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ABSTRACT

Demand response (DR) is a technique used in smart grids
to shape customer load during peak hours. Automated DR
offers utilities a fine grained control and a high degree of
confidence in the outcome. However the impact on the cus-
tomer’s comfort means this technique is more suited for in-
dustrial and commercial settings than for residential homes.
In this paper we propose a system for achieving automated
controlled DR in a heterogeneous environment. We present
some of the main issues arising in building such a system,
including privacy, customer satisfiability, reliability, and fast
decision turnaround, with emphasis on the solutions we pro-
posed. Based on the lessons we learned from empirical re-
sults we describe an integrated automated system for con-
trolled DR on the USC microgrid. Results show that while
on a per building per event basis the accuracy of our pre-
diction and customer selection techniques varies, it performs
well on average when considering several events and build-
ings.

Categories and Subject Descriptors
J.m [Computer Applications|: Miscellaneous

; H4 [Information Systems]: Information Systems Appli-
cations
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smart grid, automated direct demand response
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1. INTRODUCTION

With the increasing presence of smart appliances in our
homes smart grids have a great opportunity to become ubig-
uitous in our society. Their unique advantages driven by the
bidirectional smart meter communication channel between
providers and customers make them suited for energy con-
sumption optimization. Demand Response (DR) [40, 43] is
a well known technique used by utilities to shape customers
load especially during peak hours when the generation ca-
pacity is in danger of being exceeded. Utilities have at their
disposal a variety of techniques including direct control [41],
incentives [28] or voluntary programs [7] to reduce peak de-
mand.

Direct control is a technique which lets utilities control the
customers’ appliances directly without relying on incentives
or voluntary participation. For this reason it can be seen
as intrusive and having a considerable impact on the cus-
tomer lifestyles. Hence, it seems more suited for offices
[7] and industrial complexes than for residential customers.
Nonetheless its advantages including fine grained control of
the amount of energy to curtail and the ability to efficiently
target specific areas and time periods [14] makes it suited for
further research into how it can be easily and with minimal
impact integrated in complex microgrid environments con-
sisting of heterogeneous buildings (e.g., offices, residential
apartments, libraries, lecture rooms).

The USC microgrid, peaking at around 27 MW, is a unique
environment to study the impact of direct control in complex
social and cultural environments by offering a state-of-the-
art control center capable of managing 170 buildings spread
across two campuses totaling more than 50,000 sensors in-
cluding smart meters, thermal, humidity, presence, and pho-
tosensitive devices. Together, they make the USC campus a
truly “living laboratory” for advancing Smart Grid research
and technology [36]. The USC Facility Management Ser-
vices (FMS) owns and operates the campus electrical in-
frastructure which includes two substations and a 3 million
gallon Thermal Energy Storage (TES) system complement-
ing the existing chilled water system. The TES reduces the
need for additional electrical generating facilities by chill-



ing the water at night and using it in the air conditioning
system during daytime when electricity is most expensive.
FMS has more than 6 years worth of historical and real-
time kWh consumption data, gathered from 33 DR enabled
buildings, aggregated at 15 minute intervals. Combined with
detailed information on the classes’ schedule, buildings’ oc-
cupancy, and weather data, it offers a unique opportunity
to investigate the main challenges and possible solutions to
adopting an efficient and reliable controlled DR program in
complex dynamic environments. Currently FMS’s focus is
on HVAC based DR but upgrades to extend it to other DR
techniques such as those based on the lighting system have
been planned. The USC microgrid is also a test bed for
the LA DWP Smart Grid Demonstration Project (SGRDP)
[17] which involves more than 50,000 residential customers in
voluntary and controlled (through smart home appliances)
DR. LA DWP controls the DR activities on the campus mi-
crogrid by issuing curtailment notifications in advance and
monitoring the progress and outcome of the DR events.

To achieve a customer-tolerated and utility-efficient con-
trolled DR numerous factors need to be taken into consider-
ation including: data privacy, customer satisfiability, relia-
bility of the controlled DR action, and fast turnaround time
of the decision process. To make things more complicate
the DR model widely used nowadays needs to consider more
realistic scenarios on when, for how long, by how much, and
how (whom to pick) to reduce electricity consumption. We
call this decision making process Dynamic DR (D?R).

In this paper we present a functional software platform in-
tegrated with the FMS control center which leverages the
information stored in heterogeneous data sources to increase
the accuracy of the curtailment prediction and customer se-
lection algorithms in a scalable, reliable, and secure platform
for D?R. Specifically we address the following aspects:

e An overview of the main challenges for D*R and our
approaches to solve them. Based on these results we
have designed and implemented our D?R system;

e The software architecture of the D*R system and its
main components;

e The system integration with the FMS and the LA
DWP SGRDP;

e A comprehensive analysis of the results obtained from
the real-life deployment of the system in terms of ac-
curacy and efficiency. The novelty of the use case lies
in the fact that we are trying to predict the curtailed
consumption and to use it in our customer selection
method.

The rest of the paper is structured as follows: Section 2 dis-
cusses in detail the main challenges D*R adoption in real-life
systems face. Section 5 revisits our main results to empha-
size the experimental work we have done prior to implement-
ing the system with respect to DR techniques, algorithms,
and systems. Section 3 presents the system architecture
and main components with emphasis on the integration be-
tween the proposed system, FMS and LA DWP. Section 4
analyzes the main results from the real-life experiments by

looking into aspects such as accuracy, reliability, and timely
delivery of the consumer selection decisions. Finally Sec-
tion 6 wraps the overview and analysis, and lays out future
research directions.

2. CHALLENGES AND OUR APPROACHES
FOR D?R SYSTEMS

While the data deluge coming from various sensors (e.g.,
smart meters, weather stations, occupancy sensors) offers a
fertile environment for researching D? R techniques, enabling
them on an actual smart grid or microgrid faces several chal-
lenges including information integration, privacy guarantees,
predictive analytics, and dynamic decision making. Figure 1
depicts a typical D?R system emphasizing these challenges
and where they occur in the overall system. Information
coming from the various heterogeneous data sources needs
to be integrated under a common representation before be-
ing used by the consumption and curtailment prediction
method. Finally the information obtained from the pre-
diction techniques is used in the customer selection process.
The entire process needs to ensure the privacy and security
of the data obtained from sensors and information extracted
from the prediction and selection mechanisms. In what fol-
lows we detail the challenges and our approaches for each of
these steps:

2.1 Information Integration

Information available in a smart grid enables the design of
novel D?R techniques for finer control over the energy use.
This information goes beyond details about the energy con-
sumption readings available from the utility through smart
meters, incorporating indirect influencers derived from cus-
tomer activities, natural phenomena, and infrastructure be-
havior. For example, the current weather, the building oc-
cupancy fluctuations (e.g., weekdays vs. workdays vs. hol-
idays), the building thermal properties (e.g., construction
material), and the power grid infrastructure, can all affect
energy consumption in a smart grid. Figure 2 shows how
the different information sources are related and influence
each other [45].

By integrating these various data sources D?R algorithms
can locate patterns among a large class of historical and real-
time information to predict energy consumption and iden-
tify curtailment opportunities. However, in order to take
full advantage of the diverse data influx, a holistic view of
information across multiple domains is required. This inte-
grated information model needs to be extensible to meet the
organic and rapid growth of information sources in the smart
grid domain, while being easy to interpret and manage the
diversity of information and applications.

To address these challenges we proposed in our previous
work [45] a semantic information model for the smart grid
and demonstrated its use for DR in the campus microgrid,
highlighting its extensibility, versatility, and usability.

2.2 Privacy Guarantees

Data from these diverse sources is used among others to
predict energy consumption and compute billing invoices.
Because some of the information comes from personal data,
security and privacy issues have started to receive increas-
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sources in a smart grid.

ing attention [12, 31, 35]. Privacy aware data retrieval and
processing is needed to meet statutory and consumer re-
quirements. Adding too many privacy constraints, however
leads to the system’s inability to perform the intended task.
A straightforward example comes from a simple DR use case
where the future energy consumption of a consumer needs
to be predicted based on historical data. Here, smart meter
data needs to be sampled at an appropriate resolution (e.g.,

one meter value every 15 minutes). However, this granular-
ity may cause privacy issues as it could be used to predict the
consumer behavior at home [37] or the inadvertent release of
fine grained meter data linking back to the consumer with-
out his/hers approval. To avoid this utilities could decrease
the sampling rate but this would impact the prediction ac-
curacy by loosing information on short hourly consumption
trends. Therefore one of the challenges in smart grid system
engineering is to find a good trade-off between protecting a
customer’s privacy and being able to provide useful services.
The first model for the trade-off assessment has proposed
in our previous work [24] while in [25] we have proposed a
model-driven solution for representing the smart grid system
and use case communication patterns to assess their privacy
impact using expert domain knowledge.

In addition, to ensure data privacy secure repositories are
needed especially when outsourcing the storage using emerg-
ing technologies such as clouds which offer a reliable and
cheap alternative to traditional storage servers. Existing so-
lutions for clouds however offer basic key-based access con-
trol mechanisms and require extensive deployment of soft-
ware infrastructures that limits their manageability. In ad-
dition relying on external services for ensuring security and
privacy can lead to security breaches outside the control of
the beneficiary. In [27] we have proposed Cryptonite, a so-
lution that is controlled by the utilities, has a low key man-
agement overhead, and is compatible with existing storage
service interfaces while not sacrificing performance and scal-
ability.



2.3 Predictive Analytics

Predictive models for energy consumption provide insight
into daily load requirements and peak demand periods be-
ing useful for planning DR events to curtail energy con-
sumption. Utilities have traditionally used simple methods
and statistical models that are easy to use and interpret
[2, 3, 16]. However, the complexity and diversity of the
data which impacts consumption motivates the design of
advanced methods which can cope not only with the noise
in the consumption data, but also with the missing data due
to infrastructure, climate, or privacy issues.

Consumer clustering. While time series and regression tree
based techniques can be trained on historical data to pre-
dict future consumption, they face two challenges when ap-
plied to large consumer pools: (1) the training time be-
comes costly [19], and (2) the variability in consumption
data causes the prediction errors to increase [8]. Aggregat-
ing data from multiple consumers into a single “virtual con-
sumer” helps address these aforementioned issues. Besides
reducing the number of customers to train and predict for,
it also reduces the temporal variability of the virtual cus-
tomer, increasing the prediction accuracy [1]. Due to these
advantages we have proposed a polynomial time incremen-
tal clustering technique for aggregating consumers [44]. The
proposed method adds new customers to clusters only if the
cumulative consumption prediction error of the aggregated
cluster consumption is reduced by the new addition.

The efficiency of the aggregated consumption prediction de-
pends however on the prediction method. Our previous
studies have showed that the accuracy depends among oth-
ers on the customer consumption pattern [8]. This means
that an efficient system needs to decide and use the best
method for a particular pattern. Doing an exhaustive search
over all methods is time consuming and unsuited for D*R
where fast periodic decisions are needed. We have proposed
a novel neural network classification method for predicting
the best method based on the standard deviation of the his-
torical time series [19]. The method has proven to be ef-
ficient both in the prediction outcome (84-94% accuracy)
and in execution time (< 1s per consumer for predicting
consumption once trained, making it suited for parallel ex-
ecution).

Partial data. Complex infrastructures such as smart grids
where large volumes of various data are trended at high
velocities brings into picture the inevitable aspect of data
quality. Due to infrastructure failures and privacy concerns
data utilities may not have access to the complete set of
data needed to take accurate decisions. For this reason it
is imperative to develop advanced methods that rely only
on the available data by extrapolating missing information
from existing one. The rationale behind this is that some
smart grid sensors may be correlated due to their spatial
proximity. This is particularly true for the USC microgrid
where there exists a strong correlation between dormitory
occupancy and classroom schedules. Our empirical results
have showed that recent (e.g., up to 4 hours old) real-time
values of a few influential sensors are far more effective as
predictors than the sensor’s own older values. Extending

this result we have also proven that we can use the same set
of influential sensors for all all sensors and still get compa-
rable results with the initial approach [6].

Curtailed consumption. The previous challenges concern-
ing predictive analytics have focused on forecasting the con-
sumption outside the DR event for planning purposes. Equally
important in D2R is the prediction of the curtailed con-
sumption (i.e., consumption during DR) which helps util-
ities estimate the amount of energy shed and allows them
to dynamically adjust the targeted consumers in case they
under/over-shoot. Curtailed consumption estimation has re-
ceived less attention with most of the utilities focusing on
baseline prediction methods, e.g., the ISO models [2, 3, 16].
Reduced consumption prediction is particularly difficult be-
cause of the few number of events each consumer partici-
pates in thus resulting in small training data sets for predic-
tion models. An additional challenge is that the DR events
need to be time aligned and that selected past events need
to take place in days similar with the current event. To in-
crease prediction efficiency and account for dissimilarities a
morning adjustment factor applied to the energy consump-
tion is usually used [23]. Our studies [13] have shown for the
USC microgrid case that averaging the reduced consumption
of past DR events for a particular building-DR strategy pair
achieves good estimates (<15%) for some of the pairs. How-
ever the complexity and impact of the different curtailment
DR strategies used in a controlled environment [38] (e.g.,
Variable Frequency Drive — VFD [34], Global Temperature
Reset — GTR [34], and Duty Cycling) requires more complex
solutions relying on causal effects and accounting for more
external factors.

2.4 Dynamic Decision Making

For DR to be successful accurate prediction techniques
need to be complemented with an efficient customer selec-
tion. Typical DR events have a specific curtailment target C'
they need to meet over a given time period 7. Given the dy-
namics and different consumption patterns of each customer
the selected set needs to change over time to meet the spec-
ified target. Furthermore, utilities are sometimes interested
in keeping the level of curtailment stable throughout the
duration of the DR event, i.e., Sustainable D*R (SD?*R).
Reasons utilities may want this property include ensuring
reliability in power distribution and cost reduction during
peak hours. SD?R as D?R is a hard combinatorial problem
due to the numerous feasible combinations possible.

The problem can be formulated as a binary linear program-
ming optimization. Given n consumers and m DR strate-
gies, let B be the matrix of building-strategy combinations,
where each entry B;; represents the predicted curtailment
vector < 71,72, ...,7x > obtained when applying DR strategy
j on consumer i across the DR event time frame 7. Each
value 7, € R is calculated at a 15 minute interval and repre-
sents the difference between the predicted baseline and the
predicted consumption during the DR event. A positive cur-
tailment estimate indicates that the strategy was successful
in curtailing while a negative one indicates a predicted in-
crease in consumption. It should be noted that the actual
values depend on the efficiency of the methods used in the
estimation [13].



Given the above notations the problem can be defined as
min  2o0C + 32, ,, 21, Tij(—1)7i; subject to the fol-
lowing constraints >, _, ,, > 7., @i;jri; <C, 30, ,, Tij =
1 and zoo = 1. Here x;; represents the participation matrix:
xi; = 1 if strategy j is used on building i, 0 otherwise.
It should be noted that ideally >>,_,  >°,_,  ziri; = C
however due to the nature of r;; this is usually not possible.
To ensure the SD?R at each time interval ¢ a reselection
occurs based on the new target C;y = C' — A;_1, where A;_1
represents the achieved curtailment in the previous interval
computed as the difference between the predicted baseline
and the actual observed curtailed consumption.

Integer linear programming problems are known to be N'P-
hard. While for a small set of variables they may be able to
offer a solution in a reasonable amount of time for a large
set of customers a utility can have this becomes unfeasible
due to the near real-time requirement of the D2R. We have
proposed in [47, 46] a fast and efficient heuristics based on
a knapsack approach, i.e., we formulated the problem as a
change-making problem. Our simulated experiments have
shown a reduction in the number of selected customers as
well as a high probability in achieving the targeted curtail-
ment. This makes our solution reliable and suited for cases
where human comfort is involved.

While this data driven approach has proven to work well for
some cases, it should be noted that in some cases where a
customer is not a single household but a larger entity such as
a building, the curtailment may not be visible directly from
the consumption data. For instance, a building may enter in
DR by using GTR but other factors such as a lower outside
temperature (leading to a smaller impact in curtailment)
correlated with an increase usage of lights and IT equip-
ment due to classes may hide the curtailment drop. To study
this we need to analyze the correlation between the building
and equipment level consumption during a DR event. Our
analysis has shown that ~ 50% of the tested campus build-
ings exhibit a strong correlation between building and equip-
ment indicating that in these cases a data driven approach
can produce reliable consumer selection. For the other half
a bottom-up approach the curtailment is derived from the
mechanical properties should be used. In [20] we have pro-
posed several heuristics that consider equipment and human
comfort. Results have shown that the best method depends
on the used DR strategy and that a certain level of human
comfort can be achieved despite being a contradictory objec-
tive with respect to curtailment. The main drawback of the
bottom-up approach is that it is only useful when the tech-
nical specifications of the equipment used in DR are known
(e.g., how much cooling unit consumes when its fans are
operating at 100%).

3. SYSTEM REALIZATION

While in Sect. 2 we have outlined the main challenges and
our solutions for D? R systems, in this section we focus on the
actual system implemented in the USC campus microgrid.
Section 4 will present the main results of over 400 DR real-
life experiments on the system.

3.1 LA DWP -FMS - VSoE Integration

As mentioned in Sect. 1 the proposed system is part of the
LA DWP SGRDP. The USC microgrid communicates with

the LA DWP DRAS server [26] through OpenADR [5] mes-
sages. Internally, the software infrastructure consists of two
main components: the Integrated Building Control (IBC)
and the Demand Decision Support (DDS) module. The for-
mer is in charge of controlling buildings through the BACnet
protocol [9], while the latter is responsible for the building-
strategy selection during each DR event. Figure 3 gives an
overview of the system’s main components. A typical work-
flow begins with an LA DWP OpenADR message containing
the request details for a DR event (e.g., datetime, duration,
curtailment target). For the USC microgrid the duration is
always set between 1:00PM and 5:00PM due to the specific
LA climate which induces a peak load at that time. Once
it has received the request the IBC forwards the details to
DDS including additional details such as the list of buildings
and associated DR strategies for the given event. DDS then
processes the message and recommends based on historical
and real-time data (i.e., consumption, weather, occupancy,
etc.) which building-strategy pairs to use. This list is sent
back to IBC which sends the selected buildings into DR by
using the suggested strategies. Information on the achieved
curtailment and estimated achievable target is sent back to
the LA DWP DRAS every 15 minutes. To ensure SD?R
a building-strategy reselection is performed hourly. Finally,
the outcome of the DR event is sent 15 minutes after its
completion, by providing LA DWP with information on the
achieved curtailment and the deviation from the initial es-
timate sent with the first DDS message. Next we detail the
data flow and message types, the DDS, and the secure data
repository.
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Building Control olicy Engine
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Figure 3: Overview of the complete automated D?R
system.

3.2 Data flow

The IBC constantly communicates with DDS in order to sus-
tain the curtailment target. The communication protocol is
based on REST [18] and contains two types of messages:
SELECT and INFO. The former is used to initialize/adjust
the buildings that participate in the DR event, while the
latter is used to send back the current achieved curtailment
together with the remaining estimate. Figure (cf. Fig. 4)
depicts the message flow. Before the start of the DR event
two SELECT messages are sent to initialize (FAR) the se-
lection and to adjust (NEAR) it 15 minutes before the event
start. The NEAR is intended to capture any changes due to
extrinsic factors such as temperature fluctuations. During
DR a series of INFO and SELECT messages follow at 15
minute intervals with the SELECT messages issued on the
hour. Their role is to adjust the building-strategy selection




to achieve SD?R as explained in the next subsection. After
the completion of the DR event a final INFO message is re-
layed back to the DRAS server through the IBC. It should
be noted the IBC receives a third type of ACTIVE message
which effectively triggers the start of the DR, however this
message is not being relayed to DDS.

Estimated >0 |, Estimated > 0 ) Estimated = 0
Achieved =0 Achieved >0 ' Achieved >0
SELECT SELECT INFO SELECT INFO
‘FAR ‘NEAR ‘ ‘
10:00AM — 12:45PM —— 1:15PM 2:00PM ——+— 5:15PM
DR event DR event
start time end time
1:00 PM 5:00PM

Figure 4: Message types .

3.3 DDS

At the core of the D?R system lies DDS'. DDS is a Java
library embedded with machine learning techniques for con-
sumption and curtailment prediction as well consumer and
DR strategy selection algorithms for SD?R. The DDS is
currently exposed to the IBC as a REST service which re-
ceives as input consumption data and DR requirements (e.g.,
duration, start time, available buildings and strategies) and
returns the suggested list of building-strategies. Figure 5
depicts the overall functionality. At the core of the decision
process lie three processes: the consumption baseline com-
putation, the curtailment matrix setup, and the building-
strategy selection.

The consumption baseline, used to determine the consump-
tion as it would have been in the absence of the DR is uti-
lized both by the selection policy to determine how much has
been achieved and what is the remaining target, and the cur-
tailment matrix to determine the estimated curtailment for
the duration of the DR event. Our studies [13] have shown
that the California Southern Edison [16] and fixed (i.e., the
consumption value at the start of the DR) baselines are the
least biased.

To accurately estimate the baseline consumption values just
before the DR start should be used. However because the
FAR message is usually sent a few hours in advance the esti-
mates are likely to be off. The purpose of the FAR message
is thus to give a rough estimate on the overall curtailment
projection for the day. The refined selection is accomplished
as a result of the NEAR message sent 1 hour ahead of the
DR event.

The curtailment matrix is computed based on the curtailed
consumption estimate given by our averaging method [13]
(cf. Sect. 2.3) and the fixed baseline. Each row in the ma-
trix contains sixteen 15 minute values (corresponding to the
entire 1:00PM-5:00PM DR interval) for a single building-
strategy combination. To ensure enough data is available
for the averaging method we have performed more than 400

http://smartgrid.usc.edu/dds-javadoc/2.0/

DR experiments between Nov 2012 - Dec 2014 1:00PM to
5:00PM on 33 USC buildings using VFD, GTR, Duty, or
any combination supported by a particular building. Fig-
ure 6 depicts the distribution of various DR strategy tests
per building. Based on these tests for a specific building-
strategy we take all previous similar DR events associated
with it and average the 15 minute curtailed consumption
values recorded during DR. The 16 resulted values (4 read-
ings per hour x 4 hours) are then subtracted from the fixed
baseline for the upcoming scheduled event obtaining the
estimated curtailment at 15 minute granularity. Omnce all
building-strategy entries are computed the matrix is used
by the policy selection engine to decide based on it and the
so far achieved curtailment (0 if outside the DR for FAR
and NEAR messages) which building-strategy pairs to se-
lect. During its decision making process the engine will first
remove all negative curtailment matrix estimates as they
indicate a possible increase in consumption rather than a
decrease during the DR. Section 2.4 has addressed this pos-
sibility and while a bottom-up approach is possible [20] the
current integrated system only considers the data driven ap-
proach based on the curtailment matrix.

During DR based on the achieved curtailment the engine
may decide to add/remove a building-strategy pair or to
change the strategy of an already selected building. In the
latter case, due to mechanical limitations only certain changes
are allowed. Figure 7 shows the allowed transitions between
the DR strategies. It should be noted that the supported
strategies also differ for each building. Finally, the selected
building-strategy list is sent back to the IBC which adjusts
the building in the DR accordingly.

/ Historical data

Baseline Curtailment
computation Matrix

Real-timd g '
data Dataclean-up Predicted

[ | curtailment

D ——— Achieve

curtailment

DR event| Message Enrolled ) ) Recommended
, g - - SelectionPolicy | =7 [
info processing Building-Strategy list Building-Strategy ppairs

\ / \ )
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Figure 5: Overview of the D?R decision system.

3.4 Data Storage

Due to the distributed nature of the automated D?R system
data is stored in several places based on the location of the
service provider (i.e., LA DWP for DRAS, FMS for IBC,
and DDS — which is stored in the Viterbi School of Engi-
neering). FMS currently relies on plain text files to export
the consumption data DDS requires. To ensure the security
of these files, solutions such as our Cryptonite [27] discussed
in Sect. 2.2 can be used. In the near future a migration
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towards an ICONICS Hyper Historian [22] which offers high
performance, robust, scalable, and secure consumption data
storage compatible with the BACnet connectivity standard
used by FMS is planned.

To manage the historical and real-time data sent by FMS
with minimum network overhead DDS stores the real-time
data in a scalable MongoDB repository [33] which offers ap-
plication and file level encryption to secure the privacy of
the data. As such it minimizes the impact on the network
since all data is available near the server for the curtailment
matrix computation and curtailed initial estimate and final
observed values.

Besides consumption data some of the DDS consumption
and curtailment forecast algorithms (e.g., regression tree)
rely on additional information such as weather and class-
room schedule. For the weather data we rely on the NOAA
station located on the USC campus. Data coming from these
additional sources is stored as plain text and updated ev-
ery semester (for the schedule) or periodically through au-
tomated scripts (for the weather).

4. DEPLOYMENT AND EXPERIMENTS

The proposed system has been validated on 33 campus build-
ings each supporting one or more HVAC-based DR strate-
gies (cf. Fig. 7). We have first analyzed the accuracy of
our averaging model in predicting the curtailed consumption
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Figure 8: Average MAPE error per building for all
events.
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Figure 9: MAPE error per event event per building.

based on more than 400 DR events run between 1:00PM and
5:00PM from Nov 2012 to Dec 2014. These experiments are
the same ones used for building the curtailment matrix dis-
cussed in Sect. 3.3. Cross validation was used to assess the
MAPE error of the averaging error. Nine more DR experi-
ments were run between Oct 24 and Dec 5 2015 to determine
the accuracy of our DDS selection policy when relying on the
curtailment matrix estimates. The accuracy was determined
to be the MAPE of the total observed kWh consumption at
the end of the DR end as compared to the initial estimate.
Results are discussed in what follows.

4.1 Analysis

Figure 8 shows good results on average for the proposed cur-
tailment method on a per building basis across all events.
Around 49% of buildings had an error less than 10% while
6% were greater than 20%. However a detailed analysis as
depicted in Fig. 9 shows a few outliers for certain events in
Spring and Fall. For instance we have noticed few buildings
which exhibit high variability with errors ranging between
10% to 50%-100% for certain events. Taken independently,
these buildings are unsuited for DR. We are currently study-
ing these buildings to determine the factors that differentiate
them from other more predictable buildings. Initial results
have not showed any conclusive results and we leave this
analysis open for future work.

Results have shown us that given enough DR events our
proposed method can provide on average good estimates in
forecasting the curtailment of a future event. While this
can be good for long term savings it means that for specific
DR events the errors could still be high. Figure 10 depict-
ing the errors for individual events shows a few of outliers



U N N T - I - I - I = - N T
N ’\Q’\ Q'\ Q'\ Q'\ Q"\ Q.\ Q’\ Q’\ '\Q'\ Q'\

S .S S
L S U S R U ot L i e
VNP FF &N

Date

Figure 10: Average MAPE error per event for all
buildings.

with errors above 20%. Complementing with the informa-
tion from Fig. 9 it can be concluded that while individual
buildings may experience fluctuations their aggregated re-
sults contribute to a low overall error per event.

The nine tests we performed to validate our hypothesis and
cross validation experiments have shown that the method
over predicts the curtailment by anywhere in the [12$, 46%]
with three events being less than 16% off the initial estimate
and five under 31%. Tests have shown however that as more
tests are performed the accuracy of the initial estimate in-
creases from 39.7% after the first five tests to 30% after all
nine, with the last four having a deviation of 19.6%. This
is due to the averaging model being able to rely on more
relevant recent historical events.

The turnaround time of the building-strategy selection method

from the moment it received the request and the time it sent
back the recommendation is <1 minute. Simulated tests in
our previous work [46] have showed that the method scales
well with the number of customers making it suitable for
larger customer pools.

S. RELATED WORK

Not many integrated DR systems for complex environments
such as a campus microgrid exist. A recent paper discussed
a research platform deployed on the University of California
San Diego microgrid for developing large scale, predictive
analytics for real-time energy management [10]. Contrary
to our work which deals with DR by focusing on both con-
sumption and curtailment prediction, the UCSD smart grid
is focused on consumption prediction only to improve op-
erational efficiency. As such they do not consider the com-
plexity of D?R and the challenges it raises.

There have been numerous attempts to deal with consump-

tion demand. Utility providers can either compensate by
buying extra power at high prices [11] or employ DR strate-
gies. The latter is a well known concept divided into two cat-
egories which include direct control and voluntary participa-
tion [4]. Arguments in favor of both techniques have yielded
several different solutions driven by specific use cases. These
address residential buildings [15], offices [21] as well as large
industrial facilities[39] and data centers [30]. In this pa-
per we focus on a heterogeneous microgrid which includes a
mixture of various building types including residential, of-
fices, libraries, and mixed spaces. This environment offers a
more realistic scenario for concepts such as smart cities. Our
work is based on directly controlling the building equipment
to achieve and sustain a specified curtailment.

Previous work aimed at load manipulation includes attempts
to minimize peak demand by shifting it to less busy hours
of the day [42, 29] or optimizing load consumption while
minimizing costs from the customer perspective [32]. The
above methods rely on cooperative customer action and has
the main drawback of not ensuring the sustainability of the
DR event. In contrast our system periodically reselects
customers and DR strategies to sustains the DR. Utility
providers can either rely on direct or voluntary participa-
tion as long the necessary consumption data from past DR
events are available for the selection procedure. Maximizing
human comfort plays an important role in a directly con-
trolled environment an issue that we have addressed in our
previous work [20].

To the best of our knowledge this is the first work to ad-
dress the concept of automated SD?R and to propose an
automated equipment/building selection system for hetero-
geneous microgrids.

6. CONCLUSION

In this paper we have presented some of the main chal-
lenges in designing and implementing an automated sys-
tem for controlled D?R. Based on our results we have in-
troduced a functional system deployed on the USC micro-
grid and validated by performing multiple on campus DR
events. The USC microgrid is a heterogeneous environment
equipped with an automated building control center mak-
ing it suited for numerous controlled DR scenarios. Results
have shown that on average the system achieves good ac-
curacy in terms of predicting curtailed consumption during
DR. Furthermore we have showed that by running multiple
events the error between the estimated curtailment and final
achieved one reduces significantly.

As future work we will continue our analysis on the possible
factors that contribute to some buildings’ high error vari-
ability. We are also looking at improving the curtailment
prediction accuracy by designing ensemble models consist-
ing of a combination of methods (one being the averaging
method) each tested empirically to work best for specific
cases.

Finally, we will focus on other controlled DR strategies be-
sides HVAC, by looking at leveraging the information from
the numerous sensors installed throughout buildings and the
existing and planned energy storage solutions.
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