

Fault-Tolerant and Elastic Streaming MapReduce
with Decentralized Coordination

Alok Kumbhare1, Marc Frincu1, Yogesh Simmhan2 and Viktor K. Prasanna1
1University of Southern California, Los Angeles, California 90089

2Indian Institute of Science, Bangalore 560012

Email: kumbhare@usc.edu, frincu@usc.edu, simmhan@serc.iisc.in, prasanna@usc.edu

Acknowledgement

This material is based upon work supported by the Department of Energy under Award Number

DE-OE0000192.

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government nor any agency thereof, the Los Angeles

Department of Water and Power, nor any of their employees, makes any warranty, express or

implied, or assumes any legal liability or responsibility for the accuracy, completeness, or

usefulness of any information, apparatus, product, or process disclosed, or represents that its use

would not infringe privately owned rights. Reference herein to any specific commercial product,

process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily

constitute or imply its endorsement, recommendation, or favoring by the United States

Government or any agency thereof. The views and opinions of authors expressed herein do not

necessarily state or reflect those of the United States Government or any agency thereof.

Fault-Tolerant and Elastic Streaming MapReduce
with Decentralized Coordination
Alok Kumbhare1, Marc Frincu1, Yogesh Simmhan2 and Viktor K. Prasanna1

1University of Southern California, Los Angeles, California 90089
2Indian Institute of Science, Bangalore 560012

Email: kumbhare@usc.edu, frincu@usc.edu, simmhan@serc.iisc.in, prasanna@usc.edu

Abstract—The MapReduce programming model, due to its
simplicity and scalability, has become an essential tool for pro-
cessing large data volumes in distributed environments. Recent
Stream Processing Systems (SPS) extend this model to provide
low-latency analysis of high-velocity continuous data streams.
However, integrating MapReduce with streaming poses chal-
lenges: first, the runtime variations in data characteristics such as
data-rates and key-distribution cause resource overload, that in-
turn leads to fluctuations in the Quality of the Service (QoS); and
second, the stateful reducers, whose state depends on the complete
tuple history, necessitates efficient fault-recovery mechanisms to
maintain the desired QoS in the presence of resource failures. We
propose an integrated streaming MapReduce architecture leverag-
ing the concept of consistent hashing to support runtime elasticity
along with locality-aware data and state replication to provide
efficient load-balancing with low-overhead fault-tolerance and
parallel fault-recovery from multiple simultaneous failures. Our
evaluation on a private cloud shows up to 2.8× improvement
in peak throughput compared to Apache Storm SPS, and a low
recovery latency of 700− 1500 ms from multiple failures.

Keywords-Distributed stream processing; Streaming mapre-
duce; Runtime elasticity; Fault-tolerance; Big data

I. INTRODUCTION

The MapReduce (MR) programming model [1] and its
execution frameworks have been central to building “Big
Data” [2], [3] applications that analyze huge volumes of data.
Recently, Big Data applications for processing high-velocity
data and providing rapid results – on the order of seconds
or milliseconds – are gaining importance. These applications,
such as fraud detection using real-time financial activity [4],
[5], trend analysis and social network modeling [6], and online
event processing to detect abnormalities in complex systems,
operate on a large and diversified pool of streaming data
sources. As a result, distributed Stream Processing Systems
(SPS) [7] have been developed to scale with high-velocity
data streams by exploiting data parallelism and distributed
processing. They allow applications to be composed of contin-
uous operators, called Processing Elements (PEs), that perform
specific operations on each incoming tuple from the input
streams and produce tuples on the output streams to be
consumed by subsequent PEs in the application.

The stateful Streaming MapReduce (SMR) [8] combines
the simplicity and familiarity of the MR pattern with the
non-blocking, continuous model of SPSs. SMR consists of
mappers and reducers connected using dataflow edges with
a key-based routing such that tuples with a specific key are
always routed to and processed by the same reducer instance.

However, unlike the batch MR, which guarantees that the
reducers start processing only after all mapper instances finish
execution and the intermediate data transfer is completed, in
SMR a reducer instance continuously receives tuples from
the mappers, with different keys interleaved with each other.
Hence the reducers need to store and access some state
associated with an individual key whenever a tuple with that
key needs to be processed.

When SMR with stateful reducers are used to process high-
velocity, variable-rate data streams with low-latency, a couple
of challenges arise:
(1) Unlike batch MR, the system load is not known in advance
and data stream characteristics can vary over time – in terms of
data rate as well as the reducer’s key distribution across tuples.
This can cause computational imbalances across the cluster,
with overloaded machines that induce high stream processing
latency. Intelligent load-balancing and elastic runtime scaling
techniques are required to account for such variations and
maintain desired QoS.
(2) The distributed execution of such applications on large
commodity clusters (or clouds) is prone to random failures
[9]. Techniques used for fault-recovery in batch MR, such
as persistent storage and replication using HDFS with re-
execution of failed tasks [10], incur high latency cost of
seconds to minutes. Other solutions [11], [12], [13] that rely
on process replication are unsuitable for SMR due to their
high resource cost and need for tight synchronization. To meet
the QoS of streaming applications, SMR must support fault-
tolerance mechanisms with minimal runtime overhead during
normal operations while also providing low-latency, parallel
recovery from one or more concurrent resource failures.

In this paper we address these two challenges through an
integrated architecture for SMR on commodity clusters and
clouds that provides: (1) adaptive load-balancing to redistribute
keys among the reducers at runtime, (2) runtime elasticity for
reducers to maintain QoS and reduce costs in the presence of
load variations, and (3) tolerance to random fail-stop failures
at the node or the network level. While existing systems
for batch and continuous stream processing partially offer
these solutions (see § II), our unique contribution is to build
an integrated system for streaming MapReduce that supports
above features, by extending well-established concepts such as
Consistent Hashing [14], Distributed Hash Tables (DHT) [15],
and incremental checkpointing [16] to the streaming context
while maintaining the latency and throughput requirements in

such scenarios. Specifically, the contributions of this paper are:
(1) We propose a dynamic key-to-reducer (re)mapping scheme
based on consistent hashing [14]. This minimizes key re-
shuffling and state migration during auto-scaling and failure-
recovery without needing an explicit routing table (§V-A).
(2) We propose a decentralized monitoring and coordina-
tion mechanism that builds a peer-ring among the reducer
nodes. Further, a locality-aware tuple peer-backup (§V-B) and
incremental peer-checkpointing (§V-C) enables low-overhead
load-balancing, auto-scaling as well as fault-tolerance and
recovery. Specifically, it can tolerate and efficiently recover
from r ≤ x ≤ nr

(r+1) faults, where r is the replication factor
and n is number of nodes in the peer-ring. (§VII).
(3) Finally, we implement these features into the Floe SPS
and evaluate its low-overhead operations on a private cloud,
comparing its throughput with Apache Storm SPS which
uses upstream backup and external state for fault-recovery
(§VIII). We also analyze the latency characteristics during
load-balancing and during fault-recovery, exhibiting a constant
recovery time from one or more concurrent faults.

II. RELATED WORK

MR and Batch Processing Systems. MR introduced a
simplified programming abstraction for distributed large scale
processing of high volume data. A number of MR variations
that provide high level programming and querying abstrac-
tions, such as PIG, HIVE, Dryad [2], Apache Spark [3], and
Orleans [17], as well as extensions such as iterative [18]
and incremental MR [19] have been proposed for scalable
high volume data processing. However, these fail to consider
runtime elasticity of mappers and reducers as the workload,
and required resources, can be estimated and acquired at
deployment time. Further, simple fault-tolerance and recov-
ery techniques such as replicated persistent storage and re-
execution of failed tasks suffice since the overall batch runtime
outweighs the recovery cost. In contrast, SMR requires runtime
load-balancing and elasticity, as the stream data behavior
varies over time, and low latency fault-tolerance and recovery,
to maintain the desired QoS. These are the focus of this paper.

Scalable SPS and SMR. SPSs (Apache Storm [20], Apache
S4 [7], Granules [21], and TimeStream [22]) enable loosely
coupled applications, often modeled as task graphs, to process
high-velocity data streams on distributed clusters with support
for SMR operators. Here, mappers continuously emit data
tuples routed to a fixed number of reducers based on a given
key. Their main drawback is the limited or lack of support for
runtime elasticity in the number of mappers and reducers to
account for variations in data rates or resource performance.
Storm supports limited load balancing by allowing the user
to add new machines at runtime and redistribute the load
across the cluster, but requires the application to be temporarily
suspended, leading to a transient spike in latency. Other sys-
tems [23], including our previous work [24], support elasticity
and dynamic load-balancing but assume stateless operators
or involve costly processes and state migration, and hence
unsuitable for SMR.

Other SMR approaches (Spark Streaming [25] and
StreamMapReduce [8]) convert the incoming stream into small
batches (windows) of tuples and perform batch MR within
each window; the reducer state is embedded in the batch
output. Runtime elasticity can be achieved at the window
boundaries by varying the number of machines based on the
load observed in the previous window. However, this has two
downsides. First, depending on the window size, the queuing
latency of the tuples can grow to tens of seconds [25]. And
second, since these systems use a simple hash-based key-to-
reducer mapping function, scaling in/out causes a complete
reshuffle of the key mappings, incurring a high overhead due
to the large state transfer required.

Fault-tolerance and state management in SPS. Tradi-
tional SPSs support fault-tolerance using techniques such as
active replication [26] which rely on two or more copies
of data and processes. Recent systems such as S4 [7] and
Granules [21] provides partial fault-tolerance by using a
centralized coordination system such as Zookeeper. They
offer automatic fail-over by launching new instances of the
failed processes on a new or standby machine. They also
perform periodic, non-incremental checkpointing and backup
for individual processes, including the tuple buffer, by using
synchronous (de)serialization which requires pausing the pro-
cess during checkpointing. Further, they use an external in-
memory or persistent storage for backup. These approaches
add considerable overhead and lead to high processing latency
during checkpointing as well as recovery. In addition, they
do not guarantee against tuple loss as any in-flight and
uncheckpointed tuples may be lost during the failure.

Systems such as Storm [20], Timestream [22] guaran-
tee “atleast once” tuple semantics using a combination of
upstream-backup and an explicit acknowledgment tree, even in
the presence of multiple node failures. Trident, an abstraction
over Storm improves that to “exactly once” semantics using an
external, persistent coordination system (zookeeper). However,
neither of these support state recovery, and any local state
associated with the failed processes is lost. A user may
implement their own state management system using persistent
distributed cache systems (DHT, Zookeeper) but this increases
the complexity and processing overhead per tuple. SEEP,
[27], [28] integrate elastic scale-out and fault-tolerance for
general purpose SPSs using a distributed, partitioned state
and explicit routing table. Their solution, while applicable to
SMR, incurs higher overhead during load-balancing, scaling
and fault-recovery as it fails to take advantage of the key
grouping and state locality property of the reducers. This
causes significant reshuffling of the key-to-reducer mapping.

Martin et. al. [29] proposed a streaming map reduce system
with low-overhead fault tolerance similar to our proposed
system. The key distinguishing factor is our support for
runtime elasticity and load-balancing to handle variability in
data streams observed at runtime. Further, their system enables
deterministic execution (exactly-once semantics) and relies on
the virtual synchrony [30] method for synchronization and
synchronous checkpointing at the end of each epoch (check-

point interval) which increases overall latency and further
requires total ordering of messages from different mappers,
which is difficult to achieve.

On the other hand, our approach provides efficient state
management and fault-recovery, and guarantees “atleast once”
tuple semantics with no tuple loss during failure. It com-
bines asynchronous, incremental peer-checkpointing for re-
ducer state and peer tuple backup with intelligent collocation
to reduce the recovery overhead by minimizing state and
tuple transfer during recovery. We also employ a decentralized
monitoring and recovery mechanism which isolates the fault
to a small subset of reducers while the rest can continue
processing without interruptions.

III. BACKGROUND

Streaming MapReduce. SMR [8], [31] extends the batch
MR model by leveraging stateful operators in SPS and using
a key-based routing strategy for sending tuples from mappers
to reducers. The mapper is a stateless operator that transforms
the input tuples and produces one or more output tuples of
the form t = 〈ki, v〉. Unlike batch MR, SMR relaxes the
“strict phasing” restriction between map and reduce. Hence,
the system does not need to wait for all mappers to complete
their execution (i.e., produce all tuples for a given key) before
starting the reducers. Instead, tuples are routed to the matching
reducer as they are emitted and the reduce function is executed
on each incoming tuple, producing continuous results.

Unlike the batch MR, where reducers are stateless as they
can access all the tuples for a given key during execution, in
SMR, reducers must be stateful. As tuples with different keys
may arrive interleaved at a reducer, a single reducer will oper-
ate on different keys, while maintaining an independent state
for each key. Specifically, the reducer function takes a tuple,
and a state associated with the given key, performs a stateful
transformation and produces a new state with an optional
output key-value pair, i.e. R : 〈ki, v〉, ski

j → [〈k̂i, v̂〉,]ski
j+1,

(for e.g., see Fig. 9 in Appendix).
Execution Model. The SMR execution model is based on

existing well established SPSs such as Storm, S4 [7], and
Floe [32]. Figure 1 shows an example of a SMR application
on five hosts (physical or virtual). The mapper and reducer
instances are distributed across the available hosts to exploit
inter-node parallelism. Each host executes multiple instances
in parallel threads, exploiting intra-node parallelism. Although
mappers and reducers may be collocated (preferred), for
simplicity we assume that they are isolated on different hosts.
We thus refer to a node hosting a number of mappers or
reducers as a Mapper node or Reducer node, respectively. Each
mapper consumes incoming tuples in parallel, processes and
emits tuples of the form 〈ki, v〉 where ki is the key used for
routing the tuple to a specific reducer. Given the stateless and
independent nature of the mappers, simple load-balancing and
elastic scaling mechanisms [33], [24] are adequate and are not
discussed here. Instead, we focus on load-balancing, elasticity,
and fault-tolerance only for the reducer nodes.

The tuples are reliably transmitted to the reducers with
assured FIFO ordering between a pair of mapper and reducer.

M

M

M

M

D
at

a
St

re
am

 S
o

u
rc

es

R

R

S

S

R

R

S

S

R

R

S

S

Virtual/Physical Machine Parallel Mapper/Reducer Thread

Intermediate streams that follow
key based routing semanticsData buffer

S Reducer
State

Fig. 1. Distributed SMR execution model.

However, given that the several mappers may process and
produce tuples in parallel, the total ordering among the tuples
generated by them, even for a single key, is undefined. Hence,
the reducer logic should be agnostic to the order in which the
tuples arrive. This constraint is similar to the traditional MR,
as well as other stream processing systems. For applications
that require specific ordering, techniques such as used by Flux
[26] or Virtual Synchrony may be used but are out of scope.

Fault Model. We only consider and guard against fail-
stop failures. These occur due to hardware failures, critical
software bugs or planned upgrade and reboot in the cluster
or cloud environment. In such cases we assume that the
acquired resource becomes unavailable and we lose all the
buffered data and state associated with that host. Further,
individual network link failures are treated as host failures
and the fault-tolerance techniques reused. Recovering the lost
data and state by replaying tuples from the beginning is
not possible as it would cause an unacceptable latency, and
hence requires efficient state-management and low-latency
fault-tolerance techniques to recover the lost state to continue
processing. Using simple techniques that store the state in an
external distributed shared, persistent [7], [20] memory (DHT,
HDFS, databases) would also suffer from high processing and
recovery latency since these systems lack a notion of locality
and the state updates and recovery require expensive read/write
operations from the external system.

IV. GOALS OF PROPOSED SYSTEM

Performance and Availability. In SPSs, QoS is defined not
only in terms of overall system availability and its capability to
eventually process all incoming tuples, but is also measured in
terms of average response time – the latency between when a
tuple is generated by the mappers and when it is processed by
the reducer, including the corresponding state update. Brito et
al. [8] identified several classes of applications with expected
response time ranging from minutes or hours for traditional
batch data analysis, to less than 5 ms per incoming tuple
for real-time applications. Here we focus on fast streaming
applications with average response times ranging from 10 −
500 ms, but real-time applications with millisecond or sub-
millisecond response time is out of scope.

The response time includes transmission, queuing, and pro-
cessing delays. While the transmission and processing delays
are a function of the hardware and application logic, the
queuing delay is a function of the variable load on the host.
The queuing delay may be reduced by transferring its current

load to other hosts or newly acquired resources. Such load
transfer should incur low overhead and not interfere with the
regular system operations. Application performance should be
maintained during failure and fault-recovery procedure while
reducing recovery overhead. These low-latency requirements
dictate the design of our system and preclude the use of
persistent storage for fault-tolerance. Replicated in-memory
distributed hash tables (DHTs) can persist state for failure-
recovery but are costly during normal operations for accessing
and updating the distributed state since they are not sensitive
to the locality of the state on reducer(s).

Deterministic Operations. We assume that the reducer is
“an order agnostic, deterministic operator”, similar to batch
MR, i.e., it does not require tuples to arrive at a certain time
or in a particular order to produce results, as long as each
tuple is processed exactly once by the reducer. This implies
that the application can be made deterministic if we ensure
the following: (D1) the state associated with a key at each
reducer is maintained between successive executions, i.e., the
state is not lost, even during failures; (D2) none of the tuples
produced by the mappers are lost; and (D3) none of the tuples
produced by the mappers are processed more than once for
two different state updates. The last condition might occur
during failure recovery or when shifting the load to another
reducer (§VI). A tuple is non-deterministic if used for multiple
different state transformations, a case which may occur if: (1)
the state, or part of it, is lost during recovery (which should
never occur as it violates D1), or (2) the reducer instance is
unable to determine if the replayed tuple was processed earlier
and applies the update again on the recovered state.

Achieving strict determinism that satisfies D1, D2, and D3
is expensive and requires complex ordering and synchroniza-
tion [26]. In this paper, we relax these and allow “atleast-once”
tuple semantics, instead of “exactly-once”, i.e., we ensure that
D1 and D2 are strictly enforced, but some of the tuples may
be processed more than once by the reducers, thus violating
D3. Although this limits the class of applications supported by
our system, this is an acceptable compromise for a large class
of big data applications and can be mitigated at the application
level using simple techniques such as last seen timestamp.

V. PROPOSED SYSTEM ARCHITECTURE

To achieve the dual low-latency goals of response time
performance and fault-recovery under variable data streams,
we need to support adaptive load-balancing and elastic run-
time scaling of reducers to handle the changing load on
the system. Further, we need to support low-latency fault-
tolerance mechanism that has minimal overhead during regular
operations and supports fast, parallel fault-recovery.

We achieve adaptive runtime load-balancing and elastic
scaling of stateful reducers by efficiently re-mapping a subset
of keys assigned to each reducer, at runtime, from overloaded
reducer nodes to less loaded ones. However, the reducer se-
mantics dictate that all the tuples corresponding to a particular
key should be processed by a single reducer which conflicts
with this requirement. Hence, to transparently meet these

R

R

Backup
Manager

State
Manager

Peer
Monitor

Tuple Buffer

Monitor Peer
(Primary)

Receive Incremental
state backup from
primary

Load balance/
Scale Manager

Asynchronous
Incremental
Backup to
secondary

Reducer Nodes Peer Ring

Fig. 2. Reducer node components.

semantics, we efficiently manage the state associated with the
overloaded reducer and migrate the partial state corresponding
to the re-mapped keys.

In addition, to support efficient fault-tolerance and recovery,
we backup tuples with minimal network and memory over-
head, and perform asynchronous incremental checkpointing
and backup such that the tuple and state backup corresponding
to a specific key are collocated on a single node. The asyn-
chronous checkpointing ensures that performance of regular
operations is not affected, and state and tuple collocation
ensures that the recovery from failure is fast, without requiring
any state or tuple transfer over the network.

The proposed system design integrates these two approaches
by building a reducer peer-ring as shown in Fig. 2. We overlay
a decentralized monitoring framework where each reducer
node is identical and acts both as a primary node responsible
for processing incoming tuples, as well as a secondary node
responsible for backing up its neighbor’s tuples and state as
well as to monitor it for failures. A reducer node consists for
several components (Fig. 2): a state manager responsible for
maintaining the local partitioned state for each key processed
by the reducer; a backup manager responsible for receiving
and storing state checkpoints from its peers as well as to
perform asynchronous incremental checkpointing for the local
state; a load-balancer/scaler responsible for monitoring the
load on the reducer and perform appropriate load-balance or
scaling operations; and a peer monitor responsible for mon-
itoring its peer for failure and perform recovery actions. We
discuss these techniques in detail and describe the advantages
offered by the peer-ring design in meeting our system goals.

A. Dynamic Re-Mapping of Keys
The shuffle phase of batch MR uses a mapping function

F = HASH(k) mod n, where k is the key and n is the
number of reducers, to determine where the tuple should be
routed. The shuffle phase is performed in two stages. First,
the mapper applies F to each outgoing tuple and sends the
aggregated results to the designated reducer. Once all mappers
are done, each reducer aggregates all the tuples received for
each unique key from several mappers, and then executes the
reducer function for each key over its complete list of values.
Scalable SMR is similar except that the tuples are routed
immediately to the corresponding reducer which continuously
processes the incoming tuples and updates its state (§III).

However, when performing elastic scaling, the number
of reducers can change at runtime. So the above mapping

0.1

0.35

0.7

0.88 Keyspace
to reducer
mapping

Key Space Intervals

(a) Consistent hashing.

0.1

0.35

0.7

0.88

F(ki) = 0.2

Primary
Replica

Secondary
Replica Secondary

Replica

(b) Peer-backup for r=2.

Fig. 3. Consistent hashing examples with 4 reducers.

function F becomes infeasible since adding or removing even
a single reducer would cause a shuffle and re-map of many
of the existing keys to different reducers, leading to a large
number of state migrations between the reducers. This O(|K|)
remapping, where |K| is the number of unique keys, will
introduce a high processing latency. Existing SPSs, such as
Storm, S4, SEEP and Granules, are limited in their runtime
scale in/out due to the use of such a hash function.

To overcome this, we rely on consistent hashing [14] for
key-to-reducer mapping whose monotonocity property ensures
that adding or removing reducers, only affects a small portion,
O(|K|n), of the key set, needing less state migrations and
incurring a smaller latency. The idea is to assign each of the
reducers a unique “token” ∈ [0, 1] to form a ring (Fig. 3a). The
keys are always mapped to [0, 1] using a well-distributed hash
function. We then select the closest reducer in the counter-
clockwise direction of the ring from that point. The complexity
of mapping the key to a reducer is O(1).

Whenever a reducer is added, it is assigned a new unique
token which puts it between two existing consecutive reducers,
dividing the keys space mapped to the original reducer into two
subsets, one of which is mapped to the newly added reducer
without affecting key mapping for any of the other existing
reducers. Similarly whenever a reducer is removed (e.g., due
to a fault) its keys are dynamically mapped to the next reducer
on the ring in the counter-clockwise direction.

The basic consistent hashing algorithm assigns a random
position for each of the nodes on the ring possibly leading to
non-uniform load distribution. It is also vulnerable to changes
in the system’s load due to the variations in data rates and key
distribution over time. A virtual nodes approach [34] addresses
only the initial non-uniform load distribution issue. Instead, we
use a dynamic approach, similar to Cassandra, that allows a
node to move along the ring at runtime in response to the
variations in the system load.

B. Peer-Backup of Tuples

To achieve efficient backup of incoming tuples to a reducer,
we again use a variation of consistent hashing that assigns each
key to r+1 contiguous buckets on the ring onto which the tuple
is backed up; r is the tuple replication factor. Fig. 3b shows
a sample configuration with 4 buckets and r = 2. A key ki is
hashed to the interval [0, 1] and the primary replica is selected
by finding the nearest neighbor on the ring in the counter-
clockwise direction as before. In addition, r = 2 neighboring
buckets are chosen as secondary replicas by traversing the ring
in the clockwise direction. The mapper then sends the tuple

to all 3 of the nodes (1 primary, 2 secondary), using a reliable
multi-cast protocol (e.g., PGM) to minimize network traffic.

On receiving a tuple, each node checks if it is the primary by
verifying if it appears first in the counter-clockwise direction
from the tuple’s position on the ring. If so, the tuple is
dispatched to the appropriate reducer thread on the machine
for processing. Else, the node is a secondary and the tuple
is backed-up in-memory, to be used later for load-balancing
or fault-recovery. Note that each node can determine if it is
a primary in O(1) time, and needs to navigate to at most r
clockwise neighbors. Note that it is important to clear out tuple
replicas which have been successfully processed to reduce the
memory footprint. This eviction policy is discussed in V-D.

C. Reducer State Model and Incremental Peer-Checkpointing

The state model must support (1) partial state migration,
i.e., migrating the state associated with only a subset of keys
at a reducer, and (2) reliable, incremental and asynchronous
checkpointing [35], [16], [36], i.e., the state must be de-
terministic, not concurrently updated by the reducer during
checkpointing, and without the need to pause the reducers
during this process.

Partial states can be managed by decoupling the state from
reducer instance, and partitioning it based on the individual
keys being processed by the reducer (Fig. 4). This allows incre-
mental backup only for the keys processed and updated during
the last checkpointing period. We can further reduce the size of
the incremental backup by restricting the state representation
to a set of key-value pairs (Master State in Fig. 4). Given this
two-level state representation, an incremental backup can be
obtained by keeping track of reducer keys updated during the
latest checkpoint and the set of key-value pairs updated for
each of the reducer keys.

We divide the state associated with each key into two parts,
a master state and a state fragment. The former represents a
stable state, i.e., a state that has been checkpointed and backed
up onto a neighbor. The latter represents the incrementally
updated state which has to be checkpointed at the end of this
checkpoint interval. After the fragment is checkpointed, it can
be merged into the master state and cleared for the next check-
point interval. This allows efficient incremental checkpointing,
but can lead to unreliable checkpoints as the state fragment
may be updated by the reducers during the checkpointing
process. We can avoid this by pausing the reducers during
checkpointing, but it incurs high latency. Instead we propose
an asynchronous incremental checkpointing process.

Here, we divide the state fragment into two mutually exclu-
sive sub-fragments: active and inactive. The active fragment is
used by the reducers to make state updates, i.e., the key-value
pairs are added/updated only in the active fragment, while
the inactive fragment is used only during checkpointing, as
follows. At the end of a checkpoint interval, the active frag-
ment contains all the state updates that took place during that
checkpoint interval, while the inactive fragment is empty. To
start the checkpointing process, the state manager atomically
swaps the pointers to the active and inactive fragments and the

State Manager

K1

K2

K3

Kn

…

x1 v1

x2 v2

x3 v3

Reducer Keys

Master State
(per reducer key)

R
x1 v1

x4 v4

… …
… …

xm vm

Partial State Fragment

x2 v2

x3 v3

… …

Active

InActive

Write

Read

Hit?

Miss?

Hit?

Miss?

Hit?

R

R

Reducer Node

Fig. 4. State representation with master state and partial state fragments.

corresponding timestamp is recorded. The reducers continue
processing as usual and update the state in the active fragment,
while the inactive fragment contains a reliable snapshot of
updates that occurred in the previous interval. The inactive
fragment is then asynchronously serialized, checkpointed, and
transferred to the backup nodes using a multi-cast protocol.
After completion, the inactive fragment is merged with the
master state and is cleared for the next checkpoint cycle.

With respect to freshness, the active fragment contains the
most recent updates, followed by the inactive fragment and
finally the master state. Thus, a “state read” request for a
key-value pair from the reducer is first sent to the active
fragment, then the inactive fragment, and finally the master
state until the corresponding key-value pair is found (Fig. 4).
While this involves three seeks, it can be mitigated with O(1)
data structures like hash tables.

The combination of partitioned state and active/inactive state
fragments allows the reducer thread to continue processing
incoming tuples and update the state in the active fragment
during the checkpointing process without any conflicts or
interruptions thus minimizing the overhead (See § VIII). As
with tuple-backup, we follow an optimistic checkpointing
process where the primary host does not wait for an acknowl-
edgment from any of the backup hosts, letting reducers execute
uninterrupted. This optimistic replication works as long as
atleast one backup node is available. We rely on the peer ring
to determine the hosts to be used for backup to ensure tuple
and state collocation for fast recovery.

D. Tuple Ordering and Eviction Policy

The tuple eviction policy determines which tuples can be
safely removed from the backup nodes such that the state
associated with the failed host can be recovered by replaying
the remaining tuples and updating the checkpointed state.
Tuple eviction allows us to keep a low memory footprint.

The proposed eviction policy allows for a small subset
of tuples to be processed more than once. We assume that
all the mappers are loosely time synchronized and that the
maximum time skew between any two mappers is less than
the maximum network latency (Ln) to transfer tuples from
mappers to reducers. Such assumption have been used in
systems such as Flux [26] to identify missing messages and is
practically justified since using NTP an error bound within few

µ-seconds may be achieved and network latency is typically
observed in the milli-seconds range.

Each mapper emits tuples with an associated timestamp. We
assume a reliable multi-cast protocol to ensure that emitted
tuples are delivered in FIFO order. The primary host then
processes the tuples in the order they arrive from different
mappers and marks the state update with the latest timestamp
of the tuples that affect the current state. Given the time skew
between mappers and the maximum network latency, Ln, a
tuple with lower timestamp may be received and processed at
a later point. In this case the timestamp mark on the state is
not updated.

The backup hosts also receive tuples from different mappers
for backup. These hosts store the backup tuples in decreasing
order of their timestamps. Maintaining this order is not costly
since the tuples are usually received in an increasing order
of timestamp (except for few due to clock skew and network
latency). Whenever a checkpoint is received from the primary,
the secondary host retrieves the associated timestamp Ts and
evicts all tuples with a timestamp less than Ts− 2Ln (instead
of tuples with TS less than Ts) since tuples with an earlier
timestamp may arrive later and may have not been processed
yet by the primary node. This leaves some potential tuples
in the backup which may have already been processed and
reflected in the checkpointed state. If the primary host fails,
the backup node tries to recover the state by replaying the
backup tuples and updating the checkpointed state. This may
lead to some tuples being processed twice, violating condition
D3. Certain measures can be implemented at the application
level to handle this scenario but are out of our scope. As long
as the time skew is bounded by network latency, Ln, there
will be no tuple loss during failure, hence condition D2 will
be met. Note that the issue of variability in network latency
over time can be mitigated in one of the two ways: first, by
setting a much high value of the threshold (Ln) compared to
the observed maximum network latency (10-20x) such that
any latency higher than the threshold may be considered as
network failure. However, a side effect of high threshold is that
it significantly increases the number of messages that may be
replayed during a fault recovery or scaling-in scenario. Second,
we can monitor the network latency over time and update the
threshold (2×Ln) to reflect the variations in network latency.
Note that this can be achieved efficiently in a decentralized
manner since each of the nodes in the ring can monitor the
latency and use a gossip protocol to propagate the changes to
other nodes in the ring. We use the first approach for system
evaluation in Section VIII.

VI. ADAPTIVE LOAD BALANCING AND ELASTICITY

Because of fluctuations in the data streams two scenarios
can occur. First, the number of keys mapped to a particular
interval (i.e., on a reducer node) may fluctuate at runtime, and
second, the rate of generated tuples associated with a specific
key may vary at runtime. Both scenarios can lead to processing
load imbalances among the reducer nodes.

The proposed architecture supports adaptive load balancing
by leveraging the fact that the neighboring nodes (secondary

instances) associated with a key already possess a recently
cached state (peer-checkpointing) as well as the unprocessed
tuples (peer-backup) associated to that key.

We use a simple load-balancing strategy where each host
monitors its buffer queue length (qL) and the overall CPU
usage (c) while processing the incoming tuples. A host is
said to be overloaded if qL ≥ τhighq AND c ≥ τhighc . While
this strategy is prone to oscillation in resource allocation if
frequent variations are observed, we have previously proposed
robust runtime adaptation algorithms that not only consider
the current system load but also observe data patterns and use
predictive techniques to avoid such oscillations as well as to
minimize resource cost [33], [24], which can be applied here.

An overloaded node (A) negotiates with its clockwise
neighbor (B) (i.e., the first backup host) to see if it can share
some of the load (i.e., qL ≤ τ lowq AND c ≤ τ lowc for that node).
If so, it requests B to expand the primary interval associated
with that node by moving in the counter-clockwise direction on
the ring. Figure 10 in Appendix shows a sample configuration
and the transformation that happens during the load balancing
phase. The distance by which the backup node should move
can be determined by the exact load on the two systems and
the current distribution of keys along the path. However, for
simplicity, we assume that the backup node always moves by
half the distance between the two at a time.

Node B then trivially recovers the state associated with
the transferred keys that was checkpointed earlier by A. It
then replays and processes the tuples buffered in its backup
(i.e., those tuples not reflected in the currently checkpointed
state) and starts processing the new tuples associated with that
interval. The backup node now becomes the primary for the
given interval and relieves the load on the original primary (A)
by taking over some of its load. It also notifies the mappers
about the change using multi-cast. Note that the backup node
need not wait for this to be delivered to the mappers, since,
being the secondary node, it already receives all the relevant
tuples. On receiving the notification, the mappers will update
their ring and stop sending the tuples to A and start sending
it to B and the load-balancing will be completed.

The adaptive load-balancing technique allows an overloaded
node to negotiate with its immediate neighbor to offload some
of its work. However, if the neighboring host does not have
spare cycles and is working to its capacity, it can in turn
request its neighbor to offload before accepting the load from
the primary. If none of the hosts can accept additional load,
the primary host will elastically scale out as follows.
Scaling Out. Scaling out involves provisioning a new host,
putting the new host on the ring such that it offloads some of
the work from the overloaded primary node, and transferring
the corresponding state on to it. To minimize the overhead we
start the state transfer in background only state corresponding
to the keys that will be offloaded. We also start sending
(duplicating) tuples associated with the keys to the new host
for backup (using the multi-cast protocol, hence without the
additional hop). During this process, the primary node contin-
ues to process the incoming tuples as before (albeit at a slower

rate due to overload) and update the active state fragment
as before. Once the master state transfer is completed, the
previously described checkpointing process is performed on
the backup nodes as well as on the newly acquired node.
This step ensures that the new host has the latest state and
that the processed tuples are evicted from its backup buffer.
Finally, the new host is put on the peer-ring mid-way between
the overloaded node and its neighbor and its r neighbors are
informed about the change (see Fig. 11 in Appendix). The new
host thus takes over some work from the overloaded node.
Scaling In. A primary host can be scaled in if that host along
with its clockwise neighbor are lightly loaded (i.e., qL ≤ τ lowq

AND c ≤ τ lowc for both hosts). The primary host can offload
all of its load to the neighbor and can return to the resource
pool and be available for other requirements or shutdown
to conserve cost and energy. The process is similar to the
load-balancing process including the checkpoint, tuple replay,
and state recovery, except that the neighbor’s interval is now
expanded to cover the primary’s entire interval by setting its
token to be equal to the primary’s token and removing the
primary from the ring (Fig. 12 in Appendix).

VII. FAULT-TOLERANCE

A system is said to be r-fault-tolerant if it can tolerate r
arbitrary faults (host failures cf. §III) and can resume its oper-
ations (i.e., satisfy D1, D2) without having to restart/redeploy
the entire application. The proposed system can tolerate at
most r failures in consecutive neighbors on the ring since the
state and the tuples are backed up on r+1 hosts. However, it
can tolerate more than r failures if the failures do not occur
in consecutive neighbors on the ring. Specifically, in the best
case scenario, it can tolerate up to x = nr

(r+1) node failures
as long as the faults do not occur in more than r consecutive
neighbors (where r is the replication factor and n is number
of nodes). For example, with r = 1, the system can still be
functional (i.e., no state or tuple loss) even if every alternate
node on the ring (i.e., n/2 nodes) fail simultaneously.

Recent large scale studies [37] have shown that a significant
portion of failures observed in a datacenter are spatially
collocated (e.g., overheating, rack failures, cluster switch
failures) and that the datacenter can be divided into several
“fault zones” such that the probability of simultaneous failures
for machines in different fault zones is lower than that for
machines within a single fault zone. This is also the basis for
the “fault domains” or “availability zones” feature provided
by Microsoft Azure and Amazon AWS which provide atleast
99.95% availability guarantees if VMs are placed in distinct
fault zones. We can exploit this property and place neighbors
on the ring in distinct fault zones (Fig. 13 in Appendix) to
achieve higher fault-tolerance.

Fault-tolerance involves two activities: fault-detection and
recovery. To achieve the former in a decentralized manner we
overlay a monitoring ring on top of the peer-ring where each
host monitors its immediate counter-clockwise neighbor (i.e.,
a secondary node which holds tuple and state backup for a
subset of the key space monitors the primary node). Whenever

a fault is detected, to initiate fault recovery, it contacts the
one-hop neighbor of the failed node to see if that node is still
alive and continues this process until r hops or a live host is
found. Note that at this point the backup host will have the
checkpointed state and tuples for all failed nodes. Hence, it
can employ a procedure similar to the scale in process to take
over the load from one or more (≤ r) failed nodes. As before,
no state transfer or additional tuple transfer is required.

The fault-recovery process by itself does not provision
additional resources but uses the backup nodes for recovery
so as to minimize downtime. However, during or after the
takeover, if the backup node becomes overloaded, the adaptive
load-balance or scale-out process will be initiated to offload
some of its work without interrupting the regular operations.

VIII. EVALUATION

We implemented a prototype of our proposed architecture
on top of Floe SPS [32]. It provides a distributed execution
environment and programming abstractions similar to Storm
and S4. In addition, it has built-in support for elastic operations
and allows the user to add or remove parallel instances of
(stateless) PEs at runtime using existing or acquired resources.
We extend it to support elasticity as well as fault-tolerance for
stateful reducers via the proposed enhancements.

The goal of the experiments is not to study the scalability of
the system on hundreds of nodes, but to evaluate the dynamic
nature of the proposed system and the overhead it incurs. The
setup consists of a private Eucalyptus cloud with up to 20 VMs
(4 cores, 4GB RAM) connected using gigabit Ethernet. Each
map/reduce node holds at most 4 corresponding instances.
We use a streaming version of the word frequency count
application that keeps track of the overall word frequency for
each unique word seen in the incoming stream as well as a
count over a different sliding windows (e.g. past 15 mins,
1 hr, 12 hrs etc.) which represents recent trends observed
in the stream. Such application may be used in analysis of
social data streams to detect top “k” trending topics by ranking
them based on their relative counts observed during a recent
window. In such applications, the exact count for each of the
topics is not required since the relative ranking among the
topics is sufficient. As a result, the system’s atleast-once se-
mantics for message delivery is acceptable for the application.
We emulate the data streams by playing the text extracted
from the corpus of text data from the Gutenberg project. Each
mapper randomly selects a text file and emits a stream of
words which is routed to the reducers. To demonstrate various
characteristics, we emulate: (1) variations in overall data rate
by dynamically scaling up/down the number of mappers, and
(2) variations in data rate for a subset of keys (load imbalance),
by using streams that repeatedly emit a small subset of words.

We synchronize the VMs using NTP and get a loose syn-
chronization bound within few µsec. Further, we determine the
maximum network latency (Ln) to be around 1ms by executing
a number of ping requests between the VMs. Nonetheless we
use a conservative estimate of 15ms for our experiments and
a value of 2×Ln = 30ms as a bound to evict tuples from the

0

50

100

150

200

250

0 10 20 30 40

M
ax

im
u

m
 S

u
p

p
o

rt
ed

 d
at

a
ra

te

(i
n

 t
h

o
u

sa
n

d
s

m
sg

s/
se

c)

Number of Reducers

No FT FT k = 1

FT k = 2 Storm - Upstream backup

Storm + Cassandra

Fig. 5. Achieved Peak throughput for different number of reducers.

backup buffer to account for variations in the network latency
and potential time drift observed over time.

A. Empirical Results
We first evaluate the system under static configurations to

determine the overhead due to the checkpointing and backup
mechanisms. We fix the number of VMs and reducers at
deployment time and progressively increase data rates to
determine the maximum achievable cumulative throughput
(processing rate of the reducers). We examine the system under
different tolerance levels r = 0, 1, 2, where 0 indicates that
no fault-tolerance mechanisms are in place. We compare our
system against two variations of the application deployed using
Storm SPS. The first uses Storm’s upstream-backup feature
with explicit acknowledgments ensuring that no tuples are lost
during failure. However, the state is stored locally and may be
lost if the corresponding node fails. The second relies on an
external distributed reliable in-memory storage (Cassandra) to
store the state associated with each key. This version provides
fault-tolerance and recovery as well as protection against tuple
loss similar to the proposed system, but incurs significant
overhead. Fig. 5 shows the peak throughput achieved by
these systems as a function of number of reducers. Following
key observations can be made from Fig. 5: (1) The peak
throughput achieved by Floe at r = 0 is consistently higher
than others due to minimal overhead and it drops by around
15% as we increase the tolerance level. This is expected since
higher r values require additional tuple and state transfer
and adds to the load on secondary nodes. (2) Floe achieves
higher throughput than both versions of Storm giving around
2.8x improvement for r = 1 compared to Storm with state
backup using Cassandra due to high latency incurred during
state access. (3) Finally, we observe that Floe scales (almost)
linearly as we increase the number of resources, while Storm’s
peak throughput flattens out after a certain point due to the
bottleneck caused by the external state management system.

Next we study the throughput and latency characteristics
of the proposed load-balancing and elasticity mechanisms.
Fig. 6a shows an example load-balancing scenario with fixed
resources. It shows the last 1-min average data rate per node
for a deployment with 3 reducer nodes and average queue
length for one of the nodes. The system is initially imbalanced
(due to random placement of small number of reducer nodes)
but stable (i.e., qL ≤ τhighq for all nodes). At around 500s,
we repeatedly emit a small subset of words causing further
imbalance. The pending queue length for reducer 1 starts
increasing beyond the threshold indicating that the incoming
data rate is beyond its processing capacity and it initiates the
load-balancing process with its neighbor, reducer 3, which in

0

5

10

15

20

25

0

5

10

15

0 500 1000 1500 2000

Q
u

eu
e

Le
n

gt
h

D
at

a
R

at
e

P
er

 R
ed

u
ce

r
M

ac
h

in
e

(i
n

 t
h

o
u

sa
n

d
s)

Execution time in Seconds

Reducer Node 1

Reducer Node 2

Reducer Node 3

Queue Length (Reducer 1)

(a) Load balancing example (fixed resources).

3

8

13

18

0

10000

20000

30000

40000

50000

60000

0 200 400 600 800 1000
Execution Time

N
u

m
b

er
 o

f
R

ed
u

ce
rs

M
es

sa
ge

/S
ec

Overall Data Rate Output Throughput
Num reducers

(b) Throughput characteristics as a function of
data-rate and scale-out.

(c) Backup node latency.

Fig. 6. Throughput and Latency Characteristics for Load Balance and Scale-out.

turn transfers some of its load to reducer 2 and reaches a
stable state around 700s. Note that the system may not reach
stable state if the increase in data rate is beyond the cumulative
capacity of the cluster, in which case a “scale out” operation
will be performed. Fig. 6b shows the system response and
throughput as a function of increasing data rate. We observe
that for given set of resources, the achieved throughput initially
increases with increase in the incoming data rate. However,
as the system reaches its capacity, the observed throughput
flattens out (as indicated in Fig. 6b). As a result, the pending
queue length for the resources goes beyond the threshold and
a load-balance or scale-out process is initiated on an idle or
acquired resource which allows the system to catchup with the
incoming data rate. We observe a reaction time for scale out
to be around 1.5–3 seconds which includes both the detection
latency as well as message replay and state restoration. While
the former is a function of monitoring interval, the latter
depends on both the checkpointing interval and the data rate
(at the overloaded reducer), which we study next.

Fig. 6c shows the latency characteristics for the load-
balancing scenario as a function of data rate and the check-
pointing interval on the latency. We observe that the absolute
value of the latency is very low (10 - 500ms) for moderate
data rates and checkpointing interval of up to 10s. However,
latency increases as the checkpointing interval and the data rate
increases as this causes the number of tuples backed up by the
node to increase along with the number of tuples that need to
be replayed. Further, it adds significant memory overhead and
that contributes to the performance degradation. Thus smaller
checkpointing intervals are preferred. Another benefit of our
approach is due to the proposed state representation and use
of state fragments which allows us to asynchronously and
consistently checkpoint a part of the state without pausing
the regular operations, eliminating the effect of frequent write
operations caused by small checkpointing intervals. As shown
in Fig. 7, the proposed incremental checkpointing significantly

0

0.2

0.4

0.6

0.8

1

1

1
0

1
9

2
8

3
7

4
6

5
5

6
4

7
3

8
2

9
1

1
0

0

1
0

9

1
1

8

1
2

7

1
3

6

1
4

5

1
5

4

R
at

io
 o

f
C

h
ec

kp
o

in
t

D
el

ta

to
 F

u
ll

St
at

e
Si

ze

Runtime (in seconds)

1s 2s 10s

5s 15s 20s

Checkpoint interval

Fig. 7. Relative state size for incremental checkpointing.

0

50

100

150

200

0

1000

2000

3000

4000

5000

6000

300 400 500 600

B
ac

ku
p

 Q
u

eu
e

Le
n

gt
h

In
p

u
t

D
at

a
R

at
e

(m
sg

/s
ec

)

Execution Time (seconds)

Reducer 1 Reducer 2
Reducer 3 Backup size (Red. 3)

(a) Fault-recovery example.

0

500

1000

1500

2000

0 1 2 3 4 5 6

R
ec

o
ve

ry
 T

im
e

(m
s)

Number of Simultaneous Failures

(b) Recovery latency as a function of number of
simultaneous node failures (n = 12, r = 1, data
rate = 15,000 msgs/sec).

Fig. 8. Fault Tolerance Throughput and Latency Characteristics.

reduces the size of the checkpoint when using smaller intervals
(the checkpoint size for 2s interval stabilizes around 7% of the
size of the entire state stored by the reducer node), which
further supports our argument for a smaller checkpointing
interval. Since load balancing, elasticity, and fault-tolerance
use the same backup mechanism, Fig. 6c is a good indicator
of the overall performance of our process.

Finally, we demonstrate the fault-tolerance and recovery
process. Fig. 8a shows a snapshot of an execution with 3
reducer nodes (12 reducers) with fixed data rate. It also shows
the size of the tuple backup for one of the reducers (reducer 3).
We induce a fault in the system by manually stopping reducer
1 at around 500s. Reducer 3 stops receiving checkpoint data
from the failed reducer (which is also treated as a heartbeat)
leading to large tuple backup during the recovery process.
After detecting the fault, it decides to take over the execution
from the failed reducer and replays all the backed-up tuples
to recover the state and finally moves itself on the ring so
that the tuples originally destined for the failed node are now
transmitted to reducer 3 (as is evident by the increasing data
rate). Note that the latency characteristics of fault-recovery
due to a single node fault are similar to that of the load-
balancing process (Fig. 6c) and hence are omitted for brevity.
We further study the recovery latency of the system under
multiple concurrent failures. Since the recovery is performed
in parallel, the overall recovery latency is the maximum of
latencies to recover all the failed nodes in parallel. Figure 8b
shows the average recovery latency observed for multiple (m)

simultaneous failures such that no two consecutive neighbors
fail simultaneously. We observe that the recovery latency does
not increase linearly and stabilizes around 1,200ms to 1,500ms
for 3 to 6 simultaneous node failures. Note that the recovery
latency for multiple simultaneous failures is measured as the
maximum recovery latency incurred by any of the backup
nodes in the ring. The observed variations in the recovery time
(Fig. 8b) are due to the imbalances in the load (which leads
to varying recovery latency for different failed nodes) and is
not due to the increase in the number simultaneous failures.

IX. CONCLUSIONS
As high-velocity data becomes increasingly common, using

the familiar MapReduce model to process it is valuable. In
this paper, we presented an integrated approach to support
fault-tolerance, load-balancing and elasticity for the streaming
MapReduce model. Our novel approach extends the concept
of consistent hashing, and provides locality-aware tuple peer-
backup and peer-checkpointing. These allows low-latency dy-
namic updates to the system, including adaptive load-balance
and elasticity, as well as offer low-latency fault recovery by
eliminating the need for explicit state or tuple transfer during
such operations. Our decentralized coordination mechanism
helps make autonomic decisions based on the local informa-
tion and eliminates a single point of failure. Our experiments
show up to 2× improvement in throughput compared to Storm
SPS and demonstrated low-latency recovery of 10− 1500 ms
from multiple concurrent failures. As future work, we plan to
extend the evaluation to larger systems and real-world, long
running application and also to extend the idea to a general
purpose stream processing systems for wider applicability.

ACKNOWLEDGMENT
This work was supported by the U.S. National Science Foundation under

grant ACI-1339756.

REFERENCES

[1] W. Yin, Y. Simmhan, and V. Prasanna, “Scalable regression tree learning
on hadoop using openplanet,” in MAPREDUCE, 2012.

[2] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
distributed data-parallel programs from sequential building blocks,” in
SIGOPS Operating Systems Review, vol. 41, no. 3. ACM, 2007.

[3] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: cluster computing with working sets,” in HotCloud, 2010.

[4] N. Parikh and N. Sundaresan, “Scalable and near real-time burst detec-
tion from ecommerce queries,” in SIGKDD. ACM, 2008, pp. 972–980.

[5] A. Martin, C. Fetzer, and A. Brito, “Active replication at (almost) no
cost,” in SRDS. IEEE, 2011, pp. 21–30.

[6] M. Gatti, P. Cavalin, S. B. Neto, C. Pinhanez, C. dos Santos, D. Gribel,
and A. P. Appel, “Large-scale multi-agent-based modeling and simu-
lation of microblogging-based online social network,” in Multi-Agent-
Based Simulation XIV. Springer, 2014, pp. 17–33.

[7] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distributed
stream computing platform,” in ICDMW, 2010.

[8] A. Brito, A. Martin, T. Knauth, S. Creutz, D. Becker, S. Weigert,
and C. Fetzer, “Scalable and low-latency data processing with stream
mapreduce,” in CloudCom. IEEE, 2011, pp. 48–58.

[9] P. Gill, N. Jain, and N. Nagappan, “Understanding network failures in
data centers: measurement, analysis, and implications,” in SIGCOMM
Computer Communication Review, vol. 41, no. 4. ACM, 2011.

[10] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in Symposium on Mass Storage Systems and
Technologies (MSST). IEEE, 2010, pp. 1–10.

[11] T. Gunarathne, B. Zhang, T.-L. Wu, and J. Qiu, “Scalable parallel
computing on clouds using twister4azure iterative mapreduce,” Future
Generation Computer Systems, vol. 29, no. 4, pp. 1035 – 1048, 2013.

[12] L. Wang, J. Tao, R. Ranjan, H. Marten, A. Streit, J. Chen, and D. Chen,
“G-hadoop: Mapreduce across distributed data centers for data-intensive
computing,” Future Generation Computer Systems, vol. 29, no. 3, 2013.

[13] Q. Zheng, “Improving mapreduce fault tolerance in the cloud,” in
International Symposium on Parallel Distributed Processing, Workshops
and Phd Forum (IPDPSW), April 2010, pp. 1–6.

[14] D. Karger, A. Sherman, A. Berkheimer, B. Bogstad, R. Dhanidina,
K. Iwamoto, B. Kim, L. Matkins, and Y. Yerushalmi, “Web caching
with consistent hashing,” Computer Networks, vol. 31, no. 11, 1999.

[15] M. F. Kaashoek and D. R. Karger, “Koorde: A simple degree-optimal
distributed hash table,” in Peer-to-peer systems II. Springer, 2003.

[16] S. Agarwal, R. Garg, M. S. Gupta, and J. E. Moreira, “Adaptive
incremental checkpointing for massively parallel systems,” in Super-
computing. ACM, 2004.

[17] S. Bykov, A. Geller, G. Kliot, J. R. Larus, R. Pandya, and J. Thelin,
“Orleans: cloud computing for everyone,” in Symposium on Cloud
Computing. ACM, 2011, p. 16.

[18] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and
G. Fox, “Twister: A runtime for iterative mapreduce,” in Workshop on
MapReduce and its Applications (MAPREDUCE), 2010.

[19] P. Bhatotia, A. Wieder, R. Rodrigues, U. A. Acar, and R. Pasquin,
“Incoop: Mapreduce for incremental computations,” in Symposium on
Cloud Computing. ACM, 2011, p. 7.

[20] Storm, distributed and fault-tolerant realtime computation. Last accessed
19 Dec. 2014. [Online]. Available: http://storm.apache.org/

[21] S. Pallickara, J. Ekanayake, and G. Fox, “Granules: A lightweight,
streaming runtime for cloud computing with support, for map-reduce,”
in CLUSTER. IEEE, 2009.

[22] Z. Qian, Y. He, C. Su, Z. Wu, H. Zhu, T. Zhang, L. Zhou, Y. Yu, and
Z. Zhang, “Timestream: Reliable stream computation in the cloud,” in
ECCS, 2013.

[23] B. Satzger, W. Hummer, P. Leitner, and S. Dustdar, “Esc: Towards an
elastic stream computing platform for the cloud,” in CLOUD, 2011.

[24] A. Kumbhare, Y. Simmhan, and V. Prasanna, “Plasticc: Predictive look-
ahead scheduling for continuous dataflows on clouds,” in CCGrid.
IEEE/ACM, May 2014, pp. 344–353.

[25] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica, “Discretized
streams: an efficient and fault-tolerant model for stream processing on
large clusters,” in USENIX HotCloud, 2012.

[26] M. A. Shah, J. M. Hellerstein, and E. Brewer, “Highly available, fault-
tolerant, parallel dataflows,” in SIGMOD. ACM, 2004.

[27] M. Migliavacca, D. Eyers, J. Bacon, Y. Papagiannis, B. Shand, and
P. Pietzuch, “Seep: scalable and elastic event processing,” in Middle-
ware’10 Posters and Demos Track. ACM, 2010, p. 4.

[28] R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki, and P. Pietzuch,
“Integrating scale out and fault tolerance in stream processing using
operator state management,” in SIGMOD. ACM, 2013, pp. 725–736.

[29] A. Martin, T. Knauth, S. Creutz, D. Becker, S. Weigert, C. Fetzer,
and A. Brito, “Low-overhead fault tolerance for high-throughput data
processing systems,” in Distributed Computing Systems (ICDCS), 2011
31st International Conference on, June 2011, pp. 689–699.

[30] L. E. Moser, Y. Amir, P. M. Melliar-Smith, and D. A. Agarwal,
“Extended virtual synchrony,” in Distributed Computing Systems, 1994.,
Proceedings of the 14th International Conference on. IEEE, 1994.

[31] C. Fetzer, “Streammine: A scalable and dependable event processing
platform,” in DEBS. ACM, 2010.

[32] Y. Simmhan, A. Kumbhare, and C. Wickramachari, “Floe: A dynamic,
continuous dataflow framework for clouds,” USC, Tech. Rep., 2013.

[33] A. Kumbhare, Y. Simmhan, and V. K. Prasanna, “Exploiting application
dynamism and cloud elasticity for continuous dataflows,” in SuperCom-
puting,. ACM, 2013.

[34] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” SIGOPS Oper. Syst. Rev.,
vol. 41, no. 6, 2007.

[35] J. S. Plank, J. Xu, and R. H. Netzer, “Compressed differences: An
algorithm for fast incremental checkpointing,” University of Tennessee,
Tech. Rep. CS-95-302, 1995.

[36] R. Gioiosa, J. C. Sancho, S. Jiang, F. Petrini, and K. Davis, “Transpar-
ent, incremental checkpointing at kernel level: A foundation for fault
tolerance for parallel computers,” in SuperComputing. IEEE Computer
Society, 2005.

[37] J. Dean, “Designs, lessons and advice from building large distributed
systems,” Keynote from LADIS, 2009.

APPENDIX

We include here additional content to clarify some of the
core concepts outlined in the paper. Fig. 9 shows the streaming
word frequency count application using stateful streaming map
reduce (SMR) programming model. The Map function is
executed for each incoming tuple (e.g. once per tweet), which
then emits a tuple as a key value pair 〈Word, 1〉. Each tuple
is then mapped to a reducer instance based on the specific key,
similar to the batch mapreduce version. However, unlike batch
MR, the reducer function is executed for each tuple it receives.
Hence the reducer does not have access to all tuples for the
corresponding key, instead the SMR framework maintains a
local state associated with each “key” processed by the reducer
(§V-C), which is passed along with the tuple to the reducer
function. Hence the reducer keeps a running count of all the
words seen so far. It can choose to emit the current count
based on certain condition such as an external signal.

1: procedure MAP(Tuple, Emitter)
2: → Tuple : Incoming data tuple
3: → Emitter : Emit tuples to the reducers
4: for Word in Tuple.value do
5: Out← 〈Word, 1〉
6: Emitter.Write(Out)
7: end for
8: end procedure
1: procedure REDUCE(Tuple, State, Emitter)
2: → Tuple〈ki, v〉 : Incoming tuple with key ki
3: → State : State associated with the key ki
4: → Emitter : Used to emit output tuples
5: Word← Tuple.key
6: ct← State.get(“count”)
7: ct← ct+ Tuple.value
8: State.Update(“count”, ct)
9: if Condition then

10: out← 〈Word, ct〉
11: Emitter.write(out)
12: end if
13: end procedure

Fig. 9. Stateful Streaming MapReduce Word Count Example.

Fig. 10 shows a sample peer-ring configuration consisting of
4 reducer nodes. Assuming that the node (A) is overloaded, it
negotiates with its neighbor (B) to check if it has spare cycles
(i.e. qL ≤ τ lowq AND c ≤ τ lowc). If so, it requests B to take
over some of its load (i.e. share the key space). Node B is then
moved along the circle in the counter clockwise direction and
its key-space is extended and hence it shares some load from
node A. Note that during this process, no explicit state transfer
is required since B acted as a secondary before load-balancing
and hence had a recent checkpoint for the state associated with
the given keys.

0.1

0.35

0.7

0.88 0.1

0.230.7

0.88

Overloaded

Primary (A)

Backup node (B)

Negotiate

Move
here (B)

(A)

Fig. 10. Load balancing example.

0.1

0.35

0.7

0.88

Overloaded
Primary

Secondary

Negotiate

0.1

0.35

0.7

0.88

0.23

Overloaded
Primary

Secondary

(B)

(A)

(C)

(B)

(A)

Fig. 11. Scaling out example

Fig. 11 shows a similar transition for scaling out. An
overloaded node (A), first sends a load-balance request to its
neighbor (B). However, unlike before, the neighbor (B) does
not have enough free processing cycles and hence in turn tries
to offload some load to its neighbor and so on. If it is observed
that all the reducers are processing at its capacity, a new node
C is provisioned and placed between A and B, which takes
over some of the load from node A. However, note that in this
case, node C does not have access to the state associated with
the keys. Hence we perform a delayed transition (i.e. we start
asynchronous state transfer to node C) while A continues to
process the incoming tuple, and the load is transferred only
after the state transfer is completed. Finally, Fig. 12 shows the
transition for scaling in resources. In this case, since node A
is lightly loaded, it checks with its neighbor node B if it has
spare cycles to take over all of its load. If so, node A can
be removed from the peer-ring and node B is moved into its
position. As before, no state or tuple transfer is required to
complete the scaling-in transition. Note that even though node
B now processes a larger key-space compared to other nodes,
the low tuple density allows it to process the tuples without
getting overloaded.

0.1

0.35

0.7

0.88 0.1

0.7

0.88

Lightly loaded
Primary

Lightly loaded
Secondary

Negotiate

(B)

(B)

(A)

Fig. 12. Scaling in example.

Fig. 13 shows a peer-ring (r = 1) distributed across
two fault zones. Given the property of fault-zones that the
probability of simultaneous failures across two zones is much
less than that of within a fault zone, the configuration with
consecutive neighbors in the ring lying in distinct fault-zones
as shown in fig. 13 gives an optimal fault-tolerance level. In
the best case scenario, the system will still be operational
without any state or tuple loss even if simultaneous failures
are observed in all the nodes in a single fault zone (i.e. even
if n∗1

(1+1) = n/2 of the nodes fail at the same time).

Fault Zone 1 Fault Zone 2

1 2

3
4

5 6

2

4

6

Fault Zone 2

Zone 1
Fails

Fig. 13. Reducer peer ring with two fault zones: before and after failure.

