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Abstract. Semantic Web allows us to model and query time-invariant
or slowly evolving knowledge using ontologies. Emerging applications in
Cyber Physical Systems such as Smart Power Grids that require contin-
uous information monitoring and integration present novel opportunities
and challenges for Semantic Web technologies. Semantic Web is promis-
ing to model diverse Smart Grid domain knowledge for enhanced situa-
tion awareness and response by multi-disciplinary participants. However,
current technology does pose a performance overhead for dynamic anal-
ysis of sensor measurements. In this paper, we combine semantic web
and complex event processing for stream based semantic querying. We
illustrate its adoption in the USC Campus Micro-Grid for detecting and
enacting dynamic response strategies to peak power situations by di-
verse user roles. We also describe the semantic ontology and event query
model that supports this. Further, we introduce and evaluate caching
techniques to improve the response time for semantic event queries to
meet our application needs and enable sustainable energy management.

Keywords: Semantic Web, complex event processing, smart grid

1 Introduction

The power grid is undergoing rapid modernization into a Smart Grid through
the integration of digital and information technologies. This trend is worldwide
[1]. Conventional meters which record the accumulative power usage at monthly
base are being replaced by smart meters which report power consumption at
minutes interval. In Europe, for example, Italy and Sweden are approaching
100 percent deployment of smart meters for consumers. In U.S., the largest
municipal utility, the Los Angeles Department of Water and Power (LADWP),
has begun to expand its advanced metering infrastructure. At the building level,
ambient sensors and smart appliances, such as HVAC sensors, occupancy sensors
and plug-in electric vehicles (PEVs) are being integrated into building control
systems. These various information sources provide fine-grained monitoring and
control capability of power use activities, in both spatial and temporal scales.
However, transforming this capability to actionable knowledge is challenging,
due to the complexity of both information and interactions.

Demand response (DR) is a cornerstone application in Smart Grids that aims
to curtail power load during peak load periods. This reduces the captive power
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generation required by a utility for reliable operations by shaping the power
usage to remain relatively constant over time. Existing DR approaches are stati-
cally planned through time-based pricing incentives for voluntary curtailment by
customers. But the intermittent nature of renewable generation like wind power
and changes in energy use pattern hampers this static approach.

Dynamic DR [18] supplements traditional DR approaches by leveraging real-
time information for online decision making, enabling opportunistic curtailment
based on the current situation. However, as an application layer software, a dy-
namic DR system has to deal with the heterogeneous and constantly evolving
Smart Grid infrastructure. Further, the curtailment decision and enactment is
distributed, engaging participants like utility operators, facility managers, build-
ing occupants and household customers. No single person has a holistic sense of
the information space and concepts used for DR decisions.

Semantic Web provides an ontology-based extensible framework that allows
information to be shared and reused across application and domain boundaries.
It has been used for information integration in domains such as health care [10,
20], biology [21, 16] and transportation [11]. However these approaches mostly
process time-invariant or slowly evolving semantic data.

We provides a framework that adopts semantic knowledge in stream process-
ing and applies it to dynamic DR in Smart Grids, specifically the USC Campus
Micro-Grid. We combine complex event processing (CEP) with Semantic Web to
facilitate high level user application design. The semantically enhanced CEP sys-
tem ties in with our semantic repository that hosts comprehensive information
on the campus micro-grid. These are intended to be leveraged by the campus
energy center, building managers, staff and students, and their applications,
for campus energy management. Semantic technologies are central to meet the
organic growth of information and infrastructure diversity and keep them acces-
sible for easy use. Our key contribution in this paper are:
Semantics in Use in Micro-Grid. We discuss specific uses and benefits of
semantic technologies for micro Smart Grid applications and the participants.
Semantics for Complex Event Processing. We describe unique benefits of-
fered by semantics for complex event processing.
Semantic CEP (SCEP) Optimizations. We introduce caching techniques
for efficient semantic query processing over event data streams, and evaluate
them using semantic CEP queries used for dynamic DR on campus.

The rest of the paper introduces dynamic DR and semantic information
model for the campus Micro Grid (§ 2), describes the uses of semantic technolo-
gies in the Micro Grid (§ 3), presents our semantic CEP model and DR patterns
(§ 4), discusses and evaluates our caching optimizations for query processing
(§ 5), reviews related work (§ 6) and presents our conclusions (§ 7).

2 Background

Our work is done as part of the Los Angeles Smart Grid Demonstration Project,
where the USC Campus is a Micro-Grid testbed for evaluating Smart Grid
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technologies and software tools. Smart Grids have two characteristics relevant to
Semantic Web: Diversity and Evolution. Smart Grid applications need to support
diverse information sources and users. Besides sensors and instruments
monitoring the infrastructure to produce an avalanche of data, information on
electrical equipment, organizations, class schedules and weather are also used
for decision making [22]. The managers and consumers of this data also vary.
At USC, the facilities management services (FMS) deploys and manages sensors
and meters in campus buildings for energy monitoring and control. Research
and service groups such as the sustainability center, energy club, and energy
forecasting models consume this data for analysis. Users like FMS operators,
department coordinators and students need an integrated and easy to use view
of the complex data to support their individual needs.

Another feature of Smart Grids is their continuous evolution, given the
emerging nature of technologies and deployment. For e.g., USC, as the largest
private power consumer in Los Angeles, has over 60,000 students, faculty and
staff spread over 170 buildings [23]. This means that infrastructure is constantly
being upgraded and consumers change every year. Of late, an average of two
new buildings are built each year on campus, each with hundreds of sensors and
equipment. Ambient sensors such as temperature, airflow and CO2 sensors are
deployed at the room-level to monitor conditions. Likewise, around 19,000 new
students enroll in USC each year which induces changes in power usage profiles
in dormitories and classrooms. Smart Grid applications need sustainably adapt
to these changes in the information space with low overhead.

2.1 Online Strategies for Dynamic Demand Response

Traditional DR approaches are static: the decision is global and made in ad-
vance [1]. Dynamic DR as introduced in [18] supplements traditional DR by
offering a more fine-grained approach that is responsive to dynamic power usage
changes. The pervasive sensing capability enables us to monitor power consump-
tion and its indirect influencers, such as weather and occupancy, in near real-
time. Dynamic DR adopts a data driven approach that detects the occurrence
of specific information patterns by examining hundreds or thousands of online
data streams. Such analysis offers deeper situational awareness on power usage
behavior for timely and opportunistic curtailment strategies.

Our objective is to provide a framework where multi-disciplinary users can
define DR situations at higher level abstractions, and detect these situations over
dynamic Smart Grid data streams for timely decision making. Sample dynamic
DR situations are listed below, with more details in [18].
Situation 1. The space temperature in an office of EE department is lower than
the green building temperature.
Situation 2. The power use of a teaching building exceeds its pre-peak demand.
Situation 3. The space temperature in a non-occupied meeting room is lower
than the green building temperature.
Situation 4. Fan coils in building MHP peak concurrently.
Situation 5. The temperature in a meeting room is above setpoint by 5 ◦F.
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2.2 Semantic Information Model for Smart Grid Applications

Earlier, we have designed an integrated, modular Smart Grid semantic informa-
tion model for dynamic DR applications [24, 22]. In summary, this captures,
Data Sources. We model Smart Grid data sources and the information they
emit, including smart meters which measure the power use of buildings, sensors
which detect room occupancy, temperature and airflow sensors which measure
HVAC status, weather reporting services. These sources are linked to concepts
of physical and virtual spaces where they monitor.
Infrastructure. We model both the campus power grid infrastructure, such as
the distribution network, and the physical environment. This includes concepts
and relationships between building, rooms, and energy sinks like appliances and
equipment. These relate to power usage behaviors and curtailment capabilities.
For example, a meeting room may need to be cooled only when occupied.
Organization. Campus organizations including schools, departments, labora-
tories and so on are also modeled. These can help users to define organization-
specific DR strategies even though it may span physical locations. For example,
a monitoring pattern can alert the department coordinator when consumption
exceeds a certain threshold.
Other Information. Other information including scheduling and weather also
help DR applications, and are modeled using existing domain ontologies.

3 Semantics in Action on Campus Micro Grid

The semantic Smart Grid information model forms the center piece of many
applications in the USC campus Micro Grid. These range from asset manage-
ment, information diffusion and data analysis, allowing different participants
to cooperate on campus-wide DR operations. In the following we discuss these
applications and their use of semantics.

3.1 Sustainable Asset Management

Asset management is a basic power grid operation. In a Smart Grid, asset man-
agement must shift from a dependence on domain experts’ experiences to a
reusable knowledge base. This is necessary to deal with an aging (but experi-
enced) workforce whose retirement can lead to less experienced staff without
holistic knowledge of the evolving grid. Another concern is the need for seamless
and rapid integration of new resources deployed in the power grid.

As a Smart Grid testbed, the USC campus Micro Grid is pioneering novel in-
frastructure and its management. The USC FMS deploys and manages assets on
campus, replacing electromechanical devices by digital instruments, introducing
power efficient equipment and enabling bi-directional grid communications. At
the time of writing, smart meters were deployed to monitor over 170 buildings on
campus, and over 50,000 sensors installed to monitor room temperature, HVAC
airflow and fan speed, and even CO2 levels. As equipments are upgraded, ensur-
ing transfer of knowledge and its accessibility to relevant users is a challenge.
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Semantic technologies enable sustainable asset management for the campus
Micro Grid. We worked with USC FMS to build the Smart Grid ontology model
which captures relevant Micro Grid aspects ranging from electrical equipments,
buildings, participants, and departments [24]. Using this model, asset manage-
ment merely involves performing model queries that are synchronized with field
operations. For example, when a new occupancy sensor is installed, the facility
operator inserts the sensor entity into the semantic repository, describing it and
its relations to existing domain entities using properties such as “ee:hasID” and
“ee:hasLocation”. A new sensor type can be intuitively introduced by creating
a concept such as “ee:OccupancySensor” in the model, defining its properties
and classifying it under an existing parent category such as “ee:Sensor”. Com-
pared to relational model, semantic ontologies support property inheritance and
reasoning while ensuring that introduction of new concepts, or in other word en-
riching the schema, does not affect legacy data. Further, external models (such
as Weather) can be easily integrated. Semantic model based asset management
hence ensures rapid and extensible knowledge transference and integration.

3.2 Accessible Information Diffusion

Another key Smart Grid activity is to promote energy awareness and participa-
tion by delivering interpretable energy use information to power consumers and
end-use applications. We use a web portal as the primary vehicle for this task.
Incorporating semantics in these applications considerably improves the pro-
cess of information dissemination in a heterogeneous power grid environment.
It provides ubiquitous data and query representation that hides complexities
associated with multi-disciplinary users and distributed asset management.

Our prototype web portal for campus Micro Grid information exploration,
eScope, is hosted at smartgrid.usc.edu. It provides not only static asset in-
formation but also dynamic energy use “heatmap” for the campus. The portal
supports the needs of both domain experts for easy exploration and end con-
sumers wishing to learn about the energy footprint. It uses SPARQL queries to
extract and present this information from a semantic repository; we use 4store. A
sophisticated information integration pipeline running on a private Eucalyptus
Cloud continuously retrieves raw data tuples from various information sources
including sensors, maps them into RDF triples using rules, and inserts them into
the semantic database where it is linked with domain ontologies.

Using semantics allows easy information retrieval by even non-experts, such
as portal developers. This is particularly important in a multi-disciplinary project.
For example, the USC Micro Grid does not follow a consistent sensor naming
scheme. The same type of sensor type, such as kilowatt-hour sensor, has opaque
names like “D163Watts”, “XLP0100103000022UD” or “BIE TotalWatts” for dif-
ferent buildings, making it challenging for the portal to maintain static queries
for display results as a heatmap. By using semantic concepts rather than a
relational database, the portal developer can query for conceptual terms using
SPARQL, such as recent “ee:Kilowatt” readings from all “bd:TeachingBuilding”:
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SELECT ?building, ?time, ?kwhReading

WHERE {
?event evt:hasSource ?src . ?src ee:hasLocation ?loc .

?loc rdf:type bd:TeachingBuilding . ?loc bd:hasCode ?building .

?event rdf:type ee:Kilowatt . ?event evt:hasValue ?kwhReading .

?event evt:hasTimestamp ?time . FILTER(?time > "10:15:00")}
ORDER BY DESC(?time)

This also allows new portal features to be incorporated rapidly by just under-
standing a few concept terms, and seamlessly reflects infrastructure upgrades.

3.3 Data Analysis

Data analytics for both off-line demand forecast as well as online DR optimiza-
tions utilize the semantic knowledge.

Adaptive Planning using Machine Learned Forecasting. We use ma-
chine learning to train power consumption forecasting models using historical
energy use data [3] that are useful for planning equipment upgrades, mainte-
nance schedules, and curtailment policies. These models use different semantic
features as indirect influencers of energy use, such as the types of buildings,
rooms and customers, academic schedules, weather conditions, and so on. How-
ever, not all features may be relevant for prediction at all times. The web portal
allows a data analyst to easily explore the semantic knowledge base to identify
candidate features of interest. Historical values of these identified features, along
with the power consumption of that target buildings, are then extracted from
the semantic repository and normalized into a form that can be consumed by
a Regression Tree training model. Semantics allow the analyst – who is not an
expert on power systems – to still navigate the domain models and pick poten-
tial influences of energy use, allowing knowledge to be easily imparted without
requiring a domain expert by her side.

Online Optimization using Semantic CEP. Online data analytics for
DR uses complex event processing (CEP) for detecting real-time situations, rep-
resented as event patterns, from among streams of events. The limitation of
current CEP systems in processing only structural patterns impedes their effec-
tive use in an information rich domain like Smart Grid. Existing systems process
events streaming from sensors as plain relational data tuples. As such, complex
event patterns can only be defined as a combination of attributes presented in
event data. Users have to know the details of event structures and sources before
defining low level pattern specifications.

We have introduced semantics into CEP [25] as a solution to meet online
DR requirements. Details of SCEPter, our semantic CEP system, is outside the
scope of this work. However, it does offer several advantages.
Interoperability. The broad space of software and hardware vendors in Smart
Grids means that different standards need to co-exist. This extends to data
formats and schemas. For example, airflow sensors on campus use different vari-
ants of the “airflow” attribute such as “flowrate” and “airvolume” in their event
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format. With a traditional CEP system, pattern designers are exposed to the
structural heterogeneity of events and have to rewrite the same query for dif-
ferent data streams whose formats may vary. A Semantic CEP system helps
capture these distinctions, for example using “owl:sameAs” relations, which al-
lows a unified conceptual query specification over heterogeneous event formats
without in-depth knowledge of standards. This also reduces the complexity op-
erational debugging by having a smaller set of conceptual patterns.
Expressivity. Traditional CEP systems process events solely based on the at-
tributes they posses in the event tuple. By mapping events and their tuple at-
tributes to as part of the semantic ontology, query constraints can then be defined
on related domain concepts and entities. This significantly enhances the power
of an event pattern specification in detecting very precise situations, while elim-
inating false positives.
Accessibility. Defining DR event patterns over domain ontologies shield users
from lower level details of data streams and their changes. As shown in the ex-
amples in § 2, we can easily define patterns that apply to only meeting rooms
on campus, even if the user has no idea of which buildings have meeting rooms,
let alone the sensors that are deployed in those rooms.

In the following sections, we discuss the semantic-enriched event processing
approach and optimizations for Smart Grid applications in detail.

4 Semantic Complex Event Processing Model

We provide a semantic stream query language and a data-driven processing
engine for dynamic DR applications in Smart Grid [25]. Data access systems
are typically data-driven or query-driven [5] based on what initiates/completes
the operation. CEP systems are data-driven as a pattern is detected when the
last event required for a complete match arrives. Query-driven systems such as
relational/semantic databases (often) evaluate results as soon as a query is sub-
mitted. Conceptually, our system is data-driven as incoming events continuously
trigger pattern evaluation. However, since our semantic CEP pattern is specified
over both static data in semantic repositories and dynamic stream data, the im-
plementation causes the event-triggered pattern evaluation to incorporate both
a semantic query part and a subsequent CEP pattern detection.

4.1 Semantic Event Model

The state-of-the-art CEP systems [2, 13] process primitive events as relational
data tuples, i.e.,

primitive event ::=< attributes; timestamp >

Based on the relational model, complex events (event patterns) are defined as
compositions of primitive events with attribute constraints. Directly applying
CEP systems for dynamic DR requires users define DR event patterns at data
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level and synchronize patterns with the grid infrastructure upgrades. For exam-
ple, data schema of space temperature and occupancy measurement streams on
USC campus is,

event tuple =< sensorID, reading; timestamp >

To define Situation 1 as a traditional CEP pattern, users have to explicitly
specify the list of thermostat which locate in offices of EE department and keep
it up-to-date in the query. In addition, as CEP patterns can only be matched
by evaluating syntactic identical attributes, semantic mismatches between user
vocabularies and event data have to be addressed manually.

To overcome these limitations, we propose to link dynamic data streams with
background ontologies to process semantics of events. Figure 1 shows an example
of semantic temperature measurement event. It’s essentially a RDF event graph
connected to domain ontologies with properties materialized from the original
data tuple.

ee:D375TMP bd:RTH105

ee:hasID

ee:hasLocation

bd:Office

rdf:type

<    D375TMP          2012-01-12T05:00       70           >event tuple =

ee:TempSensor

rdf:type

ontology

Event URI

evt:hasSource evt:hasTime evt:hasValue

Fig. 1: Semantic Event Linked with Background Knowledge

4.2 Semantic Event Query Model

We propose a two-segment query model over the semantic events described above
for dynamic DR situation modeling. The general query structure is,

Semantic Event Pattern ::=

[semantic filtering subpattern]{0, n}
[syntactic CEP subpattern]+

A semantic event pattern in our system consists of two types of subpatterns:
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semantic filtering subpatterns and syntactic CEP subpatterns. The semantic
filtering subpatterns are SPARQL queries to specify semantic constraints and
annotations of input events. A pattern can have 0 to n semantic subpatterns
where n is the number of streams the pattern correlate. The syntactic CEP
subpatterns are traditional CEP queries which specify temporal and logic con-
straints over filtered and enriched event tuples. One pattern can have 0 or 1
CEP subpattern. For example, Situation 1 can be modeled as a pattern with
1 semantic filtering subpattern and 0 CEP subpattern. The semantic filtering
subpattern in SPARQL is,

SELECT ?e

WHERE {
?e evt:hasSource ?src .

?src ee:hasLocation ?loc .

?loc rdf:type bd:Office .

?loc bd:belongs org:EE Department .

?src rdf:type ee:TempSensor .

?e evt:hasValue ?reading .

bd:GreenBuildingTemp bd:hasValue ?val .

FILTER(?reading < ?val) }

Consider another example, the pattern for Situation 3 correlates 2 streams in-
cluding the occupancy and temperature measurement streams. It has a semantic
filtering subpattern on each stream to query/select event location and constrain
the location type as “bd:MeetingRoom”. The semantic subpattern for the tem-
perature measurement stream also specifies the temperature reading is less than
“bd:GreenBuildingTemp”. Denote “?o” as filtered events from the occupancy
stream and “?t” as filtered events from the temperature stream and assume the
filtered event tuples are annotated with a new location attribute “loc”, the CEP
subpattern for Situation 3 represented in Siddhi [19] is,

AND (?t, ?o)

CONDITION {(?t.loc = ?o.loc) and (?o.reading = false)}

We developed the semantic event query processing system around an existing
CEP engine kernel, Siddhi. When a new event tuple arrives on input streams,
the corresponding semantic events are materialized and combined with domain
ontologies to evaluate semantic subpatterns. Qualified data tuples are extended
and passed to the CEP engine for syntactic subpattern matching. For details of
the processing engine please refer to [25].

5 Cache Optimization for Continuous Querying

In this section, we discuss optimizations for processing semantic filtering subpat-
terns over event streams. The baseline approach is to perform semantic queries
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whenever a new event arrives. However, semantic querying is known as time ex-
pensive. It performs inference and self-join operations over the ontology knowl-
edge base. In general, a semantic query with a single path expression requires
(n-1) self-joins over the ontology where n is length of the path.

We developed caching algorithms to improve the performance of semantic
stream querying. As an initial effort, we make the following assumptions,

– The semantic filtering queries do not correlate multiple events.
– The semantic filtering queries do not contain alternative or disjunctive triple

patterns.

5.1 Query Caching

The key observation for query caching is multiple events may share semantic
query results so that the system need not evaluate queries for all events. A
semantic event is modeled as a directed tree whose root node is the event URI
and has edges linked to event properties as shown in Figure 1. We introduce the
following definition,

Definition 1. The event root properties of a semantic event are the properties
directly materialized from its data tuple attributes.

As examples, for the semantic event shown in Figure 1, “ee:D375TMP”,
“2012-01-12T05:00” and “70” are event root properties.

?event

relation

evaluation
SensorID Timestamp         Reading    

bd:Office org:EE_Department bd:GreenBuildingTemp

ee:TempSensor

?src ?rd

?val?loc

materialization

Event Tuple Semantic Filter Subpattern

b
d
:h
a
sV
a
lu
e

Fig. 2: Semantic Event Query Graph

On the other hand, a semantic event query can also be modeled as a directed
tree whose root node is an event variable and it has edges connected to property
variables, literals, ontology classes or instances. Executing a semantic event query
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Algorithm 1 Semantic Stream Query with Query Caching

Require: Cache table ht initialized for Q, domain ontologies O
Ensure: Evaluation result v for query Q
1: while Receiving semantic event e do
2: Compute cache key k for e
3: v ← ht.get(k)
4: if v! = null then
5: Return v
6: else
7: v ← Evaluate(Q, e, O)
8: Update {k, v} to ht based on LFU policy
9: Return v

10: end if
11: end while

is essentially finding event trees that match the query tree. As an example, Figure
2 shows the query tree for the semantic filtering subpattern of Situation 1.

As shown in the query tree, the inner nodes are all variables and leaf nodes
are either literals, ontology classes or instances. The edges can be classified as
relation or evaluation edges. We further define,

Definition 2. The query root properties of a semantic event for a query are
the event root properties which are evaluated in the query.

For example, for the semantic event shown in Figure 1, “ee:D375TMP” and
“70” are query root properties for the query tree shown in Figure 2. For any query
which satisfies the assumptions stated before, its tree graph can be decomposed
as conjunctive paths from the event variable node, through the variable nodes
of query root properties to leaf nodes. Whether a semantic query is evaluated
to true or false for an event is hence completely determined by the query root
properties of the event for that query. In other word, if two events share the
same query root properties for a query, they can share the query result.

Based on the above observation, we design the query caching mechanism as,

Cache data structure. The cache is implemented as a collection of hash
tables. The SCEP system initializes and maintains one hash table for each query.
The query root properties are used as the cache key and the boolean query
evaluation result is the cache value.

Cache lookup/update When a new event e arrives, the system fetches
the query root properties of e for a query Q and look up the corresponding
hash table for matches. If it hit the cache, we use the cached result without
actually performing the query. Otherwise the system materializes the semantic
event for querying and updates the cache. Currently, we implemented a simple
Least-Frequently-Used (LFU) update strategy.

Denote the boolean function that evaluates query Q over event e and domain
ontologies O as Evaluate(Q, e,O), the pseudo code for semantic event query with
query caching is shown in Algorithm 1.
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5.2 Path Caching

?event

relation

evaluation

Q1

bd:Office org:EE_Department bd:GreenBuildingTemp

ee:TempSensor

?src ?reading

?val?loc

?event?event

bd:MeetingRoom

Q3Q5

Q1Q1Q3, Q5

Q1, Q3, Q5 Q1, Q3

Fig. 3: Sharing Paths between Semantic Event Queries

In addition to sharing query results between events, it also makes sense to
reuse path evaluations between queries especially when a number of queries
share a smaller set of path expressions. Consider Situation 1, 3 and 5, Figure
3 shows the path sharing between their semantic filtering subpatterns Q1, Q3
and Q5. It also should be noticed that path expressions with leaf nodes such as
“bd:Office” and “bd:MeetingRoom”, which are semantically disjoint, only need
to be evaluated once for events with the same query root properties. Based on
above observations, in the second cache optimization approach we maintain cache
tables for individual query path and update caches by referencing the semantic
relations between paths. The pseudo code for semantic stream query with path
caching is shown in Algorithm 2.

5.3 Evaluations

Experiments are conducted to evaluate the semantic caching algorithms in dy-
namic DR scenarios expected for the USC Campus Micro Grid. In these experi-
ments, we run the SCEP system on a 12-core AMD Opteron server, with 2.8GHz
cores, 32GB physical memory and running Windows Server 2008.

Data collected from HVAC systems and smart meters on the USC campus
is used as experimental data streams. We performed two sets of experiments
each for three times and the average values are reported here. In the first set
of experiments, we submit 9 semantic CEP queries to the SCEP engine and
compare the throughput of the system in the case without caching optimization,
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Algorithm 2 Semantic Stream Query with Path Caching

Require: Cache table hti initialized for path Pi (i = 1 to n) of query Q, dhtij (j =
1 to m) identified as disjoint cache tables of Pi, domain ontologies O

Ensure: Evaluation result v for query Q
1: while Receiving semantic event e do
2: Compute cache keys ki of e for Pi (i = 1 to n)
3: v ← true
4: for i = 1 to n do
5: vi ← hti.get(ki)
6: if vi = true then
7: Continue
8: else if vi = false then
9: v ← false

10: Return v
11: else
12: vi ← Evaluate(Pi, e, O)
13: Update {ki, vi} to hti based on LFU policy
14: Update {ki, !vi} to dhtij (j = 1 to m) based on LFU policy
15: end if
16: end for
17: Return v
18: end while

with query caching and with path caching. In the second set of experiments we
submit 120 queries to the engine and evaluate the time performances of the three
algorithms again. Figure 4 shows the experiment results. Obviously, the number
of queries has significant impact on the system performance. We expect to sample
campus sensor data at 1-minute interval for the dynamic DR applications. This
requires a minimum throughput of 83 events/second to handle around 5000 data
points on campus. Without caching optimization, the system can merely process
around 10 events per second with 9 queries and 0.7 event with 120 queries. The
throughput of the system ranges from 130 to 2400 events/second in the two
experiments with query caching and path caching. We also notice when the
number of pattern increases, path caching usually outperforms query caching as
it allows evaluation results to be shared between queries.

6 Related Work

Semantic Smart Grid Information Modeling. The power systems industry
has been opaque, dominated by a few large companies with proprietary infor-
mation stacks. Smart Grids are forcing this to change. Standards designed by
organizations like IEC and NIST provide common protocols and data models
that can be used by the various participants. There has also been recent work
on developing semantic-level Smart Grid information integration framework. [4]
proposed a shared ontology model to provide common semantics for Smart Grid
applications. The ontology captures domain concepts by transforming existing
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Fig. 4: Evaluation of Semantic Caching for Streaming SCEP Queries.

standards, such as IEC’s Common Information Model (CIM), to a uniform con-
ceptual model. Our semantic Smart Grid information model can be considered
as an extension to the model proposed in [4], and complements it with broader
knowledge that is required for DR decision making. Besides power grid domain
elements, we also link these with modular ontologies on physical spaces, organi-
zation, and weather that are crucial to DR applications.

Complex Event Processing Traditional CEP approaches like Cayuga [2]
and SASE [13, 9] have focused on specifying and detecting temporal and logical
relations among syntactical events modeled as an infinite sequences of relational
tuples with interval-based timestamps. These use a SQL like query model with
operators such as selection, projection, and conditional sequence.

The problem of semantic stream processing has been discussed in C-SPARQL
[7] and ETALIS [5, 6]. C-SPARQL extends the SPARQL language with window
and aggregation clauses to support RDF stream processing. However, while C-
SPARQL extensively considers aggregation operations, it does not support sev-
eral stream processing operators that are essential to Smart Grids, including
temporal sequence and negation. ETALIS is a rule-based deductive system that
acts as a unified execution engine for temporal pattern matching and seman-
tic reasoning. It implements two languages for specification of event patterns:
ETALIS Language for Events (ELE), and EP-SPARQL for stream reasoning.
Both event patterns and semantic background knowledge are transformed to
Prolog rules and executed by a Prolog inference engine for reasoning and pattern
detection. However, these languages independently are not insufficient for our use
cases. The ELE pattern language lacks semantic operators while EP-SPARQL
supports few temporal operators such as sequence and optional sequence. Rather
than adopt a bespoke solution that departs from traditional CEP systems, our
proposed semantic CEP framework is a hybrid that leverages the native fea-
tures of both CEP (Siddhi) and SPARQL engines to offer a richer query syntax.
More practically, it also allowed for rapid construction of such a framework for
our Micro Grid using existing tooling, and improves the performance using the
proposed optimizations.
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Semantic Caching. Semantic caching has been widely studied for database
query optimization [14] by storing the results of previously queries locally. [12]
discusses caching theory in terms of deciding when answers are in cache, and
semantic overlap. [17] describes the use of semantic cache in an ontology-based
web mediator system and considers extracting partial results from caches for new
queries. A special feature of their approach is organizing cache by concepts and
exploiting domain knowledge for defining queries to complement partial cache
results. While not breaking new ground in caching strategies, we do apply it to a
novel scenario of Semantic CEP where query performance over continuous event
data can be punitive otherwise. Our caching algorithms for stream queries lever-
age existing state-of-the-art, resembling the global caching in [8, 12], and partial
query caching [15]. Other than caching query results for subsequent relational
queries, we cache semantic query results for new data.

7 Conclusion and Future Work

We have discussed incorporating semantics into Smart Grid applications and dy-
namic stream processing for the USC Micro Grid. Semantic Web domain ontolo-
gies form the foundation for diverse participants and DR applications to manage
and access data conceptually. Realtime grid observations abstracted as semantic
events allow intuitive definition and detection of semantic CEP patterns. Out
caching optimizations improve its performance, as validated empirically.

Our work lies in two directions. First, we plan to extend the ontology mod-
els from campus Micro Grid to a utility scale, and identify additional semantic
event patterns for DR strategies. Second, we will investigate additional optimiza-
tions to overcome performance bottlenecks of semantic event processing, which
currently limit throughput to less than 3000 events/second even with cache op-
timization.
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