strategies are represented by a
time varying curtailment matrix Ct ∈ RM×N with element
ctij denoting the discrete curtailment value of customer i
adopting strategy j at time interval t where t ∈ {1, . . . , T}.
Let Xt be the decision matrix with element xtij denoting the
corresponding decision variable at time t with γ denoting the
achievable curtailment value across the entire DR event.

3.3.2 Heuristic for Customer Selection
We developed a change making problem based heuristic for
customer selection in a DR event which addresses the ques-
tion: how a given amount of money can be made using the
least amount of coins? [26]. The coins are the available
customer-strategy pairs and their value is the predicted re-
duction per interval. The customers are grouped into bins
which are differentiated by their bin value. The US coin set
is used to determine the bin range corresponding to a bin
value. The bin range determined by coin ci is (ci.v, ci+1.v]
where v is an appropriately chosen scaling factor. The par-
ticipating customers are grouped in the same bin if their
reduction estimate, which we call representative, falls in the
corresponding bin range. After the distribution step, cus-
tomers are paired with the strategy that approximates most
closely the bin value (upper bin range). The level of ap-
proximation is calculated using the euclidean distance of the
corresponding curtailment vector from the bin value. The
bins are indexed greedily to achieve the given target γ.

3.3.3 ILP based Demand Response
While the heuristic described in the previous section pro-
vides a simple and fast technique to determine building-
strategy pairs to achieve a targeted curtailment γ, the ac-
curacy is unbounded. It can incur very high error rates
for some inputs. Hence, we developed an Integer Linear
Program for the problem of optimal customer selection [15].
The ILP determines the strategy each building should follow
throughout the DR event. This is useful when only coarse
grained data is available. If fine grained data is available,
the ILP can be solved for each interval to determine the
building-strategy pairs. Let cij =

∑T
t=1 c

t
ij and xij denote



the corresponding decision variable for the entire DR event.
The ILP can be formulated as follows:

Minimize : |
M∑
i=1

N∑
j=1

cijxij − γ | (1)

Subject to :

N∑
j=1

xij = 1 ∀i {1, . . . ,M} (2)

xij ∈ {0, 1}, ∀i, j

Equation 2 ensures that a customer adopts exactly one strat-
egy in the DR event. This includes the default strategy with
a curtailment value of 0.

3.3.4 Sustainable Demand Response
The algorithm mentioned in the previous section might ag-
gressively curtail the demand in some intervals while ac-
cumulating demands in other intervals. Such assignments
have peaks in certain intervals, which can possibly exceed
the generation capacity defeating the entire purpose of the
DR event. To addresses this issue, we defined the notion of
Sustainable Demand Response (SDR) [14]. SDR attempts
to evenly smooth the curtailment over the entire period of
the DR event.

We use the following ILP to model a Sustainable DR event.

Minimize :

T∑
t=1

εt (3)

Subject to : |
M∑
i=1

N∑
j=1

ctijx
t
ij −

γ

T
|≤ εt ∀t (4)

N∑
j=1

xtij = 1 ∀i, t (5)

∀xtij ∈ {0, 1} ∀i, j, t

The objective is to minimize the ‖l‖1 norm (Equation 3).

3.3.5 Approximation Algorithms for Sustainable De-
mand Response

The ILP solutions mentioned above do not scale well with
the number of buildings and strategies. The heuristic men-
tioned in Section 3.3.2 incurs unbounded errors which can
be exceptionally high in certain cases. Hence, we develop
approximation algorithms which scale well with the number
of buildings-strategy pairs ensuring bounded error.

We developed a
√

2-factor approximation to achieve the op-
timal target during each curtailment period and therefore
for the entire DR event. The algorithm sorts the customer-
strategy pairs and picks the to achieve a curtailment value

within the range [ γ

T
√
2
,
√
2γ
T

]. The algorithm runs inO(TM logN)

time when strategies are preprocessed in advance for a given
curtailment target. The one-time preprocessing cost assum-
ing apriori knowledge of curtailment strategies isO(TMN logN).

While the fast
√

2-factor approximation algorithm briefly
discussed above can be used to very quickly compute sus-
tainable DR solutions, the error due to the

√
2-factor ap-

proximation may be unacceptably large in some cases. There-
fore, using ideas from the subset sum problem [12] we de-
veloped a Polynomial Time Approximation Scheme (PTAS)
that approximates the optimal solution provided by the ILP
in Equation 3 to within an arbitrarily small ε-factor in time
polynomial in MN/ε.

Readers can refer to [14] for further details on the algo-
rithms.

3.3.6 Sustainable Demand Response with Strategy
Overheads

Using the experience of several DR events performed in USC
micro-grid we observed that it was impractical for customers
to switch between too many strategies during the DR event
as this led to additional overhead costs. We modeled this
as an additional constraint in the ILP by using a new state
transition variable that bounds τ , the number of times a
customer can switch strategies between intervals [14]. Note
that under this formulation, a customer is likely to have
contiguous strategies across intervals.

We use the following ILP to model a Sustainable DR event
with strategy overheads.

Minimize :

T∑
t=1

εt (6)

Subject to : |
M∑
i=1

N∑
j=1

ctijx
t
ij −

γ

T
|≤ εt ∀t

(7)

N∑
j=1

xtij = 1 ∀i, t

(8)

xtij ∈ {0, 1} ∀i, j
Stij = | xtij − xt−1

ij | ∀i, j, t ∈ {2, . . . , T}
(9)

T∑
t=2

N∑
j=1

Stij ≤ 2τ ∀i

(10)

The new constraints to limit the strategy switching are in-
troduced using Equation 9 and Equation 10 where 9 calcu-
lates the number of times customer i switches a particular
strategy. Equation 10 bounds the total number of times a
customer can switch strategies. Since the state variable Stij
counts both switching into and switching out from strategy
j, equation 10 uses 2τ as the bound. In our experiments, we
fix the value of τ = 2.

3.3.7 Fairness in Demand Response with Strategy Tran-
sition Matrix

The customer selection algorithms for Demand Response
discussed in the previous sections determine the customer
strategy pairs for a DR event without taking fairness into



account. This might cause some of the customers to curtail
disproportionately more than others. To ensure that the
burden of curtailment is distributed evenly among the cus-
tomers, we defined a notion of fairness in customer selection
for Demand Response. We bound the amount of curtail-
ment that can be achieved by each customer. We define a
vector Bt whose ith element denotes the upper bound on
the curtailment requested by customer i in interval t.

In the previous section, we bounded the number of strategy
switches. In this section, we consider the possibility that due
to mechanical constraints, it is not possible for the customers
to arbitrarily switch strategies between intervals. To accom-
modate this constraint, we introduce a concept of strategy
transition matrix which guides the strategy transitions for
each customer at each interval. Let the number of strategies
a customer can adopt is N . We define a terminating strategy
as a strategy from which the customer cannot switch to any
other strategy until the end of the DR event. Terminating
strategy can be used to imply that the customer is now no
more a part of the DR event (curtailment value 0). Without
loss of generality, let strategy 1 be the default strategy and
N + 1 be the terminating strategy. A strategy transition
matrix W i is an {0, 1}N+1×N+1 matrix for each customer i
with an element wij,k = 1 if customer i can transition from
strategy j to strategy k and 0 otherwise. At time t = 0, i.e.
just before the first interval of the DR event, the customer
is in strategy 1: the default strategy with curtailment value
0.

Consider a customer with 4 strategies: 1,2,3,4. Let 1 be the
default strategy with a curtailment value 0. Let 5 be the
terminating strategy. The curtailment value of 5 is equal to
that of strategy 1. However, the non existence of any outgo-
ing transition differentiates it from the default strategy. A
customer starts with strategy 1 at time t = 0. From strat-
egy 1, the customer can either switch to strategies 2 or 3 or
remain in 1. From 2 or 3 the customer can either switch to
4 or not switch at all. From strategy 4, the only options are
to remain in strategy 4 or switch to the terminating strategy
5. The following matrix represents a valid state transition
matrix for this scenario.


1 1 1 0 0
0 1 0 1 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1


The ILP of Section 3.3.4 can be modified to incorporate
fairness and strategy transition matrix as follows:

Minimize :

T∑
t=1

εt (11)

Subject to : |
M∑
i=1

N∑
j=1

ctijx
t
ij −

γ

T
|≤ εt ∀t

(12)

N∑
j=1

xtij = 1 ∀i, t

(13)

xtij ∈ {0, 1} ∀i, j
T∑
t=1

N∑
j=1

ctijx
t
ij ≤ Bi ∀i

(14)

N∑
j=1

xtijW
i
kj >= xt−1

ik ∀i, t, ∀k ∈ {1, . . . , N}

(15)

x0i0 = 1 ∀i

The new Equation 14 added to the SDR ILP ensures that
each building participates with an overall curtailment value
in the DR event within its curtailment budget. Equation 15
ensures that only valid strategy switching occurs in each
interval.

4. EVALUATION
4.1 Prediction Engine Evaluation
A thorough analysis of the various predictions models is per-
formed in [3]. As per the analysis, ARIMA is the preferred
model for accurate short term predictions on weekdays.
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Figure 3: Comparison of the predicted consumption values
by ARIMA and actual observed consumption values

In Figure 3, we plot the predicted values by using ARIMA
with parameters (p, d, q) as (8,1,4) [3] along with the actual
observed consumption values (on a non-DR day). The ac-
curacy of ARIMA shown in the figure is 4.92±3.37%.
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Figure 4: Error/STDEV of curtailment prediction for DR
events

In Figure 4, we plot the error/stdev of curtailment prediction
for various DR events. For each DR event, we first predict
the baseline consumption if no DR event occurs that day.
Then we use our Direct Curtailment Forecasting model to
predict the reduced consumption for each building-strategy
pair. The difference between baseline and the reduced con-
sumption is the predicted curtailment. Once the DR event
is finished, we collect the actual consumption which when
subtracted by the baseline gives us the actual curtailment
value. To plot the figure, we only consider the building-
strategy pairs scheduled in the given DR day and calculate
the error and stdev accordingly. As can be noted from the
figure, the prediction accuracy varies from 5.85±3.13% to
15.28±2.5% across the DR events.

4.2 Optimization Engine Evaluation
To evaluate the performance of the optimization engine, we
create a time varying curtailment matrix for a DR event
performed on the campus. 28 buildings each with anywhere
between 1 to 7 strategies were involved for a 4 hour period
with 16 intervals of 15 minute each. A curtailment value of 0
was assigned to a building strategy pair which did not exist.
A java implementation of the heuristic was used whereas the
ILPs were solved using the IBM ILOG CPLEX software [1].

Detailed experiments for the various optimization modules
discussed in this paper can be found in our prior publi-
cation [14]. Here, we present just a few results for com-
pleteness. Figure 5 shows the results of varying the tar-
geted curtailment from 50 kWh to 1000 kWh. The labels
SDR refers to Sustainable Demand Response ILP described
in Section 3.3.4, SDR with switch limit refers to the SDR
ILP which considers strategy overheads as described in Sec-
tion 3.3.6 and heuristic refers to the heuristic described in
Section 3.3.2. The vertical axis is limited to a maximum
error of 3.0 kWh to ensure the readability of the graph. The
actual error values are given in the table below the graphs.
SDR incurs errors in the range of 0.01-0.1 kWh which in
relative terms is 0.004-0.09% SDR with strategy overheads
is more restrictive. Thus, it incurs errors in the range of 0.1-
0.4 kWh which in relative terms is 0.01-0.4% The heuristic

discussed in Section 3.3.2 incurs high errors of 0.7-10 kWh
compared with the ILPs, however the relative errors incurred
in the range of 0.7-8% is still manageable.

50 100 200 250 400 500 600 750 800 1000

SDR 0.048 0.096 0.176 0.128 0.016 0.112 0.16 0.016 0.032 0.144

SDR with switch limit 0.168 0.426 0.204 0.17 0.175 0.309 0.195 0.106 0.242 0.223

heuristic 2.206 0.755 7.168 9.007 10.426 6.443 6.002 7.031 5.465 5.894

0

0.5

1

1.5

2

2.5

3

Figure 5: Absolute errors in kWh incurred for a Targeted
curtailment in the range 50-1000 kWh

In Figure 6, to emphasize the significance of distributing
the curtailment evenly over the entire DR event, we com-
pare the curtailment values achieved in each interval by the
ILPs in Section 3.3.3 (referred in the figure with the label
TDR) and the Sustainable Demand Response ILP described
in Section 3.3.4 (referred in the figure with the label SDR)
for a targeted curtailment value of 1200 kWh for the entire
DR interval. TDR ILP incurs an error of 0.002 kWh which is
far lower than the 0.031 kWh error incurred by the SDR ILP.
However, most of the curtailment is achieved in intervals 10
and 11 and the rest of the intervals have lower curtailment
values. The Sustainable DR achieves a curtailment value of
around 75 kWh in each interval.

Figure 6: Absolute errors in kWh incurred for a Targeted
curtailment in the range 50-1000 kWh

4.3 Overall DR Evaluation
Our prior works have analyzed the accuracy of various pre-
diction and optimization models thoroughly which have also
been summarized in Sections 4.1 and 4.2. In this section, we
will evaluate how the prediction engine and the optimization
fit together to execute a successful DR event.



We will discuss the performance of a DR event performed
on the campus. 28 buildings were available for the 4 hour
long event from 1 pm to 5 pm. Each building had anywhere
between 1 to 7 strategies available to it. A targeted cur-
tailment of 6400 kWh was set. the Policy Engine provided
building-strategy pair recommendations to the FMS using
the predicted curtailment values. It estimated that a cur-
tailment of 2332 kWh can be obtained using the available
building-strategy pairs.

Practical challenges such as increase in temperature above
the comfort zone, resident complaints etc. lead to dropping
out of certain buildings during the DR event. Sometimes
buildings fail to respond to the signals for adopting the sug-
gested strategies. Hence, the actual obtained curtailment
value was 2103 kWh for the entire DR event as opposed to
the estimated 2332 kWh.

●●●●●
●●●●●●●●●●●●

●

●
●

●●●●
●●●

●

●

●

●
●

●●
●

●●

●

●

●●
●

●

●

●
●

●
●

●

●●●

●

●

●

●

●

●●

●

●
●

●●●
●

●
●

●

●

●

●

●
●●

●●

●
●●●

●
●

●●

●

●

●

●

●

●

●
●

●

25

50

75

01:00 03:00 05:00 07:00 09:00 11:00 13:00 15:00 17:00 19:00 21:00 23:00
Time of Day

E
le

ct
ric

ity
 C

on
su

m
pt

io
n 

(k
W

h)

THH− total drop = 310.8 kWh

Figure 7: Consumption profile of building THH during DR

In Figures 7- 10, we show the energy consumption profile of
a few buildings which achieved the highest curtailment val-
ues. The x-axis denotes the time of the day and the y-axis
denotes the energy consumption value in kWh. For sim-
plicity, we assume that the consumption in the absence of
DR would be the observed value at the start of DR event
(1pm). This is denoted by the red line in the figures. The
buildings THH, MRF and WPH followed the technique of
Variable Frequency Drive Speed Reset (VFD) [20] and ob-
tained a curtailment value of 310, 145 and 98 kWh respec-
tively. The building VKC adopted a combination of Variable
Frequency Drive Speed Reset (VFD) and Equipment Duty
Cycling (DUTY) [20] and obtained a curtailment value of
169 kWh.

However, not every building achieved the expected curtail-
ment value. Figures 11- 12 show the consumption profile of
buildings BHE and DRB which achieved a negative curtail-
ment value. Due to some practical limitations, these build-
ings failed to adopt the strategies the FMS signaled them to
implement.
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Figure 8: Consumption profile of building VKC during DR
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Figure 9: Consumption profile of building MRF during DR

5. CONCLUSION
In this paper, we discussed the implementation of a sys-
tem which performs automated Dynamic Demand Response
(D2R) in USC microgrid. Leveraging the fine grained data
available by the smart meters, our predictive models provide
accurate estimation of energy consumption by each building
on the campus and achievable curtailment by each building-
strategy pair. This information is used by our optimization
models to schedule the building-strategy pairs for the DR
event in order to achieve the requested curtailment from
the grid in a sustainable and fair manner during the entire
DR event. The experience gained from such a real world
implementation can be used to implement automated DR
programs in city scale smart grids.
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WPH− total drop = 98.6 kWh

Figure 10: Consumption profile of building WPH during DR
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Figure 11: Consumption profile of building BHE during DR
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