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Generative Models

* Two approaches in machine learning:
— Discriminative: Learn P(y|x)
— Generative: Learn P(y,x)

* Discriminative models are easier to train,
but generative models are more powerful
because in some sense it “‘understands”

the world better.
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Boltzmann Machines: A Generative
Model

* Energy based model. Assign a scalar energy value to
configurations of interest

« Associate lower energy with plausible configurations
* Probability given by o(—E(x))

Z

« Consists of visible units (data) and hidden units
(capture dependencies between data)

General Boltzmann machines have
arbitrary connectivity. Hard to train.
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Restricted Boltzmann Machines

» Restrict connections to occur only between
pairs of visible and hidden units. No
connections among visible units or hidden

units.

* h’s are independent given vand v’s are
independent given h (markov property)
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Restricted Boltzmann Machines

» Energy given by () () (r
o

E(v,h) = =bv—ch—hWu
« Conditional independence implies:

p(hlv) = | | p(hilv)

7

p(vlh) = ] | p(v;|n)

J

* Once we know the parameters (b,c, W)
generating data is easy
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Learning Parameters: RBM Training

* Learn parameters that maximize log-
likelihood of data. Assuming data
independence, we have «»

arg max f(w,b,c) = log P(v*
g max {(w,bc) > log P(v')

* The gradient is given by

Vol(0) = ZE}?(M’U) Vo(=E(v',h)]

t=1

- nEp(v,h) (V@(—E(Ut, h))
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RBM Training

Vol(0) = ZEp(h|v) Vo(—E(v',h)]
t=1
— nEp(y,n) (Vo(—E(v', h))
« Gradient depends on joint distribution

 Intractable since it involves the partition function Z

« To avoid this, use Gibb’s sampling to sample from
joint (Boltzmann distribution). Involves running a
Markov chain to convergence (Markov Chain Monte

Carlo or MCMC)
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Practical Ways to Train RBM

* |Instead of running MCMC to convergence,
run it for just a few (k) steps. Sample from
this distribution (Contrastive Divergence)

 |n practice, k (number of steps) is < 100.
Some times even 1 step works well !

( OOO00 ) [ OO000 )
~ p(h[x) S p(xIh)
x® X! XK= X
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D-Wave as a Boltzmann Sampler

« D-Wave is a physical Boltzmann machine

* |In theory, should give samples from a
Boltzmann distribution (parameterized by
some effective temperature) after annealing

* Approach: Instead of Gibbs’s sampling, map
RBM onto D-Wave and sample from solution
states
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Mapping RBM onto the D-Wave

 RBM's are full bipartite graphs. D-Wave
has sparse connectivity.

* Using logical qubits, can implement up to
48x48 bipartite graph. Lots of qubits lost

* For this work, no qubit chaining. Map each
pixel of the training image directly onto a
qubit
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Chimera Restricted RBM
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Pixel blocks
embedding
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Same embedding as in Benedetti et al
(2015) and Doulin et al (2014)
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Mapping binary RBM to Ising Model

« RBM'’s are binary {0,1} units.

* To map this to Ising model, where units are
in {+1,-1} we use the following transformation
described in Domoulin (2014)

|44

,—_

Ve
1 1
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Experiments

« Basic Outline (classical side):
— Initialize visible units and hidden units
— Clamp visible units to a training sample
— Run few steps of contrastive divergence for gradient
— Update parameters
— Run till convergence

* On the D-Wave, same process except we do not
run contrastive divergence, but sample from
solution states
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Data

 MNIST (handwritten
digits 0-9)

* Train on 1000 digits and
learn features.

* And then see if the
model can generate its
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D-Wave Effective Temperature, Parameter
Noise etc

* D-Wave effective temperature is different
from physical temperature. Estimate this
via sampling and then find a best fit

* Did not do any corrections for weight and
bias noise.

» Effective temperature also fluctuates
during training (Benedetti et al 2015). Did
not correct for this.
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Experiments:
Contrastive Divergence (CD) 1 Step
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after epoch 1 after epoch 15
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After 50 Steps of CD
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After 100 Steps of CD
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D-Wave (Experiment 1)

cs g e S A Generated images are
Filters learnt are sparse due to ~ N©ISy and largely
sparse connectivity graph indistinguishable from
one another
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-Wave (Experiment 2)
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D-Wave (Experiment 3)
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D-Wave Observations

» Effective temperature and parameter noise
affect modeling

* However, limited connectivity is a much
bigger problem
— RBM's are robust to limited connections. But

the D-Wave has less than 1% of connections
of a complete bipartite graph.

— Qubit chaining can overcomes connectivity
Issues, but then image has to be significantly
down-sampled.
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