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Abstract

Growing demand is straining our existing electricity
generation facilities and requires active participation of
the utility and the consumers to achieve energy sus-
tainability. One of the most effective and widely used
ways to achieve this goal in the smart grid is demand
response (DR), whereby consumers reduce their elec-
tricity consumption in response to a request sent from
the utility whenever it anticipates a peak in demand. To
successfully plan and implement demand response, the
utility requires reliable estimate of reduced consump-
tion during DR. This also helps in optimal selection of
consumers and curtailment strategies during DR. While
much work has been done on predicting normal con-
sumption, reduced consumption prediction is an open
problem that is under-studied. In this paper, we intro-
duce and formalize the problem of reduced consump-
tion prediction, and discuss the challenges associated
with it. We also describe computational methods that
use historical DR data as well as pre-DR conditions to
make such predictions. Our experiments are conducted
in the real-world setting of a university campus micro-
grid, and our preliminary results set the foundation for
more detailed modeling.

Introduction
With the rapid integration of advanced metering infrastruc-
ture, Smart Grids enable real-time implementation of dy-
namic demand-side control. Demand Response (DR) is a
key load management technique which provides a cost-
effective alternative to traditional supply-side solutions,
meant to address demand increase during times of peak
electrical load. Demand Response offers several advantages:
it prevents blackouts, reduces the need for new generation
units, and increases overall reliability of the electricity grid.
Accurate estimation and evaluation of consumption reduc-
tion achieved by participants during curtailment is therefore
critical to DR programs.

Figure 1 provides a conceptual diagram for consumption
reduction and curtailment calculation during DR. A naive
approach to determine the extent of curtailment during DR
is to estimate what the consumption would have been in
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Figure 1: Conceptual diagram of reduced consumption pre-
diction during Demand Response

the absence of DR (denoted as Baseline (predicted) in Fig-
ure 1), and compare such counterfactual prediction with the
observed electric consumption during DR (denoted as Re-
duced Consumption (observed) in Figure 1). The amount of
computed curtailment (i.e., area between observed Reduced
Consumption and Baseline) depends on the accuracy of the
baseline model used. Utilities have so far focused on de-
veloping more accurate baseline models. Different baseline
models result in different curtailment estimates. In fact, se-
lecting a reasonable baseline is non-trivial and may lead to
misinterpretation of curtailment estimates. The task is fur-
ther complicated both by the dynamic nature of DR, and its
dependency on multiple factors, such as occupancy, ambi-
ent temperature, and weather conditions. More importantly,
being able to estimate the reduced consumption during the
DR window in advance can be beneficial for planning pur-
poses, enabling utilities to (i) adapt to low generation (partic-
ularly with the introduction of unreliable renewable genera-
tion sources), (ii) intelligently target consumers for DR par-
ticipation, (iii) select appropriate curtailment strategies1, and

1The USC campus data used in our study includes a variety of
Fully-Automated Demand Response strategies (Piette, Kiliccote,
and Dudley 2012): Global Zone Temperature Reset (GTR) (Motegi
et al. 2006), Variable Frequency Drive Speed Reset (VFD) (Motegi
et al. 2006), Equipment Duty Cycling (Duty), and their combina-
tions. Such strategies directly reduce the heating, ventilation, and
cooling (HVAC) loads, which make up a significant portion of the
overall energy consumption of buildings.



Figure 2: D2R Framework

(iv) maximize profit by avoiding expensive energy sources
during peak hours.

In this paper, we formalize the open problem of reduced
consumption prediction during DR and describe the com-
putational methods we use to address this problem. Statisti-
cal, machine learning, and data mining techniques that work
well for consumption prediction, e.g., auto-regression mod-
els, are of little use for reduced consumption prediction. For
example, generic time series models such as ARIMA (Box
and Jenkins 1970) postulate that short-term future consump-
tion values can be estimated by consumption patterns in the
immediate past. However, due to the abrupt change in con-
sumption profile during DR, time series models, which are
unable to capture sudden changes at the temporal boundaries
of DR events, are deemed inappropriate.

To address this problem, we propose a method to estimate
directly curtailed consumption during DR based on histor-
ical observations from past DR events. Specifically, we in-
troduce a novel averaging model for direct curtailment pre-
diction. We show that, despite its simplicity, our model a)
provides a good fit to curtailed consumption during DR for
customers who exhibit low consumption variability, b) its re-
sults are easy to interpret, and c) it presents negligible com-
putational burden. Our experiments are conducted as part of
the Dynamic Demand Response (D2R) framework imple-
mented at the University of Southern California campus in
Los Angeles (Figure 2). Estimates of reduced consumption
are used by the D2R policy engine for optimal customer se-
lection during the planning phase of future DR events.

Background and Previous Work
Research in automated demand response has received in-
creased attention motivated by the need to reduce black outs
and to enable dynamic electricity pricing. It has spanned
areas such as communication and building control strate-
gies for curtailment (Piette, Kiliccote, and Dudley 2012),
motivating customers for participation in DR programs
(Akasiadis and Chalkiadakis 2013), as well as for develop-
ing baseline models that make counterfactual predictions for
baseline load on DR days (Mathieu, Callaway, and Kiliccote
2011). The latter are used to measure electricity consump-
tion reduction during DR. For baseline models, utilities gen-

erally use simple averaging of time of day values from recent
or similar days. Often, such predictions are multiplied by a
morning adjustment factor to adjust for weather and other
conditions on DR days. Regression (Mathieu, Callaway, and
Kiliccote 2011) and time series methods have also been used
as baselines. A comparison of various baseline models is
presented in (Coughlin et al. 2009), where it is shown that
baseline prediction accuracy is dependent on load variability
and weather sensitivity.

Our focus is on prediction of reduced consumption dur-
ing DR, which has received little attention so far. Due
to limited data availability, small number of DR events
per customer, and diversity of customer types (e.g., resi-
dential versus office buildings), reduced consumption esti-
mation is a challenging task. Existing approaches assume
that consumers who enroll in curtailment programs would
always comply when asked to curtail (Lou et al. 2013;
Simao et al. 2013). Our experiments suggest that this as-
sumption does not always hold. For example when curtail-
ment strategies, such as global temperature reset (GTR) or
HVAC duty cycling are applied, they cannot violate occu-
pants’ thermal comfort limits, and hence may be aborted
or modified midway during the DR window. This results in
variable reduced consumption over DR events, even for the
same customer. Our approach does account for variability
through factors such as time of day, strategy used, and out-
side air temperature. More importantly, our focus is short-
term reduced consumption forecasting during DR, which
is essential for dynamic (near real-time) adaptation of cus-
tomer selection programs to maintain or achieve a desired
reduction in electricity demand in a dense urban area.

Problem Formulation
Our goal is to predict reduced consumption during DR us-
ing: 1) historic reduced consumption data from past DR ex-
periments, and, ii) weather forecast data. We focus on 15-
minute granularity consumption prediction for the DR win-
dow just before the start of DR. Such predictions are useful
in selecting strategies and consumers to target for DR.

Let us denote the observed reduced consumption for jth
15-min interval of ith day by ri,j . Let I be the number of
DR days for a building and J be the total number of inter-
vals per day for which DR is carried out. The observed re-
duced consumption for all the time points can be expressed
as an I × J matrix, denoted as R = [ri,j ]I×J . Similarly,
let K be the total number of intervals per day before DR
begins. We denote consumption for kth 15-min interval be-
fore DR on ith DR day by ni,k. The observed consump-
tion for all time points before DR can be expressed as an
I × K matrix, N = [ni,k]I×K . We associate a vector of
weather conditions with each consumption entry before DR.
Particularly, for L unique weather attributes (such as tem-
perature, humidity, etc.), each time point is associated with
vector ωi,k = 〈ωi,k[1], ωi,k[2], ...ωi,k[L]〉, where ωi,k[l] de-
notes the value for the l-th weather condition for time-slot
(i, k). Observed weather conditions for all time points be-
fore DR can be expressed as matrix ω = [ωi,k]I×K . Our task
is to estimate reduced consumption during DR given histor-
ical reduced consumption matrix R, consumption matrix N ,



and weather attributes matrix Ω.

Reduced Consumption Prediction
For normal consumption, observations made in the immedi-
ate past are usually a good indication of short-term future.
However, for reduced consumption due to DR, this is not
true as there is a sudden drop in the time series. In such a
scenario, the historical observations (for the same curtail-
ment strategy) are better predictors of future. We describe
two ways in which historical patterns can be incorporated in
prediction models.

Historical Average Model. We introduce historical aver-
age model that uses previous values for the same time on
similar DR days for the same 〈building, strategy〉 combi-
nation to forecast future reduced consumption. We consider
past DR events per building to be similar if the same strat-
egy was deployed. This results in 4-10 events per <building,
strategy> combination. When only a small number of past
DR events is available per building, the average can be taken
over all DR days. In this model, the prediction outputs are
adjusted to account for indirect factors, such as weather con-
ditions, on DR days (Coughlin et al. 2008). Particularly, we
use a multiplicative factor defined as the ratio of average
kWh usage of the first three of the four hours before the
event to the average kWh usage for the same three hours
from the average of past similar days. To adjust our forecast,
we multiply our predicted curtailed consumption by the ad-
justment factor for each 15-min interval during DR.

Weighted Average Model. In the historical average
model, we defined similarity in terms of weather conditions.
Here, we consider two notions of similarity: (i) with respect
to time, and (ii) Euclidean distance. We apply an exponen-
tial degradation function of a DR’s age in the computation
of the average.

• WtdAvTi: Weights are selected to exponentially decrease
with time according to recency, i.e., the time elapsed be-
tween the future DR event and historical DR events. Thus,
observations closer to the DR day for which predictions
are to be made, are given higher weights than those far-
ther away from it. Intuitively, a building’s response to DR
for a given strategy drifts with time, i.e., due to for exam-
ple changing weather conditions or building characteris-
tics such as better insulation, energy efficient lighting etc.
Thus, events closer to each other are more likely to be
similar.

• WtdAvSi: Weights are selected to be exponentially de-
creasing with decreasing similarity of pre-DR condition.
Similarity between pre-DR condition on two DR days i
and j is calculated as the Euclidean distance between the
vectors Ni and ωj . Intuitively, a building’s response to DR
for a given strategy depends on similar conditions, which
we capture in the form of indirect indicators N and Ω.

As in the case of historical average model, here too, we
adjust our estimates by a morning adjustment factor.

Figure 3: Density function of average MAPE for all build-
ings

Experiments
Dataset. We used data from DR experiments carried out
at the University of Southern California campus as part of
the DR demonstration project (Simmhan et al. 2011). Re-
duced and normal consumption data (in kWh) in 15-min in-
tervals was collected from 35 buildings between Nov 2012
to Dec 2013. We focus on electricity consumption, measured
in kWh over an interval of time. The dataset contains a di-
verse set of building types: academic buildings with teach-
ing and office space, residential dormitories, and adminis-
trative buildings. The number of DR events across buildings
is not homogeneous. Some buildings participated in more
than 40 events, while others were rarely selected (less than
10 events). This results in 826 individual 〈building, strategy〉
events overall. The choice of strategy is also heterogeneous.
Building names have been obfuscated for privacy issues.
Experiments were conducted while school was in session,
allowing building responses to each strategy to be charac-
terized during standard operation. Due to climate particu-
larities DR events in the microgrid were conducted during
the 1:00-5:00 PM time frame when demand peaks and tem-
perature is high. In addition, hourly weather data was also
collected from NOAA’s weather station at USC campus.
Weather measurements include temperature and humidity,
which were linearly interpolated to 15-min intervals.

Evaluation. We use leave one out cross validation for
evaluating prediction performance. We compare model per-
formance using the MAPE measure, which is defined as∑

i
|Oi,j−Pi,j |

Oi,j
, where O is used to denote observed output

and P is the predicted output.

Results. Figure 3 shows the density function of average
MAPE errors for all buildings for all three averaging models.
We observe that for majority of the buildings, the prediction



Figure 4: Average MAPE for all 78 DR event days between
Nov 2012 to Dec 2013

errors is low (less than 15%), and in about half the cases,
it is within 10%, indicating that averaging models provide a
good estimate of reduced consumption during DR. The his-
torical average model seems to perform slightly better than
the other two models. Although simple, it derives its pre-
dictive power from errors being averaged out over the en-
tire dataset. According to (Aman, Simmhan, and Prasanna
2014), acceptable threshold of prediction error for DR in
individual buildings is 10%. Hence, those buildings whose
performance does not meet this threshold require further in-
vestigation and more powerful models.

Figure 4 shows the performance of our models for indi-
vidual DR events in our dataset. We found historical aver-
age model to perform best in 248 events. WtdAvTi was the
best in 295 events, and WtdAvSi was the best in 283 events.
These results suggest that an ensemble, i.e., a meta-model
that would learn to select the best model for prediction for
a given DR event, would perform favorably. We further plan
to explore more advanced models in future work.

Discussion
To the best of our knowledge, we are the first to address
the task of identifying and formally defining the problem
of reduced consumption prediction during demand response
window. While much work has been done on consumption
prediction outside DR and on baseline prediction during
DR, reduced consumption prediction has received little at-
tention. However, accurate estimation of reduced consump-
tion ahead of time can be beneficial in successfully planning
and sustaining DR programs in Smart Grid. Reliable esti-
mates of reduced consumption help the utility in: (i) decid-
ing the duration of DR, (ii) intelligent selection of curtail-
ment strategies, and (iii) targeting consumers for DR partic-
ipation. We argue that traditional prediction approaches for
consumption and baseline forecasting are inappropriate in
this context. Our proposed strategies achieve good predic-
tion accuracy by incorporating historical DR data as well as
pre-DR condition data. Additionally, our proposed strategies
are computationally inexpensive, making them favorable for
scenarios with near real-time constraints, such as Dynamic

Demand Response (D2R).
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