
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTING SYSTEMS 1

A Survey of Techniques for Architecting and
Managing GPU Register File

Sparsh Mittal

Abstract—To support their massively-multithreaded architecture, GPUs use very large register file (RF) which has a capacity
higher than even L1 and L2 caches. In total contrast, traditional CPUs use tiny RF and much larger caches to optimize latency.
Due to these differences, along with the crucial impact of RF in determining GPU performance, novel and intelligent techniques
are required for managing GPU RF. In this paper, we survey the techniques for designing and managing GPU RF. We discuss
techniques related to performance, energy and reliability aspects of RF. To emphasize the similarities and differences between
the techniques, we classify them along several parameters. The aim of this paper is to synthesize the state-of-art developments
in RF management and also stimulate further research in this area.

Index Terms—Review, classification, GPGPU, GPU, register file, reliability, performance, power management, non-volatile
memory, embedded DRAM (eDRAM).

F

1 INTRODUCTION

Driven by the ever-increasing performance demands,
the architecture of GPU has evolved significantly in
the last decade. Modern GPUs execute tens of thou-
sands of threads for achieving high throughput and
hiding memory latency. To enable efficient context-
switching between these threads, large size register
file (RF) is required. Scarcity of RF resources can
harm performance by limiting the occupancy of GPU
kernels [1]. Also, when the register requirement of a
thread block exceeds the available capacity, some vari-
ables need to be allocated in local memory (termed
as ‘register spilling’ [2]) which leads to performance
penalty.

Driven by these requirements, the size of RF has
increased significantly in recent GPU generations.
This fact is confirmed by Table 1 which shows the
size of RF and L1/L2 caches in recent GPUs (CC =
compute capability). From the table, it is also clear
that on GPUs, size of RF is much larger than that of
L1 and L2 caches. Due to its large size and design
with high-performance leaky transistors [3], RF con-
tributes significantly to the GPU power consumption,
for example, 17.2% and 13.4% of total dynamic power
in Quadro FX5600 (CC = 1.0, 32KB RF) and GTX 480
(CC = 2.0, 128KB RF) GPUs is attributed to RF, respec-
tively1 [4]. Clearly, RF management plays a crucial

• Support for this work was provided by U.S. Department of Energy,
Office of Science, Advanced Scientific Computing Research. The au-
thor is with the Future Technologies Group at Oak Ridge National
Laboratory, Oak Ridge, Tennessee, USA 37830.
E-mail: mittals@ornl.gov

1. The reduced fraction of RF power in GTX 480 despite larger RF
size is due to increased contribution from other GPU components.

role in meeting performance targets and area/power
budget constraints in GPUs.

TABLE 1
Size of L1 cache2, L2 cache and RF on NVIDIA GPUs

[2, 5–9] (All sizes are in KB)

Archi- CC L1 size L2 size RF size # of Total RF
tecture per SM per SM SMs size

G80 Tesla 1.0 None None 32 16 512
GT200 Tesla 1.3 None None 64 30 1920
GF100 Fermi 2.0 48 768 128 16 2048
GK110 Kepler 3.5 48 1536 256 15 3840
GK210 Kepler 3.7 48 1536 512 15 7680
GM204 Maxwell 5.2 48 2048 256 16 4096

By comparison, CPUs primarily focus on optimiz-
ing latency in serial applications, and hence, they
execute at most few tens of threads and allocate a
large portion of chip ‘real estate’ to caches. For this
reason, CPUs have large caches and much smaller
RF, for example, Intel’s 32nm Itanium 9560 processor
has 32MB L3 cache and 22KB integer RF and 20KB
floating point (FP) RF (1.375KB integer RF and 1.25KB
FP RF per thread for 16 threads) [10]. Thus, due
to the fundamental differences between CPU and
GPU architecture and RF sizes, conventional CPU RF
management techniques cannot be retrofitted for GPU
RF. Given the unique opportunities and challenges in
architecting GPU RF, novel techniques are required
to address performance bottlenecks and leverage the
full potential of RF in improving performance. Several
techniques have been recently proposed to fulfill this
need.

In this paper, we present a survey of techniques
for designing and managing GPU register file. Fig-

2. In Fermi and Kepler, 48KB is the maximum size of L1 cache.
Also, in GM204, 48KB is the size of unified L1/texture cache.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTING SYSTEMS 2

ure 1 shows the overall organization of this paper.
We begin with a brief background on opportunities
and obstacles in managing RF (Section 2). Sections 3
through 5 classify RF management techniques in three
categories. Section 3 discusses techniques for design-
ing RF using high-density and low-leakage memory
technologies. Sections 4 and 5 review techniques for
improving performance/energy efficiency and RF re-
liability, respectively. Section 6 concludes this paper
with a discussion of future challenges.

§2 Factors and tradeoffs in RF 

management 
§2.1 Achieving high energy efficiency 

§2.2 Achieving high bandwidth and 

throughput 

§2.3 Achieving high capacity 

§2.4 Achieving high resource-

utilization 

§2.5 Achieving a balance with other 

objectives 

§2.6 Achieving high reliability 

§2.7 GPU evolution trends 

§3 Architecting RF using Novel 

Memory Technologies
§3.1 A background on memory 

technologies 

§3.2 An overview and key ideas 

of techniques 

§3.3 Architecting eDRAM based RF 

§3.4 Architecting STT-RAM based RF 

§3.5 Architecting hybrid SRAM-

STTRAM based RF 

§3.6 Architecting DWM based RF 

§3.7 Architecting S/D based RF

§3.8 Architecting hybrid CMOS-TFET 

based RF 

§4 Performance and Energy 

Efficiency Improvement 

Techniques for RF
§4.1 An overview and key ideas of 

techniques 

§4.2 Techniques for reorganizing RF 

architecture 

§4.3 Techniques for RF access 

scheduling 

§4.4 Techniques for managing RF 

power consumption 

§4.5 Techniques for register sharing 

§4.6 Techniques for leveraging 

redundancy in GPU execution 

§4.7 Approximation techniques for RF 

§4.8 Techniques for using RF as cache 

or shared memory 

§5 Reliability Improvement 

Techniques for RF
§5.1 Mitigating soft-error impact on RF 

§5.2 Mitigating NBTI impact on RF 

§5.3 Mitigating process variation 

impact on RF

§6 Conclusion and Future 

Outlook

Paper organization

Fig. 1. Overall organization of the paper

To keep a balance between brevity and breadth, in
this paper we concentrate on innovations focused on
RF and not just other GPU components or GPU as a
whole. Since different works use different evaluation
approaches and applications, we focus on their key
ideas and present selective numerical results to show
the quantitative improvements. We hope that this sur-
vey will be useful for computer architects, designers
and researchers3.

2 FACTORS AND TRADEOFFS IN RF MAN-
AGEMENT

Figure 2 shows the RF architecture in Fermi GPUs. In
what follows, we present some details on RF archi-
tecture. We also highlight the crucial importance of
managing RF and discuss several factors/challenges
which need to be accounted for while designing RF
management policies. For more details on GPU archi-
tecture and power modeling, we refer the reader to
previous work [3, 4, 12–15].

3. We use the following acronyms frequently in this paper:
domain wall memory (DWM), FP unit (FPU), most significant bit
(MSB), multi-level cell (MLC), negative bias temperature instabil-
ity (NBTI), non-volatile memory (NVM), process variation (PV),
read/write (R/W), single instruction multiple data (SIMD), special
function unit (SFU), spin transfer torque RAM (STT-RAM), SRAM-
DRAM hybrid memory [11] (S/D memory), streaming multiproces-
sor (SM), tunnel field-effect transistor (TFET).

Bank 

0

Bank 

15

Bank 

1

Crossbar network

Operand collectors

………….

Execution units

SFUs ALUs FPUs

Register file

……..……..

REG 0
REG 1

REG 63

1024 bits

Write

port

Read

port

RF bank

Arbiter

Register

IDs

Fig. 2. RF architecture in Fermi GPUs [4]

2.1 Achieving high energy efficiency
For achieving small latency, RF must be designed with
high-speed transistors [3], however, these transistors
also dissipate large amount of leakage power. Also,
GPU RFs are very wide: every 1024b RF entry pro-
vides 32b operand to all 32 threads in a warp. These,
along with the large size of RF and physical distance
of RF from execution unit make power consumption
of RF a large fraction of overall power consumption.
For example, Lucas et al. [14] observe that RFs con-
tribute 8.7% of static power and 16.8% of dynamic
power in a single GT 240 (CC = 1.2) core. Goswami
et al. [15] note that RF leakage and dynamic power
consumption is 17% and 44% (respectively) of the
total core power in GTX 470 (CC = 2.0). Atoofian [16]
observes the RF power consumption to be 16% of total
power budget for a Fermi GPU.

Lim et al. [3] note that RF contributes 12% and
7% (respectively) of the dynamic and total power
consumption of GTX 580 (CC =2.0) for a compute-
intensive benchmark. Mao et al. [17] show that RF
may be accessed 10 to 30 times more frequently than
the L1 cache and thus, the dynamic power of RF may
be up to 6 times its leakage power. Clearly, managing
RF power consumption is crucial to stay within TDP
(thermal design power) limit and optimize battery life
in mobile GPUs [18].

2.2 Achieving high bandwidth and throughput
To provide high throughput, RF needs to allow mul-
tiple concurrent accesses, e.g., a fused-multiply-add
operation which has 3 inputs and 1 output, can be per-
formed in one cycle on Fermi GPU [4] and thus, RF is
expected to allow (at least) four register accesses in ev-
ery clock cycle [12]. Since multi-ported RF incurs high
overhead, RF in existing GPUs uses multiple banks
and operand collectors to provide high-bandwidth,
for example, the 64KB RF in GT200 is likely to have
64 logical banks [12]. However, increasing the num-
ber of banks incurs high overhead while providing
diminishing performance returns. For example, Jing
et al. [19] show that for an RF size of 128KB per SM,
increasing the number of banks from 16 to 32 does not
significantly improve performance although it incurs
high area/power/latency overheads. To provide the
illusion of a multiported RF, GPUs also use operand
collectors which access multiple single-ported register



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTING SYSTEMS 3

banks and buffer the data. This, however, comes with
a latency overhead.

2.3 Achieving high capacity
Given the requirement of large RF capacity and lim-
ited area budgets, novel approaches are required for
architecting RF. For example, use of high density
domain wall memory (DWM) can allow doubling
the capacity of registers, cache and shared memory
within same area/power budgets [20]. However, these
memories also have their own limitations, for ex-
ample, Tan et al. [21] show that due to the high
write latency/energy of STTRAM, an STTRAM-only
RF design leads to higher execution time and dy-
namic energy consumption compared to an SRAM RF.
Clearly, novel architectural techniques are required for
enabling their use in RF design (refer Section 3).

2.4 Achieving high resource-utilization
The RF resources are generally over-provisioned to
meet the peak performance targets, however, their
average utilization remains low [22–24]. For example,
on use of even one register in a program context, the
compiler allocates thousands of registers. Similarly,
due to bank conflicts or long-latency memory stalls,
several registers remain idle. Prudent management
techniques can avoid such inefficiencies by virtue of
runtime adaption.

2.5 Achieving a balance with other objectives
Due to limited area/power budgets, arbitrarily in-
creasing RF size is infeasible since it reduces the bud-
get for other components, e.g. cache, shared memory,
etc. [25]. Also, the use of registers needs to be carefully
balanced with other optimization considerations, for
example, if a kernel uses too many registers, the total
registers used by all warps can exceed the number
of available registers [2]. To avoid this, the number of
warps needs to be reduced which harms performance.
Clearly, blindly increasing RF size or utilization is
likely to be suboptimal or even infeasible.

2.6 Achieving high reliability
RF reliability can be threatened due to several reasons.
Due to its large size, RF is susceptible to PV and
becomes a bottleneck in deciding core frequency. Due
to PV in RF, the GPU frequency can degrade by up
to 40% compared to the GPU free of PV [26]. Due to
the variation in the utilization of different registers,
some registers may see much more NBTI-stress than
others and they may age faster than others, thus,
reducing the lifetime of the entire chip [22]. With
ongoing process scaling, the charge required to flip
a bit has been decreasing and hence, SRAM-based RF
is becoming increasing susceptible to particle-strike
induced soft-errors [27].

2.7 GPU evolution trends
Due to fast evolving GPU architecture, some of the
techniques designed for one GPU model may not
work for or be applicable to other models. For ex-
ample, the technique of Falch et al. [28] utilizes shuf-
fle instruction which has been introduced in Kepler
GPU only [6]. Also, since the complete information
about microarchitecture of commercial GPUs is not
publicly disclosed, researchers typically infer these
values by microbenchmarking [12] or from patents
[4]; this, however, may not be fully accurate. These
factors present a challenge in design of effective RF
management policies.

3 TECHNIQUES FOR ARCHITECTING RF US-
ING NOVEL MEMORY TECHNOLOGIES

GPU RF has been conventionally designed using
SRAM. However, SRAM has low-density and high
leakage-power consumption. To address these limita-
tions, several novel memory technologies have been
explored for designing RF. We first provide a back-
ground on these technologies and then discuss several
techniques for enabling their use in designing RF.

3.1 A background on memory technologies
Table 2 shows an overview of relative strengths and
limitations of different memory technologies used for
designing RF. We now briefly discuss their working
and relevant properties and refer the reader to previ-
ous work [29, 30] for more details.

eDRAM: eDRAM is a capacitor-based DRAM
which can be integrated on the same die as the
processor. Two widely used eDRAM cell designs are
1T1C and 3T1D [32]. EDRAM has higher density and
lower leakage than SRAM. Its retention period is in
the range of tens of microseconds and due to this, its
refresh overhead becomes high.

STT-RAM: STT-RAM stores data in a magnetic
tunnel junction (MTJ). While its read latency/energy
are comparable to that of SRAM, its high write la-
tency/energy present a challenge in its use. Both
STT-RAM and DWM are non-volatile and can store
multiple bits in a cell, called multi-level cell (MLC).

DWM: DWM operates by controlling domain wall
motion in ferromagnetic nanowires. The read/write
latency of DWM is comparable to that of SRAM,
and thus its write-performance is superior to that of
STT-RAM. In both DWM and S/D memory, multiple
register contexts (r-contexts) exist of which one is
active which can be accessed with low latency. Shift
operations are required to access other r-contexts and
thus, these memories tradeoff data-accessibility for ef-
ficiency. The difference between DWM and S/D is that
in DWM, the switching latency/energy vary based
on the distance between the active and requested r-
context, whereas for S/D memory they are fixed.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTING SYSTEMS 4

TABLE 2
A comparison of memory technologies [11, 17, 29, 31]

Density Leakage energy Speed (R/W) Access energy (R/W) Access any bit Refresh required Main challenge
SRAM Low High Very fast Low Yes No High leakage

eDRAM High Low Fast Medium Yes Yes Refresh operations
STT-RAM Very high ∼0 Fast/slow Low/High Yes No Write operations

DWM Very high ∼0 Fast Low/High No No Context-switching
S/D High Low Fast Low No Yes Context-switching

For DWM and S/D, access speed and energy also depend on number of bits or contexts per cell and the current active context.

S/D memory: Yu et al. [11] propose an SRAM-
DRAM memory array where N DRAM branches (2N
1T1C DRAM cells) are integrated into each SRAM cell.
This memory allows local copying of data between
SRAM cell and one selected DRAM branch within a
cell. The SRAM cell stores the active context which
can be externally accessed. A DRAM branch cannot
be externally accessed and hence, for accessing it,
its value must be copied into SRAM. Thus, DRAM
latency is hidden by only exposing SRAM to the core.
Note that in S/D memory, only SRAM cell is exter-
nally accessible, whereas in SRAM-STTRAM hybrid
memory [21], both SRAM and STTRAM registers are
externally accessible.

CMOS and TFET: CMOS and TFET are differ-
ent transistor types. MOSFETs switch by modulat-
ing thermionic emission over a barrier and CMOS
is designed using symmetrical and complementary
pairs of p- and n-channel MOSFETs. By compari-
son, TFETs switch by modulating quantum tunneling
through a barrier. The sub-threshold slope of TFET
is steeper than that of CMOS and hence, at low
voltages TFET provides higher performance and ultra
low leakage compared to CMOS. At high voltages,
however, CMOS provides superior performance and
this tradeoff presents an opportunity to bring their
best together.

3.2 An overview and key ideas of techniques

Table 3 classifies the works based on memory tech-
nologies used by them for RF design. We now sum-
marize some key ideas used by different works that
use alternative memories for designing RF (also see
Section 4.1). Their discussion follows.

1. Diverse register/cell properties: All three: pro-
cess variation [26, 32], use of hybrid memory designs
[21, 33] and use of MLC STT-RAM with hard/soft
bits [34] lead to registers/cells with different la-
tency/energy properties, and hence, management
techniques for them show similarities. However, they
are fundamentally different. PV occurs unintention-
ally due to manufacturing limitations and can cause
random variations whereas hybrid memory or MLC
are used intentionally and lead to well-understood
differences.

2. Incremental register allocation: In most tech-
niques, all registers are available for the applications

to use. By comparison, in some techniques, only
selected registers are initially employed to prioritize
their use, e.g. registers designed with soft-bits in
MLC STT-RAM [34], registers in fast-banks in PV-
affected RF [26] and private registers in a shared RF
architecture [35]. Remaining registers (e.g., registers
designed with hard bits, registers in slow-banks and
shared registers, respectively) are used only if the
demand exceeds the available capacity.

3. Dynamically deciding register storage location:
Some techniques use compiler to perform lifetime
analysis of registers [1, 21, 36–38]. Based on a regis-
ter’s lifetime, it may be mapped to SRAM or STT-
RAM [21] and to main RF or additional structures
[39], etc. The access frequency of a register can decide
whether it is stored in soft/hard bit [34] and instan-
taneous memory contention may decide whether a
register is allocated in CMOS or TFET-based storage
[33]. To reduce memory contention, some threads can
be slowed down by mapping their registers to TFET
cells [33] or PV-affected slow banks [26].

4. Refresh management in eDRAM-based RF:
Fine-grain refresh schemes can avoid refreshing
better-than-worst cells at a (higher) rate determined
by the worst cell [32]. Based on criticality of a bit
(e.g., MSB or non-MSB), it can be refreshed at regular
rate or reduced rate [40]. Also, to avoid delaying
regular accesses, refreshes can be scheduled when a
bank is idle [32, 38]. Based on register lifetime, refresh
operations to dead registers can be avoided [38].

5. Reducing access latency in NVM-based RF:
STTRAM-based RF can use concurrent R/W opera-
tions for improving throughput [41, 42] and DWM-
based RF can use speculative shifting for hiding shift-
ing latency [16, 20].

6. Reducing accesses to RF: Write-back buffers can
be used to coalesce the accesses [11, 15, 17, 20, 34, 41,
42] and this is especially useful for reducing writes to
NVMs. Differential write scheme has also been used
for reducing write operations [15].

7. Using prediction approach: Some techniques
work by predicting future values of memory stall
latency [33] and register access [16] based on their
past values.

3.3 Architecting eDRAM based RF
Jing et al. [32] design eDRAM-based RF and present
mechanisms to manage its refresh overhead. A naive



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTING SYSTEMS 5

TABLE 3
Memory technology or cell type used for RF design

Classification References
eDRAM memory [32, 38, 40]
STT-RAM memory [15, 34, 41, 42]
Hybrid SRAM-STTRAM memory [21]
Domain wall memory [16, 17, 20]
SRAM-DRAM (S/D) memory [11, 20]
Hybrid CMOS-TFET design [33]
Radiation-hardened cells [43]

refresh mechanism blocks all the banks for refresh and
at this time, RF pauses regular operation which harms
performance. They propose a fine-grain refresh mech-
anism which works by refreshing idle banks. A bank
remains idle if an instruction accesses only few banks.
Also, a bank conflict serializes RF accesses and during
this stall period, remaining banks remain idle. Their
mechanism preferentially chooses those idle banks for
refresh which are nearing the end of their retention
period. This mechanism hides refresh overhead with
periods of inactivity. In absence of idle periods, a
mandatory refresh is issued to avoid data loss. Since
this mechanism requires one refresh counter for each
register entry, they present a second mechanism to
reduce this overhead. This mechanism uses a single
global counter. When this counter nears expiration,
the banks are refreshed one after another and every
time one entry in a bank is refreshed. Compared to
a naive mechanism, this mechanism blocks only one
bank at a time and remaining banks can function
normally. Also, the bank being refreshed becomes free
much sooner than in the naive mechanism.

Since read accesses are destructive in 1T1C eDRAM
cells, they also present a technique for addressing this.
They double the number of banks and also divide
the warps in even/odd groups based on their ID.
Even/odd warps are mapped to even/odd banks,
respectively. The warp scheduler issues odd and even
warps at successive cycles. When an odd warp in-
struction accesses odd bank group, read access and
write-back (for restoring the capacitor to the original
value) happen in one cycle each. An even warp
instruction is issued to even bank group after odd
warp issue slot to avoid bank conflict. Thus, the
penalty of destructive reads is alleviated by inter-
leaving even/odd warps. Their mechanisms improve
energy efficiency compared to SRAM RF.

Jing et al. [38] present a refresh mechanism for
eDRAM-based RF. They note that data values in
eDRAM cells remain unaffected as long as the refresh
is scheduled within the retention period. Based on
this, if a refresh operation conflicts with the regular
RF access, their technique postpones the refresh and
makes a second attempt for refresh within retention
period and without blocking regular access. Since on
a bank conflict, remaining banks stay idle, a second
refresh attempt is made during this time period. If a
bank is not found to be idle for the entire retention

period, a refresh operation is forced to avoid data
loss. For this, their technique counts the number of
RF entries for which refresh is postponed and if this
exceeds a threshold, a refresh operation is enforced.
Thus, this technique aims to utilize bank idleness due
to unbalanced accesses to different banks for hiding
refresh penalty. They further note that due to over-
provisioning of RF resources, many registers may not
be active during warp execution and several others
may be unused and hence hold garbage data. Based
on this, they use a ‘liveness bit’ with each register.
Based on the register liveness information from the
compiler, this bit is set on a write access to the register
with subsequent read access and is reset on the last
read from the register. A register value needs to be
refreshed only if its liveness bit is 1 indicating future
reuse. Using this, refresh operation to dead entries can
be avoided. They show that compared to an SRAM-
based RF, use of their technique with eDRAM-based
RF achieves large improvement in energy efficiency.

3.4 Architecting STT-RAM based RF

Goswami et al. [15] use STT-RAM for designing
RF and propose mechanisms to reduce writes to it.
On any register write, their first mechanism updates
only the changed register arrays and skips writing
to unchanged arrays, instead of writing the whole
register. Since GPGPU applications generally modify
neighboring memory cells of a register, they organize
a K-bit register word in P arrays of Q-bits/array
(K = P × Q) and provision write to the entire Q-bit
array on a change in any bit of the array. Since STT-
RAM read latency is smaller than the write latency, an
additional read operation to find changed arrays does
not harm performance. Their second mechanism uses
an SRAM write-buffer for coalescing writes issued
by multiple threads to a bank. They show that their
mechanisms reduce the energy consumption of RF.

Liu et al. [34] use MLC STT-RAM for designing
RF and propose architectural techniques to manage
this. Every RF entry with 2048 bits is designed using
1024 MLC STT-RAM cells, which can be seen in terms
of 1024 hard-bits (slow row) and 1024 soft-bits (fast
row). To avoid overflow of writebacks, a write-buffer
is used in each bank. Since the access latency and
energy of hard bit is much larger than that of soft bit,
they propose an address remapping scheme. Using
compiler, the access frequencies of all registers used
for a kernel execution are recorded. Based on this,
the decision to place a register in soft/hard-bit row
is taken. The hard-bit rows are used only when more
than half of the total register capacity is required
and in such case, frequently-accessed and remaining
registers are stored in soft-bit and hard-bit rows,
respectively. To further reduce the impact of long STT-
RAM write latency, they propose a warp scheduling
scheme which preferentially issues ready warps that



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTING SYSTEMS 6

access unoccupied register banks. They demonstrate
that their technique enhances GPU performance and
energy efficiency.

Li et al. [41] note that the inactivity period of regis-
ters is much longer than their activity period (e.g., 11K
cycles vs. 230 cycles). This provides opportunity to
reduce their leakage power consumption by designing
RF with NVM instead of SRAM. They propose an
STT-RAM RF design with two SRAM write buffers
since a single write buffer (e.g., as used in [15]) may
not capture spatial locality of RF access. One buffer
stores data for currently active warp whereas other
buffer writebacks data to STT-RAM RF when its warp
becomes pending due to long latency accesses. These
buffers coalesce write accesses to RF and serve read
accesses if the requested register is stored in the
buffer. The STT-RAM RF has two banks and regis-
ters of warps with even/odd warp IDs are mapped
to 0/1 banks, respectively. This allows simultaneous
read/write access and alleviates the impact of long
STT-RAM writeback latency of one warp on another
active warp. To reduce the leakage power of SRAM
buffers, they use power gating. For this, they note that
out of 64 buffer entries, only around 16 entries are
typically used. Hence, they keep the first 16 entries
always ON and keep the remaining 48 entries power
gated. When more than 16 entries are required, re-
maining 48 entries are all turned ON. When all the 64
entries are written-back to STT-RAM RF, the 48 entries
are again power-gated. They show that their approach
reduces RF power consumption.

3.5 Architecting hybrid SRAM-STTRAM based RF

Tan et al. [21] propose an SRAM-STTRAM hybrid
RF design and architectural techniques to bring to-
gether the benefits of SRAM and STT-RAM. By virtue
of using magnetic storage, STT-RAM is immune to
particle strike-induced soft errors [29], however, write
to it incurs high overheads and opposite is true for
SRAM. Their first technique uses compiler to find the
lifetime (i.e., instruction-count between the write and
last read) of different register values. They observe
that most values have short-lifetime and they do not
significantly affect RF soft-error vulnerability, whereas
the remaining (∼20%) long-lived values contribute sig-
nificantly (∼90%) to the vulnerability. Based on this, at
compilation time, long-lived (e.g., for more than 10 in-
structions) register values are mapped to STT-RAM to
protect them from soft-errors, and short-lived values
are mapped to SRAM. This also reduces writes to STT-
RAM and addresses its high write latency/energy
issue. To further reduce STT-RAM write penalty, their
second technique works on the observation that most
RF writes are narrow-width, such that out of 32-bits,
the higher order 16-bits are zeros. Based on it, two
narrow writes can share the bus bandwidth to reduce
write overhead. Such write merging is performed only

for writes from two warps that execute in two succes-
sive cycles and target different banks. They show that
for negligible performance penalty, their techniques
bring large reduction in energy consumption and RF
soft-error vulnerability.

3.6 Architecting DWM based RF
Mao et al. [17] note that increasing the number of
access ports in DWM reduces the shift distance at
the expense of increased area, power and peripheral
circuit latency overheads. They propose three schemes
to alleviate the effect of shift latency in DWM-based
RFs. To reduce the shift distance in accessing DWM,
their register remapping scheme places the registers
around the access ports of those banks, whereas the
naive (default) mapping interleaves the registers of
each warp across the RF banks consecutively. This
remapping approach, however, is only effective for
applications which have a large number of unused
registers and cannot reduce shift latency of register-
intensive applications. Their warp scheduling scheme
preferentially issues a warp whose instruction gener-
ates RF requests with lowest distance to the current lo-
cation of access ports. To avoid the interference effect
of write requests in the scheduling scheme, they use
a write buffer. Write requests are stored in the buffer
and are issued to RF only when the corresponding
register aligns with the access ports. Buffer overflow
forces RF write irrespective of the alignment, how-
ever, such situation happens infrequently. Using this
approach, their scheduling scheme needs to account
for only read requests while calculating distance to
access ports. They show that their technique improves
performance and energy efficiency.

Atoofian [16] uses DWM to design RF and propose
intelligent pre-shifting mechanisms to hide the shift-
ing latency. His technique stores the registers in a bit-
interleaved manner, such that instead of storing a 4B
register in a 32-bit track, they store K 4B registers in
32 K-bit tracks. This reduces the access latency by al-
lowing parallel access to all bits. He notes that threads
in a kernel run same set of instructions and hence,
the register ID of destination and source operands
accessed by instructions in a GPGPU application is
same, except when branch divergence happens. Thus,
future register accesses can be predicted based on
the past behavior. He proposes three policies which
exploit data locality between threads in a warp (intra-
warp), warps in an SM (intra-SM), warps in differ-
ent SMs (inter-SM), respectively and use this to pre-
shift the track head. To ensure timely pre-shifting,
his technique chooses the length of RF tracks in a
manner to fully hide the shift latency. Experimen-
tal evaluation shows that intra-SM policy provides
better performance than inter-SM policy which, in
turn, outperforms intra-warp policy. Also, intra-SM
policy provides significant energy saving compared
to SRAM RF.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTING SYSTEMS 7

3.7 Architecting S/D memory based RF
Since S/D memory does not support reading
from/writing to different contexts, Yu et al. [11]
present a technique to address this limitation. They
use a write-buffer with each context which delays
writebacks till this context is activated again. To re-
fresh DRAM context, it is brought to SRAM and then
copied back. Since re-reference interval of a context
is expected to be smaller than the DRAM retention
period, this refresh overhead remains negligible. The
context-switching latency is hidden by RF-banking
and background-loading of the contexts. They show
that compared to an SRAM-only RF, their design
provides significant area and energy advantages with
only small performance loss.

Moeng et al. [20] present an RF architecture for
integrating memory technologies with non-uniform
access behavior, viz. S/D memory [11] and DWM. Ev-
ery memory element stores K registers corresponding
to K r-contexts. Concurrent access to these K registers
cannot take place and thus, they form a multicontext
group (MCG). When an instruction is committed, a
write to RF may not complete if it differs from the
active r-context. To address this, they use a write
buffer and allow writes to preempt other commands.
When the buffer becomes full, the system can proceed
only when at least one write has finished. This scheme
avoids write-related hazards. As for switching gran-
ularity, they consider multiple schemes: first, whole
RF switches synchronously; second, every register in
a bank switches together but different banks switch
independently; and third, switching happens in only
the MCG corresponding to a desired register. The
third scheme reduces switching overhead and also
leverages temporal locality of register accesses since
an MCG moves out of existing context only if any of
the other registers in the bank is accessed before next
access to it. The third scheme also avoids preempting
reads to other MCGs on a write access. They show
that compared to the second scheme, the third scheme
provides better performance.

Moeng et al. [20] further note that while waiting for
RF reads to complete, instructions remain in operand
collector. In their technique, when an instruction is
placed into operand collector, preswitch command is
issued to the MCG with register. In case of no ongoing
access, the MCG starts switching to the requested r-
context which helps in hiding the r-context switching
latency.

3.8 Architecting hybrid CMOS-TFET based RF
Li et al. [33] present a hybrid CMOS-TFET based RF
design. They note that memory contention due to a
massive number of memory requests causes pipeline
stall. To address this performance bottleneck, progress
of some threads can be slowed down by using TFET-
based registers. This delays their memory requests

TABLE 4
Optimization objectives and management approaches

Classification References
Energy [1, 11, 16–22, 32–34, 36–41, 44–49]
Performance [1, 17, 19, 20, 24, 26, 28, 34, 35,

46, 48, 49]
Approximate computing [40]
Adapting warp scheduling
scheme

[17, 18, 26, 34, 35, 37, 39]

Power/clock gating [4, 18, 22, 36, 41, 44, 45, 47]
Use of drowsy state [18, 45]

and also saves energy since at low supply voltages,
the leakage power consumption of TFETs becomes
very small. Since the memory stall latency can only be
known after a request has been serviced, they predict
this latency from that of the last memory request.
Based on this, TFET-based registers are allocated to
that thread to just hide the entire latency without
losing performance. This is done using analytical
modeling of thread stall time and TFET delay and it
ensures optimal TFET register utilization for balanc-
ing performance and power. CMOS-based registers
are allocated to threads requiring normal progress.
They choose the ratio of TFET registers to total regis-
ters as the average ratio of warp stall time to total
execution time. Their technique saves energy with
small performance loss and provides a better balance
of power and performance than power-gating scheme,
drowsy scheme and using all TFET registers.

4 PERFORMANCE AND ENERGY
EFFICIENCY IMPROVEMENT TECHNIQUES
FOR RF

4.1 An overview and key ideas of techniques

Table 4 provides an overview and classification of dif-
ferent techniques. We now summarize some dominant
ideas used by these techniques (also see Section 3.2).

1. Leakage energy management: Based on
their data retention characteristic, the leakage en-
ergy saving approaches can be classified into state-
preserving and state-destroying [50]. State-preserving
(also known as ‘drowsy’) approach preserves the state
of the block in low-leakage mode, whereas state-
destroying approach (e.g. power gating) loses the
data state in low-leakage mode. The former approach
generally brings smaller reduction in energy than
the latter. Several techniques have used these energy
saving approaches (refer Table 4).

2. Improving RF utilization: To avoid under-
utilization, registers can be shared across warps [1,
35, 36, 39]. Also, unused registers can be utilized for
storing prefetched data [24] or as a shared memory
pool accessible to all threads [28]. Further, storage
for RF, cache and shared memory can be unified to
allocate just suitable capacity to them [48].

3. Compiler-based techniques: Some techniques
use compiler to track register usage pattern for find-



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTING SYSTEMS 8

ing register lifetime [1, 18, 21, 36–38], register ac-
cess frequencies [34, 39] and application’s register
requirement to avoid spills [48]. Also, compiler is used
for reordering register declarations [35] and inserting
prefetch instructions [24].

4. Action taken on long/short latency operations:
Threads waiting for long-latency operations can be
excluded from consideration by the scheduler [37] or
their registers can be placed in drowsy mode [18].
SIMD lanes of inactive threads can be clock-gated
during branch divergence [4].

5. Reducing RF accesses and contention: The ac-
cesses to RF can be reduced by caching/mapping
some RF accesses in other structures [37, 39]. Some
techniques use odd/even warp to bank mapping
schemes [20, 32, 41] and a few others seek to mitigate
bank-conflicts [19, 41, 42].

6. Exploiting redundancy: In presence of redun-
dancy within and across warps, result reuse can allow
reducing the computations [46, 49]. Also, performance
and/or reliability can be improved by exploiting nar-
row values [21, 49] and using data compression [44].

4.2 Techniques for reorganizing RF architecture

Gebhart et al. [37] present two techniques to reduce
accesses to and energy consumption of RF. Since
register accesses show significant locality, they use a
small register cache (RegCache) to capture hot reg-
ister working set of active threads. This RegCache
helps in avoiding writing of short-lived values to
main RF. They observe that even a 6-entry/thread
RegCache can reduce the accesses to main RF by
nearly half. Further, by utilizing lifetime information
from compile-time analysis, writeback from RegCache
to main RF for those registers can be avoided which
have seen their last read operation. They also pro-
pose a two-level scheduler which logically divides the
threads into active and pending threads. The active
threads are those issuing instructions or stalling on
short latency (e.g., ALU or local memory) operations,
whereas the pending threads are those stalling on long
latency (main memory) operations. In any cycle, their
scheduler only considers the active threads and this
reduces its energy consumption. By combining the
two techniques, further improvement can be obtained
since the scheduler limits RegCache resource alloca-
tion to currently active threads and when an active
thread stalls on main memory, its entry in RegCache
can be flushed and both these greatly reduce the
storage requirement of RegCache. Their techniques
reduce RF energy consumption significantly.

Gebhart et al. [39] note that a limitation of RegCache
is that values evicted from it consume RegCache
read energy before being written to main RF. Also,
tags and lookups are required in RegCache for it to
track register names from the large-sized main RF.
To address these, they propose a compiler-managed

operand RF (ORF) design. Based on compiler informa-
tion about register usage behavior, repeatedly or soon-
to-be accessed values are mapped to ORF and values
with limited temporal locality are mapped to main
RF. Values which are persistent and show locality
are stored in both ORF and main RF in the same
instruction which avoids writeback on eviction. Also,
ORF does not require tags or lookup operations since
the operand storage location is ascertained at decode
time. They further note that a large fraction of register
values are read only once and a majority of them are
read within three instructions after their generation.
Storing these short-lived values in a small structure
reduces system energy. To capture such values, they
use a one entry/thread ‘last result file’ (LRF). This
leads to a three-level register hierarchy, where LRF,
ORF and main RF all have similar access latency but
different access energy. They also present compiler
algorithm to manage data allocation in these levels
and efficiently sharing this hierarchy across the warps.
This algorithm seeks to allocate maximum possible
number of values in LRF first, then the same for ORF
and finally it allocates values in main RF. They show
that their compiler-based RF hierarchy management
approach achieves larger RF energy saving than the
hardware-only management approach [37].

Gebhart et al. [48] note that different GPU applica-
tions present different requirements of cache, shared
memory and RF and their performance may be con-
strained primarily due to any of these three resources.
Hence, using a fixed partition size for them leads to
suboptimal use of on-chip storage. They present a
memory architecture which unifies these three stor-
age structures and permits flexible per-kernel size
partitioning. To reduce the RF accesses and avoid
bandwidth bottleneck in unified storage, they use
software-managed RF and two-level warp scheduling
[37, 39]. Also, a write-through cache is used to avoid
holding dirty data in cache. The partitioning can be
changed before the beginning of a kernel. Since RF
and shared memory do not persist beyond thread-
block boundaries and cache has no dirty data, the
overhead of maintaining state on repartitioning is
minimal. If different kernels of an application show
similar memory footprint, a single memory partition-
ing determined at application start-time can be used
without requiring repartitioning. As for determining
the partition sizes, the size of shared memory is spec-
ified by the programmer, that of RF is determined by
compiler to minimize register spills and the remain-
ing storage is allocated to cache. By virtue of better
utilization of on-chip storage, their technique reduces
main memory accesses and improves performance
and energy efficiency.

4.3 Techniques for RF access scheduling
Jing et al. [19] note that in GPGPUs, RF banks re-
main idle in some cycles and show conflicts in other



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTING SYSTEMS 9

cycles, and these conflicts degrade the throughput
by serializing accesses. They present a bank-stealing
technique to balance RF bandwidth utilization by
filling the idle banks with expected upcoming reads.
Since in GPGPUs, generally multiple ready warps
remain available at issue stage, their technique steals
an idle bank at the present cycle for an operand to
be fetched in next cycle. This alleviates an upcoming
conflict which would have caused a pipeline stall.
For this, their technique identifies warps to be issued
in next cycle and looks for bank conflicts between
operands of present and next warp instructions. They
show that their technique improves performance and
energy efficiency.

Wang et al. [42] use STT-RAM for designing RF
and propose two mechanisms for addressing high
write latency/energy limitations of STT-RAM. They
note that STT-RAM uses current sensing scheme
where sense amplifiers and write drivers are fully
separated, in contrast with SRAM where the circuits
of voltage sense amplifiers and write drivers are
partially shared. Thus, in STT-RAM, two subarrays
forming the memory array share sense amplifiers,
which allows concurrent write and read accesses to
two different subarrays in a single bank. Based on
this, their first mechanism alters the arbitrator to allow
non-conflicting read/write to the same RF bank for
increasing parallelism. This mechanism improves per-
formance compared to naive STT-RAM RF. Their sec-
ond mechanism uses an SRAM write buffer to consoli-
date the writes issued by arbitrator, such that writes to
RF happen only when the buffer becomes full. Write
buffer entries for pending warps (i.e. waiting for long-
latency operations) are preferentially replaced since
only active threads access the RF, whereas pending
warps will wait for a long time before becoming active
again. This mechanism reduces writes to STT-RAM
and helps in further improving energy efficiency of
STT-RAM RF compared to SRAM RF.

4.4 Techniques for managing RF power con-
sumption

Hsiao et al. [18] note that shading programs ex-
ecuted on mobile GPUs do not fully utilize the
available registers. They propose a power-mode tran-
sition technique to save RF energy. They assume
that every register bank is organized into partitions
(e.g. 4 registers/partition). Since the first partition
is frequently used for ensuring quick response, only
drowsy scheme is used for this. In the beginning, the
first partition is in drowsy mode and remaining par-
titions are power gated and hence, they use compiler
information to insert wake up instructions for regis-
ters before their first use. Further, during long-latency
memory operations, the register banks are switched
to drowsy mode. Thus, unused partitions remain
power-gated and short-term opportunity for power

saving is exploited using drowsy mode. Since a frame
processing rate of greater than 30 frames/second (i.e.,
real-time rendering) wastes battery life without im-
proving user experience, they also propose a thread
scheduling technique which works by estimating the
number of threads required for a desired frame rate.
To obtain admissible human perception, it brings the
frame rate to 25 or 30 frames/second and power gates
extraneous register banks. They show that use of both
techniques leads to significant saving in RF leakage
power consumption.

Abdel et al. [45] present techniques to save leakage
and dynamic energy in RFs. In GPUs, several registers
are not allocated by the compiler for program execu-
tion, and their leakage energy saving technique ap-
plies power gating to these registers at the beginning
itself for the entire execution. Also, since the average
time between successive accesses to remaining (i.e.
allocated) registers ranges in hundreds (e.g. 800) of
cycles, after any access, these allocated registers are at
once placed into state-preserving drowsy state. Since
branch divergence and limited parallelism lead to sev-
eral idle threads in a warp, they identify these threads
using the built-in active mask before an instruction
is scheduled. Using this information, their dynamic
energy saving scheme does not charge bit lines and
word lines of registers of any idle thread in a warp.
They show that their techniques reduce the RF energy
consumption significantly.

Lee et al. [44] note that arithmetic difference be-
tween two successive thread registers in warp is
generally small. This is because, all threads of a warp
execute same instruction and hence, RF access occurs
at warp granularity. Hence, the computations which
depend on thread-index operate on register data that
exhibit strong value similarity. Based on this, they
propose a warp-level register compression scheme for
saving GPU energy. For data compression, base-delta-
immediate (BDI) algorithm [51] is used. For a banked
RF, one register or one register bank is chosen as base
for BDI algorithm and deltas from remaining registers
or banks are calculated. This approach saves dynamic
energy since due to compression, fewer register banks
need to be activated on every warp-level register
access. Also, leakage energy is reduced by saving
register content in fewer banks and power gating the
unused banks.

Leng et al. [4] note that during branch divergence
inactive lanes consume power without performing
useful work. To address this, they present a tech-
nique which clock-gates all SIMD lanes except those
with active threads. This technique efficiently exploits
small-latency branch divergence events. Interconnec-
tion network, operand collectors and execution units
are gated at SIMD lane level and RFs are gated at
bank level. They show that this technique is effective
in reducing dynamic power.

Lim et al. [3] present a power-model for GPUs



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTING SYSTEMS 10

which obtains initial data from McPAT for a GPU
configuration and then adapts the models by com-
parison with empirical data. They note that many
microarchitectural details such as cell-type of GPU RF
is unknown and this presents difficulties in accurate
estimation of power. Hence, they use the observation
that GPU RF is heavily accessed and is optimized for
fast access even at the cost of some leakage power
dissipation. Based on these and calibration against
the data from [37], they predict that RF is designed
using 32-bank dual-ported (1 read/ 1 write) RAM
blocks with high-performance cell type. Based on their
power model, they find leakage and dynamic power
consumption of GPUs and observe that RF contributes
significantly to dynamic power consumption, espe-
cially for compute-intensive applications. They also
study the effect of changing the maximum number
of active blocks per SM which indirectly changes the
effective register size. They find that for blackscholes
benchmark, increasing the number of register size
from 4096 to 24576 increases the IPC (instruction per
cycle) and power consumption, however on going
from 24576 to 32768 registers, the curves become
relatively flat showing diminished returns.

4.5 Techniques for register sharing

Jeon et al. [36] note that GPU compiler reserves regis-
ters for every warp, however, these warps are sched-
uled at different time periods. Thus, after completion
of execution of a warp, these allocated registers still
consume power even though they are no longer used
by any instruction. They propose sharing the registers
across warps to avoid their under-utilization. They
use compiler to obtain register lifetime values. Based
on this, a register is freed from its physical space after
last reference to it and this free register location is
assigned to register of a different warp. For perform-
ing such architectural-to-physical register mapping,
a hardware-based low-overhead register renaming
approach is used. They show that their technique
reduces the RF size requirement of the application and
also saves energy by virtue of reducing live register
space.

Yu et al. [1] note that while scarcity of RF resource
limits occupancy of thread-blocks, only a fraction of
registers allocated to a block are used at runtime. They
present a register-sharing technique for improving
performance and energy efficiency. Their technique
disregards RF limitation while scheduling warps to
each SM. Registers are dynamically allocated to and
reclaimed from the warps at runtime. When the reg-
ister demand of running warps exceeds the available
capacity, some warps are temporarily suspended and
their registers are stored in memory. The registers thus
released are used by other running threads to make
progress. When RF utilization again falls below its ca-
pacity, either suspended warps can resume execution

(after loading their register data from memory) or new
warps can begin execution. Their technique allows
scheduling more warps within same RF capacity and
allows scheduling kernels which require more RF
resources than the available capacity.

Jatala et al. [35] present a technique which enables
sharing of RF to allow launching additional thread
blocks per SM for improving performance. For exam-
ple, with 45K registers and each block requiring 10K
registers, only 4 blocks can execute in a naive scheme.
Their technique allocates 10K registers to three blocks
and shares 15K registers between two blocks, such
that a pair of warp from those blocks gets 0.5K
registers exclusively and 0.5K registers are shared
between them. If a warp from one block accesses a
shared register, it gets exclusive access to the shared
0.5K registers and the warp from another block can
access the shared registers only after the original warp
has finished. Their technique also limits the number
of additional blocks launched since over-sharing can
cause severe contention and inhibit any progress in
those threads.

They further propose a warp scheduling technique
for effective resource utilization. For two blocks that
share registers, if any warp of first block waits on
second block for shared registers, the second block
and its warps are termed as owner block and owner
warps, respectively and the first block/its warps
are termed as non-owner block/warps, respectively.
This technique schedules warps in following order:
shared owner, exclusive (i.e, unshared), and shared
nonowner. Thus, owner warps can complete sooner
allowing dependent non-owner warps to progress
and these non-owner warps hide stalls when no other
warps are executing. Further, to allow non-owner
warps to complete many instructions before accessing
shared registers, their technique unrolls and reorders
the register declarations. Also, since additional blocks
can cause memory congestion, their technique records
the number of memory instructions from non-owner
warps and when the stall becomes excessive, their
technique reduces the probability of memory instruc-
tions in these warps. They show that their technique
improves performance significantly.

4.6 Techniques for leveraging redundancy in GPU
execution

Xiang et al. [46] note that due to several code features,
e.g., loops, initialization from constant values or same
address, etc., the input and output values of different
threads in a warp and different warps may be same.
They refer to such instructions as intra- and inter-
warp uniform vector instructions (UVIs), respectively.
They propose techniques to leverage such redundancy
for improving performance, energy efficiency and reli-
ability. Their first technique adds a flag to each vector
register to identify and record intra-warp UVIs. If all



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTING SYSTEMS 11

the source operands of an instruction have this flag
set and no control divergence exists, this instruction
is marked as intra-warp UVI. For such an instruction,
only one thread in a warp performs computation
which is reused and stored by all the remaining
threads. Their second technique uses a small scalar
RF. Accesses to uniform vectors are served from scalar
RF instead of vector RF, which lowers the energy
consumption.

Their third technique exploits inter-warp redun-
dancy. It uses an instruction reuse buffer (IRB) which
stores results at warp-level. If an instruction is found
to be already present in IRB, its execution is skipped
and the result stored in IRB is directly written to
destination register. Only instructions detected as
inter-warp UVIs access IRB which simplifies its man-
agement and avoids the need of storing/comparing
operands of all the threads of a warp. These tech-
niques boost performance and save energy. For relia-
bility enhancement, for intra-warp UVIs, two threads
are used to perform redundant computations and save
their two results and for inter-warp UVIs, the IRB is
protected with parity bits. This approach improves
reliability coverage of RF and ALU against hardware
errors without harming performance.

Gilani et al. [49] propose two techniques for im-
proving the utilization of computation resources. They
note that in most (e.g. up to 50%) of instructions,
same computations happen in multiple threads, due
to factors such as inherent redundancy in data, pro-
cessing constants, same operations being performed
across threads of a warp, etc. Their technique detects
instructions for which the results of all threads of
a warp are same. Such instructions are issued to a
separate scalar pipeline which keeps its registers in a
separate scalar RF. By virtue of avoiding duplicated
calculations and freeing the vector pipeline for execut-
ing another instruction in parallel, this technique im-
proves both performance and energy efficiency. They
further note that for several instructions, the operands
and results values are narrow, e.g. less than 16 bits for
32-bit datapath. Based on this, they divide the 32-bit
datapath into two 16-bit portions which allows issu-
ing and executing up to two narrow-instructions in
every cycle for improving performance. Alternatively,
by running only one narrow instruction, the RF access
energy can be reduced.

4.7 Approximation techniques for RF

Jeong et al. [40] note that for several multimedia
applications, a small number of errors do not degrade
user experience [52]. Also, a tradeoff between output
quality and power consumption can be achieved by
scaling the precision of floating values. They use an
eDRAM-based RF and individually control the refresh
rate of every 32-element register entry. An entry with
precise value and the higher-order bits (e.g. upper half

word) of an approximate value are both refreshed at
regular rate. The latter helps in achieving acceptable
quality since the higher-order bits affect output qual-
ity more than the lower-order bits [52]. The lower-
order bits are refreshed at less than regular rate, which
saves refresh energy. They enhance GPU pipeline to
automatically identify FP values by tracking register
operands of each FP instruction. This avoids the need
of programmer annotation for identifying approx-
imable values. They show that their technique saves
significant refresh energy for both single- and double-
precision FP data.

4.8 Techniques for using RF as cache or shared
memory

Lakshminarayana et al. [24] note that due to their
irregular control flow and data-dependent memory
access pattern, graph algorithms achieve low effi-
ciency on GPUs. They propose a prefetching scheme
for hiding memory latency in graph algorithms. De-
pendent loads where one load depends on other
are common in graph algorithms and for such load
pairs, their technique identifies the target loads and
prefetches data into currently unused registers. The
prefetch distance (i.e. how well in advance a prefetch
instruction is inserted) can be fixed or adapted on
a per-loop basis such that for K unused available
registers, a prefetch distance of K can be used, and
if sufficient registers are not available, the distance is
reduced. Due to very large number of threads, GPU
caches see much more severe contention than the CPU
caches and hence, storing prefetched data into regis-
ters instead of cache avoids their premature eviction.
They show that their technique improves performance
for memory-intensive graph applications.

Falch et al. [28] present a technique which combines
registers from multiple threads to form a pool which
can be employed as user-managed last level cache,
similar to shared memory but with smaller latency.
Threads can access registers of other threads using
shuffle instruction [6] at a latency higher than that
of their own registers but lower than that of shared
memory. The limitation of their technique is that only
the threads in a single warp can form a shared pool.
Also, sharing provides benefit only when the threads
have shared working set and thus, data stored in the
pool can be reused by several threads. Further, the
pool is read by only few threads which creates thread
divergence. Also, management of this pool requires
significant user-effort and hence, their technique is
useful primarily for workloads with regular access
pattern such as stencil computations. They show that
compared to using shared memory, their technique
improves performance in some applications and re-
duces it in others and the improvement depends on
several factors, e.g., occupancy (number of thread
blocks on an SM) and global memory efficiency, etc.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTING SYSTEMS 12

5 RELIABILITY IMPROVEMENT TECH-
NIQUES FOR RF

Reliability improvement techniques have been tradi-
tionally considered optional for GPUs due to their
aggressively performance-oriented design and use
in error-tolerant multimedia applications [27]. How-
ever, due to increased error rates, and growing use
of GPUs for general-purpose applications, reliability
techniques have become highly important for GPUs.
Table 5 provides an overview of several techniques for
improving reliability of RF. Some of these techniques
use redundant execution for improving reliability [43,
46] and store a bit in radiation-hardened or normal
cell based on its criticality [43]. We now discuss these
techniques.

TABLE 5
Vulnerabilities addressed by different works

Classification References
Soft-error [21, 43, 53, 54]
NBTI-induced voltage degradation [22]
Process variation [26, 32]

5.1 Mitigating soft-error impact on RF
Farazmand et al. [54] compute the architectural vul-
nerability factor (AVF) for GPU RF. Note that AVF
shows the average time when a circuit-level soft-error
gets propagated to other processor components. The
AVF value for GPU RF is observed to be much smaller
than that typically observed in CPU RF, which can be
attributed to low utilization of GPU RF. They propose
an ‘AVF-util’ metric which measures the AVF of only
the allocated (utilized) registers and this metric was
found comparable with AVF of CPU RF. Overall,
their study suggests GPU-specific soft-error studies
for effective design of protection mechanisms and
selection of most vulnerable components.

Tan et al. [53] study soft-error vulnerability of sev-
eral GPU structures, e.g. RF, SMs, warp scheduler.
The vulnerability is found to vary with application
attributes, e.g., branch divergence, memory access
behavior. In different applications, different per-block
resources (e.g. RF, shared memory, etc.) become bottle-
neck in deciding the number of blocks allocated to an
SM at a time. The bottleneck resource itself is utilized
maximally and hence, it shows high vulnerability,
whereas the remaining underutilized resources show
error-tolerance behavior. For the structures studied by
them, IPC/AVF and AVF were found to be uncor-
related. As for the impact of microarchitectural poli-
cies, they find that dynamic warp formation scheme
(which handles branch divergence by regrouping
threads from different warps that branch to the same
destination) and use of higher number of per-SM
threads lead to increased soft-error robustness of RF,
whereas warp scheduling policy has negligible effect
on RF vulnerability.

Palframan et al. [43] observe that for several FP in-
tensive GPU programs, large magnitude errors can get
further amplified to significantly degrade the output,
whereas small magnitude errors have inconsequential
impact on the output. They present a precision-aware
technique to reduce large magnitude errors in RF
and execution logic. RF is protected from large errors
by storing the register MSBs in hardened cells since
applying logic hardening to all gates is costly. For
protecting significand value in FMA (fused multiply
add) FP unit, they use selective hardening approach.
The gates for hardening are chosen based on the
relative magnitude of error that a soft-error in those
gates can produce. Further, only the MSBs of the sig-
nificand computation are verified through redundant
execution on a light-weight checker circuit. They show
that for the same overhead, compared to a magnitude-
unaware selective protection approach, their approach
reduces the mean error magnitude.

5.2 Mitigating NBTI impact on RF
Namaki-Shoushtari et al. [22] note that for several
applications, the utilization of RFs is non-uniform.
They present a technique which improves the lifetime
of RF by uniformly spreading the NBTI stress and
power-gating the most-stressed banks. In GPUs, RF
allocation happens at the granularity of workgroup
(a workgroup contains up to four wavefronts) and
thus, within a workgroup, the RF regions show same
aging behavior. During RF allocation, their technique
proactively chooses RF regions with less aging to
distribute the aging uniformly over entire RF. At the
completion of a workgroup, the RFs are power gated
which places them in recovery mode since power-
gating reduces NBTI stress by providing sleep states
to the circuit. They show that their technique reduces
the threshold voltage degradation due to NBTI and
also saves leakage power.

5.3 Mitigating process variation impact on RF
Tan et al. [26] note that due to their large size, RF
is susceptible to PV and it becomes a bottleneck
in scaling core frequency which is determined by
the slowest register speed [55]. They note that with
current GPU RF floorplan (e.g., each RF bank holding
64 128B wide entries), the systematic effect of PV in
vertical direction is much larger than that in the hori-
zontal direction in every RF bank. Their first technique
vertically classifies RF banks into subbanks and the
latency of the slowest register determines that of the
entire subbank. A two subbank per bank partition
provides sufficient improvement and a more fine-
grained partition does not provide additional gains.
The fastest N% subbanks are classified as ‘fast’ and
the remaining 100−N% are termed as ‘slow’. For N
= 70, the slowest among 70% fast subbanks determine
the frequency and the 30% slow subbanks complete



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTING SYSTEMS 13

an access in 2 cycles. They show that their subbank-
level fast/slow partitioning technique provides nearly
same frequency enhancement as a register-level parti-
tioning technique.

A limitation of this technique is that presence of
even one slow subbank makes the bank as slow which
determines the bank latency. To address this, their
second technique logically combines similar type (i.e.,
fast/slow) subbanks to make a new bank. Since the
latency of both subbanks becomes same, an access
mapped to a fast bank can complete in 1 cycle. Their
third technique works on the observation that in many
applications, due to branch divergence and/or small
block size, several threads of a warp remain idle and
they do not utilize all the registers of a register vector.
For serving such partially active warps, this technique
logically makes hybrid banks from one fast and one
slow subbank. By virtue of serving all accesses from
fast subbank, this bank acts as a fast bank and slow-
bank remains unused. This increases the number of
fast banks which improves performance.

Their fourth technique works on the observation
that of all registers allocated to a warp, a few registers,
especially those with small ID, are accessed much
more intensely. Based on it, this technique prefer-
entially maps registers to fast banks. Registers with
large ID are mapped to slow banks and these slow
banks are used only if register requirement exceeds
the capacity of fast banks, thus minimizing the use of
slow banks. However, due to increased conflicts at fast
banks, this technique does not improve performance.
To address this limitation, their fifth technique gives
higher issue priority to fast warps (i.e., those which
access fast RF banks frequently) over slow warps to
maximally increase the progress difference between
them. This allows fast warps to begin memory ac-
cesses early which reduces memory contention com-
pared to round-robin policy. They show that their
techniques enable higher frequency under PV and
also improve performance.

Jing et al. [32] compare the impact of PV on SRAM-
based and eDRAM-based RF. In an SRAM-based RF,
PV manifests as non-uniform latencies in different
cells and due to this, overall frequency is determined
by the slowest SRAM cell. In eDRAM-based RF, PV
leads to variation in retention time of eDRAM cells,
but the nominal latency remains uniform across the
cells. Thus, to mitigate the impact of PV, the retention
period of every register can be recorded and refresh
operations can be individually issued to each register.
Thus, on using this fine-grain refresh scheme, the
eDRAM cell with lowest retention period impacts
only the register where it resides and not the entire
RF. They further demonstrate that as the severity of
PV increases, the energy efficiency of SRAM-based RF
degrades much faster than that of eDRAM-based RF
and thus, eDRAM-based RF is expected to provide
better scalability with ongoing technological scaling.

6 CONCLUSION AND FUTURE OUTLOOK

In this paper, we provided a comprehensive survey of
techniques for designing and managing GPU register
file. We included techniques related to performance,
energy and reliability issues in GPU RF and classified
them on important parameters to bring out their
similarities and differences. We now discuss some
directions that are worthy of further investigation.

To leverage the unique strengths of both CPU and
GPU architectures, fused CPU-GPU chips have been
designed which integrate them on the same chip [13].
These designs present both challenges and opportu-
nities due to closer CPU-GPU interaction and limited
area/power budgets. It will be interesting to see how
GPU RF management policies can be adapted to
address unique challenges in fused CPU-GPU chips.

It is expected that with increasing demand for
throughput, RF size per SM and per chip will also
increase. As the amount of chip resources devoted
to RF increase, its management will become even
more crucial for meeting performance targets and
resource constraints. We believe that this issue needs
to be simultaneously addressed at different levels
of system-stack. At circuit level, novel bank/array
organizations and high-density memory technologies
can reduce energy/area footprints. At microarchitec-
tural level, techniques such as register sharing, data
compression and near-threshold voltage operation,
etc. can be integrated to bring the best of them to-
gether. At OS and compiler level, mechanisms such
as instruction scheduling, changing memory layout
and profiling can be used to improve the efficacy
of runtime schemes. Finally, insights into application
behavior, such as their inherent resilience, can be used
to improve reliability and relax safety margins.

REFERENCES
[1] L. Yu, Y. Pei, T. Chen, and M. Wu, “Architecture supported

register stash for GPGPU,” JPDC, 2015.
[2] NVIDIA, “CUDA C Programming Guide,” http://docs.

nvidia.com/cuda/cuda-c-programming-guide, 2015.
[3] J. Lim, N. B. Lakshminarayana, H. Kim, W. Song, S. Yalaman-

chili, and W. Sung, “Power modeling for gpu architectures
using mcpat,” ACM TODAES, vol. 19, no. 3, p. 26, 2014.

[4] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim,
T. M. Aamodt, and V. J. Reddi, “GPUWattch: enabling energy
optimizations in GPGPUs,” ISCA, pp. 487–498, 2013.

[5] NVIDIA, “NVIDIA’s Next Generation CUDA Compute Archi-
tecture: Fermi,” http://goo.gl/X2AI0b, 2009.

[6] NVIDIA, “NVIDIA’s Next Generation CUDA Compute Archi-
tecture:Kepler GK110/210 ,” http://goo.gl/qOSWW1, 2014.

[7] M. Harris, “5 Things You Should Know About the New
Maxwell GPU Architecture,” http://goo.gl/8NV82n, 2014.

[8] D. Kanter, “NVIDIAs GT200: Inside a Parallel Processor,” http:
//www.realworldtech.com/gt200/8/, 2008.

[9] “GeForce GTX Titan X Review: Can One GPU Handle 4K?”
http://goo.gl/XajvIj, 2015.

[10] Intel, “Intel Itanium Processor 9500 Series Reference Manual,”
http://goo.gl/xy5m7G, 2012.

[11] W.-k. S. Yu, R. Huang, S. Q. Xu, S.-E. Wang, E. Kan, and
G. E. Suh, “SRAM-DRAM hybrid memory with applications
to efficient register files in fine-grained multi-threading,” in
ISCA, 2011, pp. 247–258.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTING SYSTEMS 14

[12] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and
A. Moshovos, “Demystifying GPU microarchitecture through
microbenchmarking,” in ISPASS, 2010, pp. 235–246.

[13] S. Mittal and J. Vetter, “A Survey of CPU-GPU Heterogeneous
Computing Techniques,” ACM Computing Surveys, vol. 47,
no. 4, pp. 69:1–69:35, 2015.

[14] J. Lucas, S. Lal, M. Andersch, M. Alvarez-Mesa, and B. Ju-
urlink, “How a single chip causes massive power bills
GPUSimPow: A GPGPU power simulator,” Intl. Symp. on
Performance Analysis of Systems and Software, pp. 97–106, 2013.

[15] N. Goswami, B. Cao, and T. Li, “Power-performance co-
optimization of throughput core architecture using resistive
memory,” in HPCA, 2013, pp. 342–353.

[16] E. Atoofian, “Reducing shift penalty in domain wall memory
through register locality,” Intl. Conf. on Compilers, Architecture
and Synthesis for Embedded Systems (CASES), pp. 177–186, 2015.

[17] M. Mao, W. Wen, Y. Zhang, Y. Chen, and H. Li, “Exploration
of GPGPU register file architecture using domain-wall-shift-
write based racetrack memory,” in DAC, 2014, pp. 1–6.

[18] C.-C. Hsiao, S.-L. Chu, and C.-C. Hsieh, “An Adaptive Thread
Scheduling Mechanism With Low-Power Register File for
Mobile GPUs,” IEEE Transactions on Multimedia, vol. 16, no. 1,
pp. 60–67, 2014.

[19] N. Jing, S. Chen, S. Jiang, L. Jiang, C. Li, and X. Liang, “Bank
stealing for conflict mitigation in GPGPU Register File,” in
ISLPED, 2015, pp. 55–60.

[20] M. Moeng, H. Xu, R. Melhem, and A. K. Jones, “Con-
textPreRF: Enhancing the Performance and Energy of GPUs
With Nonuniform Register Access,” IEEE Trans. on VLSI, 2015.

[21] J. Tan, Z. Li, and X. Fu, “Soft-error reliability and power co-
optimization for GPGPUS register file using resistive mem-
ory,” in Design, Automation & Test in Europe, 2015, pp. 369–374.

[22] M. Namaki-Shoushtari, A. Rahimi, N. Dutt, P. Gupta, and R. K.
Gupta, “ARGO: aging-aware GPGPU register file allocation,”
in Intl/ Conf. on Hardware/Software Codesign and System Synthe-
sis, 2013, p. 30.

[23] S. Mittal and J. S. Vetter, “A Survey of Methods for Analyz-
ing and Improving GPU Energy Efficiency,” ACM Computing
Surveys, vol. 47, no. 2, pp. 19:1–19:23, 2015.

[24] N. B. Lakshminarayana and H. Kim, “Spare register aware
prefetching for graph algorithms on GPUs,” in HPCA, 2014,
pp. 614–625.

[25] S. Mittal, “A Survey Of Techniques for Managing and Lever-
aging Caches in GPUs,” Journal of Circuits, Systems, and Com-
puters, vol. 23, no. 08, p. 1430002, 2014.

[26] J. Tan and X. Fu, “Mitigating the Susceptibility of GPGPUs
Register File to Process Variations,” in International Parallel and
Distributed Processing Symposium, 2015, pp. 969–978.

[27] S. Mittal and J. Vetter, “A Survey of Techniques for Model-
ing and Improving Reliability of Computing Systems,” IEEE
Transactions on Parallel and Distributed Systems (TPDS), 2015.

[28] T. L. Falch and A. C. Elster, “Register Caching for Stencil
Computations on GPUs,” in Int. Symp. on Symbolic and Numeric
Algorithms for Scientific Computing, 2014, pp. 479–486.

[29] S. Mittal, J. S. Vetter, and D. Li, “A Survey Of Architectural Ap-
proaches for Managing Embedded DRAM and Non-volatile
On-chip Caches,” IEEE TPDS, 2015.

[30] S. Mittal, M. Poremba, J. Vetter, and Y. Xie, “Exploring Design
Space of 3D NVM and eDRAM Caches Using DESTINY Tool,”
Oak Ridge National Laboratory, USA, Tech. Rep. ORNL/TM-
2014/636, 2014.

[31] J. Vetter et al., “Opportunities for nonvolatile memory systems
in extreme-scale high performance computing,” Computing in
Science and Engineering (CiSE), vol. 17, no. 2, pp. 73 – 82, 2015.

[32] N. Jing, Y. Shen, Y. Lu, S. Ganapathy, Z. Mao, M. Guo, R. Canal,
and X. Liang, “An energy-efficient and scalable eDRAM-based
register file architecture for GPGPU,” International Symposium
on Computer Architecture, pp. 344–355, 2013.

[33] Z. Li, J. Tan, and X. Fu, “Hybrid CMOS-TFET based register
files for energy-efficient GPGPUs,” in International Symposium
on Quality Electronic Design (ISQED), 2013, pp. 112–119.

[34] X. Liu, M. Mao, X. Bi, H. Li, and Y. Chen, “An efficient STT-
RAM-based register file in GPU architectures,” in ASP-DAC,
2015, pp. 490–495.

[35] V. Jatala, J. Anantpur, and A. Karkare, “Improving GPU perfor-
mance through register sharing,” CoRR, vol. abs/1503.05694,
2015.

[36] H. Jeon and M. Annavaram, “GPGPU Register File Manage-
ment by Hardware Co-operated Register Reallocation,” Univ.
of Southern California, Tech. Rep. CENG-2014-05, 2014.

[37] M. Gebhart, D. R. Johnson, D. Tarjan, S. W. Keckler, W. J. Dally,
E. Lindholm, and K. Skadron, “Energy-efficient mechanisms
for managing thread context in throughput processors,” in
ISCA, 2011, pp. 235–246.

[38] N. Jing, H. Liu, Y. Lu, and X. Liang, “Compiler assisted
dynamic register file in GPGPU,” in International Symposium
on Low Power Electronics and Design, 2013, pp. 3–8.

[39] M. Gebhart, S. W. Keckler, and W. J. Dally, “A compile-time
managed multi-level register file hierarchy,” in International
Symposium on Microarchitecture, 2011, pp. 465–476.

[40] D. Jeong, Y. Oh, Y. Park, and J. Lee, “An eDRAM-Based
Approximate Register File for GPUs,” Design & Test, 2015.

[41] G. Li, X. Chen, G. Sun, H. Hoffmann, Y. Liu, Y. Wang, and
H. Yang, “A STT-RAM-based Low-power Hybrid Register File
for GPGPUs,” Design Automation Conference, pp. 103:1–103:6,
2015.

[42] J. Wang and Y. Xie, “A Write-Aware STTRAM-Based Regis-
ter File Architecture for GPGPU,” ACM Journal on Emerging
Technologies in Computing Systems, vol. 12, no. 1, p. 6, 2015.

[43] D. J. Palframan, N. S. Kim, and M. H. Lipasti, “Precision-aware
soft error protection for GPUs,” HPCA, pp. 49–59, 2014.

[44] S. Lee, K. Kim, G. Koo, H. Jeon, W. W. Ro, and M. Annavaram,
“Warped-compression: enabling power efficient GPUs through
register compression,” ISCA, pp. 502–514, 2015.

[45] M. Abdel-Majeed and M. Annavaram, “Warped register file:
A power efficient register file for GPGPUs,” in Int. Symp. on
High Performance Computer Architecture, 2013, pp. 412–423.

[46] P. Xiang, Y. Yang, M. Mantor, N. Rubin, L. R. Hsu, and
H. Zhou, “Exploiting uniform vector instructions for GPGPU
performance, energy efficiency, and opportunistic reliability
enhancement,” in ICS, 2013, pp. 433–442.

[47] S.-L. Chu, C.-C. Hsiao, and C.-C. Hsieh, “An energy-efficient
unified register file for mobile GPUs,” in Intl. Conf. on Embed-
ded and Ubiquitous Computing (EUC), 2011, pp. 166–173.

[48] M. Gebhart, S. W. Keckler, B. Khailany, R. Krashinsky, and
W. J. Dally, “Unifying primary cache, scratch, and register file
memories in a throughput processor,” MICRO, 2012.

[49] S. Z. Gilani, N. S. Kim, and M. J. Schulte, “Power-efficient
computing for compute-intensive GPGPU applications,” in
HPCA, 2013, pp. 330–341.

[50] S. Mittal, “A survey of architectural techniques for improving
cache power efficiency,” Elsevier Sustainable Computing: Infor-
matics and Systems, vol. 4, no. 1, pp. 33–43, March 2014.

[51] G. Pekhimenko, V. Seshadri, O. Mutlu, P. B. Gibbons, M. A.
Kozuch, and T. C. Mowry, “Base-delta-immediate compres-
sion: practical data compression for on-chip caches,” in PACT,
2012, pp. 377–388.

[52] S. Mittal, “A Survey of Techniques for Approximate Comput-
ing,” ACM Computing Surveys, 2016.

[53] J. Tan, Y. Yi, F. Shen, and X. Fu, “Modeling and characterizing
GPGPU reliability in the presence of soft errors,” Parallel
Computing, vol. 39, no. 9, pp. 520–532, 2013.

[54] N. Farazmand, R. Ubal, and D. Kaeli, “Statistical fault
injection-based AVF analysis of a GPU architecture,” SELSE,
2012.

[55] S. Mittal, “A Survey Of Architectural Techniques for Managing
Process Variation,” ACM Computing Surveys, 2016.

Sparsh Mittal received the B.Tech. degree in electronics and
communications engineering from IIT, Roorkee, India and the Ph.D.
degree in computer engineering from Iowa State University, USA.
He is currently working as a Post-Doctoral Research Associate at
ORNL. His research interests include non-volatile memory, memory
system power efficiency, cache and GPU architectures.


