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Professional Experience And Education

Jan. 2014-present,

J. Robert Oppenheimer Distinguished Postdoctoral Fellow, LANL
May 2013-Jan. 2014,

Director’s Postdoc Fellow, LANL
Feb.-Aug. 2011 & July 2012-May 2013,

Postdoctoral Researcher, National Taiwan University (NTU)
July-Sep. 200g,

Visiting Doctoral Researcher, Tokyo Institute of Technology

Jan. 2011, Ph.D. with 1% prize, (4.0/4)

Institute of Polymer Science and Engineering, NTU
June 2007, M.S. with Honors, (3.8/4)

Department of Applied Chemistry, National Chi Nan University
June 2006, B.S., (3.2/4)

Department of Applied Chemistry, National Chi Nan University
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Current Challenges for LIBs

Lithium-lon Battery
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Challenges: Solution: Advanced Nanomaterials

€ Insufficient capacity — Li adsorption sites

€ Slow charging rate — Li diffusivity

€ Cycling stability — Structural instability

€ Energy density (Wh/Kg) — Light weight required

Development of advanced nanomaterials is required to overcome these challenges



Graphene, Graphene Oxide and

Precis

()

Graphene Oxide Bottom-Up Synthesis

Chemical Vapor Deposrtlon Lietal., J. Am. Chem. Soc., 2010, 132, 5944. 5
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OMe
HBC-tBuOMe

OMe
HBC-OMe

HBC-H

HBC-F

Adv. Mater. DOI: 10.1002/adma.201603613



Fine Tune d-Spacing through Organic

Synthesis: Varying Functional Group

HBC-H: 3.95 A

HBC-tBuOMe: 4.36 A

Adv. Mater. DOI: 10.1002/adma.201603613
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TEM courtesy of Aiping Chen



Schematic View of LIBs
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(energy storage) F i (power to the device)
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Adv. Mater. DOI: 10.1002/adma.201603613



Nanographenes as LIB Anode
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« These NG anode LIBs exhibiting stable cycle stability.
« Capacity: OMe > tBuOMe > H>OH>Br>F

HBC-tBuOMe

Adv. Mater. DOI: 10.1002/adma.201603613



Rate Performance (Charging-Discharging)
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Excellent rate performance achieved on the NG HBC-OMe anode,
evidenced by the high capacity at high charging-discharging current.

Comparative study between HBC-OMe, HBC-tBuOMe and HBC-H
reveals electron donating group enhance the rate performance.

HBC-t;“l’.I:OMe
Adv. Mater. DOI: 10.1002/adma.201603613 10



Electrochromism

Electrocrllfbmié fheory Electrochromic devices
J. R. Platt S. K. Deb

11



Electrochromic Technology

« Electrochromic Display (NTera®) Anti-Glare Back Mirror
eSS
Cetaeg
2 a5
2EESa

Smart Window Smart Sunglasses

U. Bach et al. Adv. Mater. 2002, 14, 845




Electrochromic Materials

* Metal oxides (WO, IrO,, MoO,, etc.)

- Small organic molecules (Viologens and phthalocyanines)

« Electroactive polymers (PPy, PT, PEDOT, etc.)

O Kt tol ot ted

Polyaniline Polypyrrole PEDOT PEDOP

13



Advantages of Triphenylamine

Hole Transporting Material
High Electron Mobility
Low lonization Potential
Electrochemical Stability

Reversible Redox Couple
Processability

Good Solubility
Thermal Stability

High Glass Transition Temperature (T )
High Thermal Stability (T,)

14



Requirement of Electrochromic

Materials for Practical Applications

(1) Low driving voltage (< 1.5 or 3.5 V)

(2) Rapid response time [second (mirror)~ minute (window)]
3) High color contrast (transmittance attenuation=AT> 30% )
(4) Long cycle life (>10 yr for window, >3yr for mirror)

(5) Environmental stability (electrochemical, thermal, & UV)
(6)Low cost, easy processing

(7) Multiple colors with the same material

Polym. Chem. 2012, 3, 255-264 15



Requirement of Electrochromic

Materials for Practical Applications

(1) Low driving voltage (< 1.5 or 3.5 V)
(2)
(3)

(4) Long cycle life (>10 yr for window, >3yr for mirror)

(5) Environmental stability (electrochemical, thermal, & UV)
(6)
(7)

Polym. Chem. 2012, 3, 255-264 16



Low driving voltage & Long cycle life

I:I —  {cycle
N - --  500cycles
~ -+« 1000 cycles
| — 1 cycle
N \N 7 == « 500 cycles

1000 cycles
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E/V (vs. Ag/AgCl)

Polym. Chem. 2012, 3, 255-264
J. Mater. Chem. 2008, 17, 1007-1015
Macromolecules 2008, 41, 2800-2808 17



Requirement of Electrochromic

Materials for Practical Applications

(1)
(2)
(3)
(4)
(5)
(6)

(7) Multiple colors with the same material

Polym. Chem. 2012, 3, 255-264 18



Increasing the electroactive sites by

multi-step synthetic procedures.
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Synthetic route to Starburst

Triarylamine-based Polyamide
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Electrochromism

ranging from visible to NIR region
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Electrochromism

ranging from visible to NIR region
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Transmissive to Black Electrochromism
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Summary

This talk covered my recent work in the synthesis
and structural design of functional materials, which
were further used for optoelectronic and energy
applications, such as lithium ion battery, solar cell,
LED, electrochromic, and fuel cells.
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Mesoporous TiO,/

\\ FTO-coated glass
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