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Paper Statistics

50 Thermal Receiver Papers Tower Receivers (34 papers)
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Papers by Country
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Receiver Categories

* Tower Receivers
e Parabolic Trough / Line-Focus Receivers

e Dish Receivers
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Advances in Tower Receivers

e Tubular / Cavity Receivers

 VVolumetric Air Receivers

e Particle Receivers




Numerical Investigation on the Effect of Tube
Layout on the Heat Loss of Solar Cavity Receiver

(Fang et al., Jiaotong University)

(a) Cavity geometry (b) Tube layout-1 (¢) Tube lavout-2

FIGURE 1. Geometry of cavity and tube layouts

Simulations showed that lining passive surfaces of a tubular cavity receiver
with preheating/boiler tubes reduced wall temperatures by 200 — 300 C and
increased efficiency by 3 — 5%.

%‘Iarﬁfﬂi R -

T k3 e e e A—

Concentrating Solar Power and Chemical Energy Systems




Optimal Spacing within a Tubed, Volumetric, Cavity
Receiver Suitable for Modular Molten Salt Solar Towers

(Turner, Cranfield University)
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FIGURE 1: Two-dimensional receiver model showing 3-tube-layers

Simulations of a volumetric array of molten-salt tubes shows reduced
radiation losses and increased efficiency.
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Geometric Optimization of a Solar Cubic-Cavity Multi-
Tubular Reactor

(Valades-Pelayo et al., Universidad Nacional Autdnoma de México)
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Tube arrangement in cavity receiver optimized to maximize tube

temperature and minimize gradients for high-temperature thermochemical
reactions.
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Effects of vertically ribbed surface roughness on the

forced convective heat losses in central receiver system
(Uhlig et al., DLR)

Modeled heat loss and thermal efficiency of Solar Two molten salt receiver
with inclusion of tube features and circumferentially varying heat loss.
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Fractal-Like Receiver Geometries and Features for
Increased Light Trapping and Thermal Efficiency

(Ho et al., Sandia National Laboratories)

~10 m meters

Conventional cylindrical New fractal-like designs with increased light-
solar receiver trapping features at multiple length scales

Light-trapping geometries and features at multiple length scales were modeled and
tested and shown to increase effective solar absorptance and thermal efficiency.




Reducing the Convective Losses of Cavity Receivers
(Flesch et al., DLR)

Modeling and
testing of air
curtain and partial
window showed
reduction in
convective heat
losses by up to
50%. Authors
proposed using
natural convection
from heat shields
to create natural
air curtain from
wind.
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Thermal Resistance Model for CSP Central

Receivers

(de Meyer et al., Stellenbosch U.)
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* Alstom Molten Salt Central Receiver Modeling & Design

— Transient Simulation of Molten Salt Central Receiver (Doupis et al.)

— Thermo-Mechanical and Optical Optimization of the Molten Salt Receiver for a Given
Heliostat Field (Augsburger et al.)

— Analytical Study of Seismic Effects of a Solar Receiver Mounted on Concrete Towers with
Different Fundamental Periods (Deng) e P

D \
A e —| Outlet Tank

TWR-1 TWR-2 TWR-3 TWR-4  TWR-5 TWR-6 TWR-7 TWR-8 TWR-9 TWR-10

Alstom investigated start-up, shutdown, and transient operation strategies for molten salt
central receiver. Developed optimization procedure for receiver and heliostat field.
Performed seismic evaluation with and without dead loads and compared to ASCE code.
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CFD analysis of supercritical CO2 used as

HTF in a solar tower receiver
. (Roldan and Fernandez-Reche, CIEMAT)
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Advances in Tower Receivers

e Tubular / Cavity Receivers

 VVolumetric Air Receivers

e Particle Receivers




The Hybrid Pressurized Air Receiver (HPAR)
in the SUNDISC Cycle

(Heller et al., Stellenbosch University)
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Pressurized air is heated in staggered array of tubes while unpressurized air is heated
around tubes for air Brayton cycle. Simulations show transfer to non-pressurized air

needs improvement.
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Performance Outlook of the SCRAP Receiver
(Lubkoll et al., Stellenbosch University)
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FIGURE 1: A manifestation of the SCRAP receiver (left half in section) [3]

Pressurized Spiky Central Receiver Air Pre-heater. CFD simulations of air flow through
each spike with 1 MW/m? yielded 80% efficiency and 800 C outlet air temperature. Only

3% radiative heat losses.
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Numerical Evaluation of an Innovative Cup
Layout for Open Volumetric Solar Air Receivers

(Savoldi et al., Politecnico di Torino)

A new channel design implementing CPC shapes to allow more light penetration resulted
in simulated thermal efficiency of 69% compared to 85% for conventional honeycomb.
Room for optimization.
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Numerical Analysis of Radiation Propagation in
Innovative Volumetric Receivers Based on

Selective Laser Melting Techniques
(Alberti et al., Fondazione Bruno Kessler, IMDEA)

Multi-porosity volumetric absorber has larger openings near the aperture to allow more
light penetration and lower temperatures at the aperture.
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Preliminary Performance Analysis of a
Transverse Flow Spectrally Selective Two-slab

Packed Bed Volumetric Receiver
(Roos and Harms, CSIR and U. of Stellenbosch)

iy

Transparent (borosilicate) beads near aperture allow light to penetrate to opaque (SiC)
beads beneath.
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Study and Modeling of a Pressurized Air
Receiver to Power a Micro Gas Turbine

(Ndiogou et al., Ecole Supérieure Polytechnique de Dakar)
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Simulated performance of mass flow and porosity on thermal efficiency of pressurized air
receiver.
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Fused Silica Windows For Solar Receiver
Applications

(Hertel et al., DLR)

FUSED SILICA

ABSORBER
FLANGE poMED WINDOW

FUSED SILICA
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INLET

OUTLET

FEA and testing of pressurized domed quartz windows and segmented windows
showed feasibility of operation at 800 C and design strength of 6 MPa. Cleaning is
required to prevent crystallization.




Advances in Tower Receivers

e Tubular / Cavity Receivers

 VVolumetric Air Receivers

e Particle Receivers




On-sun first operation of a 100 kWth pilot solar receiver using

dense particle suspension as heat transfer fluid
(Perez Lopez et al., PROMES-CNRS)

Tests of Dense Particle
Suspension (fluidization)
in tubes yielded average
outlet temperature of 590
C and thermal efficiencies
of 50 — 90%
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Preliminary Discrete Element modeling of a falling
particle curtain for CSP central tower receivers

(Zanino et al., Politecnico di Torino)

Discrete Element Modeling of falling particle receivers show additional effects of particle-
particle interaction on curtain thickness.
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Design Requirements, Challenges, and Solutions
for High-Temperature Falling Particle Receivers

(Christian and Ho, Sandia National Laboratories)

| Flux Panel (left);
Receiver (right)

Design requirements and lessons learned from design and construction of a prototype 1
MW?1th on-sun falling particle receiver system were presented.
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On-Sun Testing of an Advanced 1 MW,
Falling Particle Receiver System

(Ho et al., Sandia National Laboratories)

Qver 300 suns on receiver
(June 25, 2015)

Staggered array of chevron-shaped meshes to obstruct flow (Pachinko). Up to 700 suns
with bulk particle outlet temperatures > 700 C. Thermal efficiencies 70 — 80%.
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Magnetic Field Flow Phenomena in a Falling
Particle Receiver

(Armijo et al., Sandia National Laboratories)
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Simulations of magnetic fields to control flow and residence time of ferromagnetic or
charged particles in concentrated beam.
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Receiver Categories

e Tower Receivers

e Parabolic Trough / Line-Focus Receivers

e Dish Receivers
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Test bench HEATREC for heat loss

measurement on solar receiver tubes
(Marguez et al., CIEMAT PSA)
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FIGURE 1. Scheme of the HEATREC test bench.

Test bench called HEATREC determines heat losses of receiver tubes under vacuum




Degradation of Receiver Tubes
Performance After Four Years of Operation

(Espinosa-Rueda et al., Abengoa)

Optical efficiency (7' a) of receivers

x Technical specifications

FIGURE 1. Points evaluated on each receiver tube.
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Trough receiver tubes and glass showed no degradation in absorptance and
transmittance after 4 years of operation




Selective Absorber Coatings

Antonaia et al. (ENEA): Solar absorptance Chiarappa et al. (Archimede Solar
higher than 95% and emittance less than Energy): LCOE Reduction for
13% at 550 C for molten salt operation Parabolic Trough CSP: Innovative Solar
with low degradation rate. Receiver with Improved Performance
at Medium Temperature
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Techno-Economic Analysis of Receiver Replacement
Scenarios in a Parabolic Trough Field
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(Roger et al., DLR)

Reference

Reference Xe-Rec

WindA-Leave

WindA-Replace

WindB-Leave

WindB-Replace

AR-Leave

wt=15
mt=10

AR-Replace

H2-Leave

H2-Fix

H2-Replace

H2-Xe

44

46 48

Mean solar Field Efficiency in %

50 5: 0.110

0.115 0.120 0.125

Levelized Electricity Costs (LEC) in €/kWhel

Investigated trough receiver loss mechanisms such as breakage and hydrogen
production, and economic payback for replacement or repairs to minimize LCOE.
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Experimental Performance Evaluation of a

Hybrid CST Receiver for Linear Concentrators
(Stanley et al., RMIT University)

Insulation
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PV cooling
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High
temperature

Concentrated sunlight:
channel
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Experiments of splitting to convert solar energy to thermal energy (< 700 nm and > 1200
nm) with propylene glycol and to electricity (700 — 1200 nm) via silicon PV cells.




Receiver Categories

e Tower Receivers

e Parabolic Trough / Line-Focus Receivers

e Dish Receivers
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Reduction of Convective Losses in Solar Cavity Receivers
(Hughes et al., Australian National University)

Recuperation from non-uniform
temperatures No air jet Air jet across aperture

Non-uniform temperatures in a cavity receiver can yield recuperation. Air
jet across aperture can seal heat within cavity.
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A Detailed Radiation Heat Transfer Study of a Dish-Stirling Receiver:

the Impact of Cavity Wall Radiation Properties and Cavity
(Garrido et al., KTH Royal Institute of Technology)

T
4 Alsorber 2

Z # Absorkber
Cawvity
e
Cwlindrical (A) Diamond-shaped (B) Reverse-conical (C)

Performed Monte-Carlo ray-tracing simulations to optimize dish receiver
geometry. Reverse-conical was the best, although thermal efficiencies were
similar.
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Development of a Higher-Efficiency Tubular Cavity Receiver for

Direct Steam Generation on a Dish Concentrator
(Pye et al., Australian National University)

Heat Flux {0W/mh)

(b) inlet temperature 250 °C

Optimized helical wound tubular dish receiver for heating steam from 60 —
500 C with 98.7% efficiency.
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Combining Ray Tracing and CFD in the Thermal Analysis of

a Parabolic Dish Tubular Cavity Receiver
(Craig et al., University of Pretoria)

Ray-tracing/CFD coupling for optical and conjugate heat transfer of air flow
through complex tubular receiver.
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High Performance Felt-Metal-Wick Heat Pipe for

Solar Receivers
(Andraka et al., Sandia National Labs)

Testing of felt-metal-wicks
revealed blended multi-size
felt fibers showed good
performance and durability for
heat pipe receivers.
Applications include dish-
Stirling and sCO2 systems
where isothermal or small AT
is needed.
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Receiver Categories

* Tower Receivers
e Parabolic Trough / Line-Focus Receivers

e Dish Receivers
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Conclusions

e ~50 thermal receiver papers submitted

— 34 on tower receivers
* Tubular/cavity and volumetric air (85%)
e Particle receivers gaining more attention (15%)

— 16 on trough / line-focus receivers
— 10 on dish receivers

 Focus on mitigating convective and radiative heat losses
— Novel volumetric heating designs (not necessarily air-based)
e Tubular layout optimization; spiky receivers; fractal-like features

e Characterization and modeling of receiver performance still
important
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Why do football coaches love
CSP engineers? é

* Because we make great receivers!
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