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Abstract—The smart grid changes the way energy is produced
and distributed. In addition both, energy and information is
exchanged bidirectionally among participating parties. Therefore
heterogeneous systems have to cooperate effectively in order to
achieve a common high-level use case, such as smart metering for
billing or demand response for load curtailment. Furthermore, a
substantial amount of personal data is often needed for achieving
that goal. Capturing and processing personal data in the smart
grid increases customer concerns about privacy and in addition,
certain statutory and operational requirements regarding privacy
aware data processing and storage have to be met. An increase
of privacy constraints, however, often limits the operational
capabilities of the system. In this paper, we present an approach
that automates the process of finding an optimal balance between
privacy requirements and operational requirements in a smart
grid use case and application scenario. This is achieved by
formally describing use cases in an abstract model and by finding
an algorithm that determines the optimum balance by forward
mapping privacy and operational impacts. For this optimal
balancing algorithm both, a numeric approximation and – if
feasible – an analytic assessment are presented and investigated.
The system is evaluated by applying the tool to a real-world use
case from the University of Southern California (USC) microgrid.

I. INTRODUCTION

In a smart grid a number of systems have to cooperate
effectively. For instance, in a demand response (DR) use case,
data is captured by a smart meter, stored in a database and
finally used by a prediction unit to forecast customer energy
usage. Data is captured, exchanged and processed in order to
achieve this high-level use case. Other examples of such use
cases include smart metering for billing or automated electric
vehicle charging. As these use cases rely to a great extent
on personal data, security and privacy are current issues and
subject to ongoing research [1], [2], [3]. Privacy aware data
retrieval and processing is therefore crucial in order to meet
statutory and customer requirements. However, when adding
to many privacy constraints, the system’s ability to perform
the intended task may degrade. In this paper, use cases are
investigated that need an optimum trade-off between privacy
and operational capabilities. There are use cases where both,
privacy and operational capabilities can be achieved fully at
the same time, this is, however, not subject of this paper.

As a motivating example, imagine a simple demand re-
sponse use case where future energy consumption of a par-
ticular customer at a certain point in the day (e.g., around
noon) is predicted based on past behavior. This requires to
have smart meter data from that customer in a sufficient
resolution (e.g., one meter value each fifteen minutes). On
the other hand, when providing data in such a granularity the
customer might be subject to privacy threats, such as predicting
when the customer is present at home or the intended or
inadvertent release of fine grained meter data to the public.
One of the challenges in system engineering in the smart
grid is thus to find a good trade-off between protecting an
individual’s privacy and being able to provide useful services.
In Section II work is presented that performs privacy and
security assessments based on an operational description of the
system. There is, however, currently no approach that focuses
on the evaluation of entire systems in the smart grid in order
to find the optimum balance between privacy requirements
and operational capabilities. This paper therefore contributes
(i) a model that formally describes use cases in the smart
grid; (ii) an algorithm to find the optimum balance between
privacy and operational capabilities based on that model; and
(iii) an approach to assess the impact of privacy constraints
on the system. The algorithm presented in this paper involves
the analytic solving of an equation. If this is not feasible,
a numeric approximation can be applied. For evaluation a
specific real-world DR use case drawing on insights from the
USC microgrid is investigated closely.

The remainder of this paper is structured as follows: Section
II provides an overview of related work in the domain of data
flow analysis for security and privacy assessments. Further,
state of the art assessment tools are discussed and it is shown
how this work extends these tools with a holistic approach
for optimization. Section III presents the abstract model for
describing data flows and system dependencies by using
graphs, transition functions and merging operators. Section
IV discusses the two approaches for the optimal balancing
algorithm, hence the analytic assessment and the numeric
approximation. In Section V both approaches are evaluated
by applying the tool to a real-world use case. Section VI



summarizes this work and provides an outlook to future work.

II. RELATED WORK

This section presents related work in the domain of data
flow analysis and state of the art assessment tools. A workflow-
oriented security assessment tool using graphs is presented in
[4]. The framework proposed by the authors is based on the
evaluation of argument graphs. The system’s input are security
goal, workflow description, system description, attacker model
and evidence. The assessment itself applies a discriminative set
of graphs, containing the workflow goal, the actors involved
and the messages exchanged. The result of the assessment
process is quantitatively presented as an availability score
and a confidentiality score. Both are plugged into the system
by the evidence, which is based on (statistical) data about
the devices. This tool is comprehensive for security analysis,
however does not deal with the impact of security constraints
on the operational capabilities. In the domain of the smart grid,
McKenna et al. [5] discuss the issue of finding the optimum
trade-off for smart metering frequencies between customer
privacy and application feasibility. The authors illustrate some
of the privacy impacts that are becoming evident with certain
frequency intervals and investigate typical use cases, such as
DR, and the need of data for the successful operation of
these systems. The issue of balancing privacy requirements and
operational capabilities is also addressed in other fields apart
from the smart grid: Oliveira and Zaiane [6] present algorithms
for balancing privacy constraints in data mining applications.
Massaguer et al. [7] discuss a middleware for pervasive spaces.
Their focus is on finding the trade-off between privacy and
utility of such a middleware. While these approaches deal
with balancing for data retrieval and processing, they do not
propose a mathematical model to formally address the issue
of balancing privacy and operational requirements.

III. DATA FLOW MODEL

An approach towards the modeling of use cases in the
smart grid based on the European Smart Grid Reference
Architecture [8] are Data Flow Graphs (DFG). Neureiter et
al. [3], Dänekas et al. [9] and Knirsch et al. [10] thoroughly
discuss the application of such directed graphs to privacy
assessments in the smart grid. DFGs provide a detailed view of
a system on multiple layers, ranging from high-level business
goals to low level interactions of components. DFGs capture
actors and information objects and support a wide range of
attributes. These graphs provide a holistic view of a use case
and are a powerful tool for interdisciplinary communication
and detailed assessments. Based on the concept of representing
data flows in the smart grid as directed graphs, we propose an
abstraction of DFGs to a simplified Data Flow Model that
only consists of nodes and directed edges and a minimum
set of attributes, hence transition functions and a privacy
requirements/operational requirement for each node. Reduced
complexity makes numeric and analytic calculations feasible
to be performed on this model.

Each use case is characterized by a set of actors, i.e.,
units (smart meter, DR prediction unit, . . . ), and by a set of
information flows from one actor to another, i.e., data items.
The model presented here is not limited to physical units,
but also allows to be applied to more high-level concepts
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Fig. 1. Abstract data flow graph describing the model with nodes and edges.

such as goals, e.g., effective DR prediction. In an abstract
notation this can be represented as a directed graph with
a set of nodes N representing units or goals and a set of
transitions T representing flows from a source node to a target
node. A node Nk is described by a value pk that defines
the privacy requirement for that node and by a value ok
that defines the operational requirements for that node, so
that αpk + (1 − α)ok = 1 and therefore α ∈ [0, 1]. Thus
requirements are represented as a numeric value in the range
0 to 1. The higher the value the more the requirement weighs.
The above condition is introduced for normalization purposes.

An edge is described by a transition function T and a
merging operator Θ, described in detail in Section III-A and
Section III-B, respectively. The model for describing systems
and information flows is in its simplest form as shown in
Figure 1 (a). An edge connects a source node Ni with a target
node Nj by (pj , oj) = tij = T i

j (pi, oi); hence a function that
maps the privacy and operational requirements of the source
to the target. The other, general, case where a target node
has more than one incoming edge is shown in Figure1 (b). In
addition to the transition function a merge operation needs to
be defined and the general form of an edge is given in Equation
1. The merging operator Θ maps a set of one or more input
values pk (the transition vector), each in the domain [0,1], from
parent nodes Nk with k = 1 . . .K to one single output value
in the same range. Note that this notation can be simplified in
practice as the sum of privacy requirements and operational
requirements in each node is defined to be 1 and thus only one
of the parameters (either p or o) needs to be passed. Therefore,
in the following only p is taken into account. For the sake of
simplicity, recursive edges are not defined in the data flow
model. Recursive edges would represent a system that sends
data to itself and for the transition only the identity function
would be feasible, since such a system has no practical privacy



pi = Θi

(
t1i = T 1

i (p1), . . . , tki = T k
i (pk)

)
(1)

or operational impact on itself.

A. Transition Function
The transition function T is crucial as it immediately defines

to what extent the destination system is able to perform its
operations. The transition function is a case specific function
that needs to satisfy the condition T : [0, 1] → [0, 1], so
that the sum of the privacy requirements and operational
requirements is one; and hence must not have a singularity in
that interval, so that the model is not running in an undefined
state. The transition function can be determined by practical
observations or models, depending on the particular use case.

As an example for determining the transition function a
(sub-)graph with two nodes is given, smart meter (Na) and DR
prediction unit (Nb). The transition function should represent
the fact that the accuracy of DR prediction degrades if (for the
particular use case) only data in low resolution is available,
e.g., if DR prediction is used to forecast customer energy
consumption on a hourly basis, one meter value per day is not
sufficient. If we are further assuming that accuracy is following
exponential behavior, the following transition function could
be used: pb = T a

b (pa) = epa−1
e−1 . The more the privacy is tuned

up (thus lower frequency for metering), the less capable (thus
less accurate) is the prediction unit.

B. Merging Operator
The merging operator Θ maps the transition vector which

described incoming transitions to one single output value in
the range 0 to 1. This operator can be determined by practical
observations or models, depending on the particular use case
or a generic approach can be found that equally incorporates
each input value, e.g., by calculating the arithmetic mean.

C. Interpreting Results
Once proper values for p and o for the node of interest

are found, these results must be interpreted accordingly to be
applied to the system’s characteristics in reality. The objective
of interpreting results is therefore to map these normalized
values to a property that impacts the privacy awareness or the
operational capability of the system. This mapping is heavily
dependent on individual characteristics and generic approaches
provide only limited applicability. In our motivating example
we discussed the impact of metering frequency on privacy
and operation for subsequent systems. Hence, here we need
to find a mapping from pi with Ni = “Smart Meter” to the
meter frequency fs. In the evaluation we discuss this issue
thoroughly and we present such a mapping for the DR use case
and in particular for the metering frequency in that scenario.

IV. OPTIMAL BALANCING

Once the model is constructed and all nodes and edges
including the transition functions and the merging operators
are defined, it is possible to calculate the optimal balancing
between privacy and operational requirements. The optimal
balancing is given by the solution of an equation. If solving

p̄ =

N∑
i=1

pi (2)

p1 = p̄N −
N∑
i=2

pi (3)

this equation is not feasible, a numeric approach for approxi-
mating the result can be applied. This section discussed both
approaches in detail. The objective of the optimal balancing is
to perform the following: (i) automatically find the best trade-
off between privacy requirements and operational capabilities
for a system that is under development; or (ii) assess to what
extent an existing system meets given privacy or operational
requirements.

A. Analytic Assessment

The optimal balancing algorithm is performed on the entire
system. The analytic assessment thus involves the solving of
Equation 3, given an arbitrary p̄ in the interval [0, 1], e.g.,
1
2 for the optimal balance. Again, the equality condition can
be replaced by a greater equal or less equal condition. The
equation yields a solution for each pi for each node. In practice
it is sufficient to specify the solution for p1 or, in case each
function T and each operator Θ has a well defined inverse
function, to find the solution for an arbitrary pi and then
apply the given functions or the inverse functions in order to
calculate the values for the node of interest. By doing so the
model can be used to assess the impact of privacy/operational
requirements in a particular node for other nodes. For complex
systems consisting of many nodes, transitions and merging
operations, solving the equation might not be possible or
feasible. In the following section we therefore present a
numeric algorithm.

B. Numeric Approximation

For approximating the result, a numeric approach can be
applied. The algorithm for this approach is given as follows:
(1) vary the values for p1 and o1, respectively, in the very
first node and in the allowed interval, hence from 0 to 1 in a
given step size ∆ (e.g., 0.01); (2) compute T and Θ for each
subsequent transition to get according values for each node;
(3) for each variation, summarize and normalize the values
for p and o for each node by p̄ = 1

N

∑N
i=1 pi where N is

the total number of nodes; and (4) find the variation where
p̄ = 1

2 . It can be shown that the variation that satisfies the
above condition yields the optimal balance between privacy
requirements and operational requirements for the system as
a whole.

If not a balanced system is intended, but a system that is
either privacy aware to a certain extend or able to perform
operations to a certain extent, the equality condition in p̄ = 1

2
can be replaced by a more general condition involving a
threshold s, such as p̄ ≥ s or p̄ ≤ s. The remaining
variations that satisfy this condition may then be subject to
closer investigation.
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Fig. 2. Data flow model of the demand response use case.

V. EVALUATION

For evaluating the system we apply privacy constraints and
operational capabilities to a real-world use case that draws on
insights from the USC microgrid1. First, a data flow graph for
this use case is defined and all transition functions and merge
operations are set in accordance to practical experiences.
Second, we compare the results of the numeric approximation
and the analytic assessment in order to find an optimal balance
for that use case. The resulting value is finally validated with
experiences for that use case gained in practical applications.

A. Use Case Outline

The system that is modeled as a data flow graph is a
typical DR use case as described by Simmhan et al. in [11].
The purpose of DR is to curtail load during peak periods
by requesting customers to reduce their energy demand for
a certain period of time of a certain amount, e.g., by turning
off or adjusting the HVAC units. In order to determine which
action at which customer is most effective, a prediction model
based on current and past energy usage is applied. This model,
however, needs meter data of a customers’ energy usage at
a certain frequency, high enough for accurate predictions.
Currently data granularity is one value each fifteen minutes,
however, if necessary resolutions up to one value each minute
are feasible. In practice the former is used in order to avoid
fluctuations in data.

This setting implies two major privacy issues for customers,
also addressed by Wicker and Schrader in [12]: (i) if the
metering frequency is to high, information about the customer
is revealed in (almost) real-time, e.g., if the customer presence
at home can be predicted with high accuracy or even which
devices are turned on; and (ii) metered data is stored in
a database and it is therefore possible to maintain detailed
profiles over time. Such information can be released to the
public and may immediately affect the customer.

A graph representing this use case is depicted in Figure
2. N1 represents a smart meter capturing data at a certain
frequency, N2 represents a database storing that data, N3

represents a DR prediction unit and N4 represents the goal
effective load curtailment. The transitions and merging oper-
ations are defined as follows:

1http://smartgrid.usc.edu/

p̄ =
1

4

(
2p1 +

ep1 − 1

e− 1
+

1

2

((
ep1 − 1

e− 1

)3

+ p1

))
(4)

• T 1
2 , the metering frequency has no operational impact for

data storage in the data base. We are assuming a scalable
database which can handle an arbitrary number of streams
from meters at any frequency. This transition is therefore
the identity function p2 = T 1

2 (p1) = p1.
• T 1

3 , effective DR prediction heavily relies on a metering
frequency that is close to real-time. A low frequency
therefore reduces the operational capabilities of the pre-
diction unit. This transition is therefore defined as p3 =
T 1
3 (p1) = ep1−1

e−1 .
• T 2

4 , there are no operational impacts for the overall
goal of load curtailment on this path. This transition is
therefore again the identity function t24 = T 2

4 (p2) = p2.
• T 3

4 ; if the operational capabilities of the DR prediction
unit are low, the goal of load curtailment can not be
achieved sufficiently. This transition therefore reduces the
operational capabilities or increases the privacy: t34 =
T 3
4 (p3) = (p3)3.

• Θ21,2,3, for the sake of simplicity the merging operation is
defined as the arithmetic mean by Θ4(T 2

4 , T
3
4 ) = 1

2 (T 2
4 +

T 3
4 ).

All functions are bound in the interval [0, 1], hence any
value lower than 0 is mapped to 0 and any value greater 1 is
mapped to 1.

B. Assessment

For the analytic assessment Equation 3 is applied to the
above definitions. This yields Equation 4. Solving this equation
for p1 gives p1 ≈ 0.59.

Fig. 3 shows the results for the numeric approximation.
Evaluation is performed with a step size ∆ = 0.01 for p̄ ≥ 1

2
and implemented in Matlab R2010b. The top plot shows the
sum of the privacy requirements for each step, the middle plot
shows the sum of the operational requirements for each step
and the bottom plot shows the overlap of figures, indicating
the intersection of the curves where the condition for S is first
met. The greater equal condition is preferred over an equality
condition in order to deal with numeric inaccuracies (the exact
value of p̄ might not be reached). Values for p1 where the
condition is met are indicated with a dotted line. The condition
is first met at p1 ≈ 0.59 and therefore identical to the expected
analytic result.

C. Interpretation

Once the assessment is performed, the resulting value, hence
p1 ≈ 0.4, needs to be mapped to practical meaning. While this
is heavily depending on the use case at hand, we propose the
following approach for this scenario.

Electricity usage is continuous and digital (smart) metering
is sampling that continuous signal at a certain frequency fs.
Following the Nyquist-Shannon sampling theorem [13], fs
needs to be at least twice as high as the highest frequency fmax

in the signal in order to keep all the information of the original
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ō

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

p1

p̄
,ō

Fig. 3. Plot of the results of the numeric approximation for the use case
applied for evaluation.

signal and to restore it losslessly. In practice a metering signal
will consist of high frequencies due to peaks in the time
domain, e.g., when switching on the light. Full operational
capability is therefore given with fs close to infinity and hence
not feasible. If fs approaches zero, by contrast, privacy is
at its maximum. In practice, the upper bound for a meter
frequency is given by physical limitations in data capturing
and processing by e.g., fs = 1

5 , hence one value each five
seconds.

By describing this with a linear function yielding the privacy
impact dependent on the frequency, with p1 = −5x + 1 the
intended outcome is achieved. Solving this equation for fs and
by replacing p1 with 0.59 we get 0.59−1

−5 = 0.082 and thus a
meter value approximately every 12.2 seconds. This metering
frequency is the one – that based on the model – describes
the optimum trade-off between the privacy requirements of
the user and the designated goal effective DR prediction.
Optionally, for a given metering frequency the impact on the
goal can be determined, e.g., if fs is given by 1

10 , this yields
p1 = 0.5 and by applying the transition functions and the
merging operation p4 ≈ 0.27.

VI. CONCLUSION AND FUTURE WORK

In this paper an approach has been presented that allows
to assess the trade-off between privacy requirements and
operational capabilities. Therefore a use case in the smart grid
is modeled as a directed graph with nodes and edges. For
edges transition functions and merging operations are defined.
Based on that graph, an algorithm can be applied for finding
the optimum balancing. This can be achieved by either solving
an equation or – if this is not feasible – by using a numeric
approximation. Finally, we proposed a mapping of the result-
ing values back to real-world applicability. For evaluation,

a demand response use case from the USC microgrid was
assessed and discussed.

Future work will focus on integrating this model into
existing privacy assessment tools. This allows such systems
to provide a more holistic assessment also taking into account
the operational capabilities.
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