SAND2015-9092C

Basker: A Threaded Sparse LU Factorization
Utilizing Hierarchical Parallelism and Data Layouts

Joshua Dennis Booth
Sandia National Laboratories
Albuquerque, New Mexico
jdbooth@sandia.gov

Abstract—Scalable sparse LU factorization is critical for sim-
ulations such as those from circuit and powergrid simulations.
In this work, we present a new scalable sparse direct LU solver
called Basker . First, Basker introduces a new algorithm to par-
allelize the Gilbert-Peierls algorithm for sparse LU factorization.
Second, as architectures evolve, there exists a need for algorithms
that are hierarchical in nature even on a multicore or manycore
node to match the hierarchy in thread teams, individual threads,
and vector level parallelism. Basker is designed to map well to
this hierarchy in architectures naturally. Third, there is a need
for the data layouts to match multiple levels of hierarchy in
memory. Basker uses a two-dimensional hierarchical structure
of sparse matrices that maps to the hierarchy in the memory
architectures and to the hierarchy in parallelism. Finally, we
present performance evaluation on Intel SandyBridge and Xeon
Phi platforms on circuit and power network matrices taken
from the University of Florida sparse matrix collection and from
real simulations of the SPICE like simulator Xyce. From this
evaluation, Basker is able to achieve a geometric mean speedup
of 5.91x on CPU (16 cores) and 7.4x on Xeon Phi (32 cores)
relative to the solver package KLU. Basker outperforms Intel
MKL Pardiso (PMKL) by as much as 53x on CPU (16 cores)
and 13.3x on Xeon Phi (32 cores) for low fill-in circuit matrices.
Furthermore, Basker speedups a matrix sequence taken from a
real Xyce simulation compared to PMKL and KLU.

I. INTRODUCTION

Scalable sparse direct linear solvers play a pivotal role
in the efficiency of simulation codes on many-core systems.
Current approaches process multiple columns with similar
nonzero structure, i.e., supernodes, with threaded Basic Linear
Algebra Subprograms (BLAS) [1], [2]. The one-dimensional
approach of using BLAS on these matrices may not be able
to extract enough parallelism when the matrix has low fill-
in or an irregular nonzero pattern, such as matrices gener-
ated by Simulation Program with Integrated Circuit Emphasis
(SPICE) [3]. Therefore, a new type of solver is needed that
uses a hierarchy of structures to leverage fine-grain parallelism
within the irregular nonzero pattern. In this work, we present
a new shared-memory sparse direct LU linear solver named
Basker designed to achieve speedup by using a hierarchy of
structure that exploits fine-grain parallelism and naturally fit
the hierarchical memory structure of most many-core systems.
Basker thereby being the first parallel shared-memory solver
target at these low fill-in density coefficent matrices.

Sparse factorization of unsymmetric indefinite systems is
difficult due the need for numerical pivoting for stability and

Sivasankaran Rajamanickam
Sandia National Laboratories
Albuquerque, New Mexico
srajama@sandia.gov

Heidi K. Thornquist
Sandia National Laboratories
Albuquerque, New Mexico,

hkthorn @sandia.gov

dynamic nonzero structure generated by such pivoting. Scaling
sparse LU therefore depends of efficiently finding concurrent
work inside this dynamic nonzero structure while providing
enough numerical stability. As a result, speedups achievable
for spare factorization is far from ideal [2], [4]. Coefficient
matrices with low fill-in are particularly difficult, since there
exist limited supernodes. However, a hierarchy of structure
can often be found in these matrices that can expose multiple
levels of parallelism.

Basker utilizes a hierarchy of two-dimensional sparse
blocks designed to fit the multiple levels of nonzero pattern
structure that can be found in a coefficient matrix. These pat-
terns can be found with traditional ordering techniques, such as
block triangular form [5] and nested-dissection ordering [6].
This hierarchy of two-dimensional sparse blocks design allow
Basker to accomplish two tasks. The first task is to exploit
any fine-grain parallelism found within or between blocks.
The second task is to provide a hierarchical data structure
that fits the multiple levels of memory found on many-core
nodes and divides data among threads. As a result, Basker is
able to provide new functionally, such as a new algorithm
to parallelize Gilbert-Peierls algorithm , and have multiple
threads work simultaneous on a single matrix column.

In this work, we present the algorithm and structures used
by Basker to achieve hierarchical parallelism. Basker is a new
shared-memory sparse LU solver implemented in templated
C++11 with Kokkos [7], where Kokkos is a package for
portability across multiple many-core processors and device
backends. The main contributions of this work are:

o A new threaded sparse direct LU solver that out performs
Intel MKL’s Pardiso and KLU while reducing memory on
matrices with low fill-in;

e An overview of how to reveal hierarchical parallelism
from sparse coefficient matrices;

o The first parallel Gilbert-Peierls algorithm implementa-
tion;

o Empirical evaluation of Basker compared to KLU [5]
and Intel MKL’s Pardiso [4] on Intel SandyBridge and
Xeon Phi.

o Performance evaluation with 1000 matrices from a real
simulation from Xyce circuit simulation package

The remainder of this paper is as follows. We first present

an overview of needed background and previous work in Sec-
tion II. We then introduce the hierarchical structured algorithm
to extract parallelism from sparse coefficient matrices in Sec-
tion ITI. An overview of implementation choices are outlined in
Section IV. Section V provides results on speedup, comparison
of speedups achievable by supernodal methods on 2/3D mesh
problems, and use of Basker on a circuit simulation from
Xyce. Section VI provides future improvement to Basker , and
Section VII provides a summery of our findings.

II. BACKGROUND AND RELATED WORK

This section provides an overview of background and re-

lated work to the solution of the sparse linear system Ax = b,
where A is a large sparse coefficient matrix. z is the solution
vector, b is the given right-hand side vector.
Orderings. All sparse direct solvers use structural information
and assumptions to improve performance and scalability. Co-
efficient matrices are often reordered to limit fill-in, i.e., zeros
becoming nonzero during factorization, or cluster nonzeros
into patterns that revealing dependency in computation. Min-
imal degree orderings, such as approximate minimal degree
ordering (AMD) [8], are an ordering subtype that are very
efficient in reducing fill-in [9]. Additionally, minimal degree
ordering may not directly reveal any submatrices that can be
computed in parallel.

Nested-dissection ordering (ND) [6] is a graph represen-
tation based ordering, using G(A) when A is symmetric and
G(A+AT) when A is unsymmetric. It is commonly used to
provide a tree-structure of submatrices that can be computed in
parallel while reducing fill-in. However, the tree-structure can
be destroyed during factorization if a pivot is selected from
outside the submatrix.

If an unsymmetric matrix does not have the strong Hall
property, i.e., if every set of k£ columns has nonzeros in at
least k+1 rows, than the coefficient matrix can be permuted
in a block triangular form (BTF) where block submatrices in

the lower half are all zeros. A coefficient matrix A permuted
by matrices P and @ into BTF has the form:

All A12 Alk

PAQ = Az

Akk
This form is very common in very irregular unsymmetric
systems, such as those from circuit simulation, and can be
found with Dulmage-Mandelsohn decomposition (DM) [10].
In this form, only the submatrix blocks on the diagonal need
to be factored resulting in far less work and revealing a great
deal of parallelism.

Additionally, permuting a coefficient matrix to limit pivot-
ing by placing nonzeros on the diagonal is common before
computation [11]. Finding such a permutation is done through
finding a maximum cardinality matching of a bipartite graph
representation of the coefficient matrix [12]. However, nonze-
ros on the diagonal is only one half of the issue; a variant
that also tries to maximize the values on the diagonal is often

used. We will call this variant maximum weight-cardinality
matching ordering (MWCM) [12]. There are multiple types of
MWCM based on metrics used to weight the diagonal entries.
Sparse LU. The problem of factoring a symmetric sparse
coeffiecent matrix A into LLT and LDLT is well studied.
However, unsymmetric and indefinite systems, may require
numerical pivoting and dynamic discovery of nonzero structure
resulting in fewer solver packages. Here, we will look at three
solver packages, namely SuperLU-Dist [11], Pardiso [4], and
KLU [5], to compare their design choices to Basker .

SuperLU-Dist is a distributed memory unsymmetric direct
solver by Li and Demmel [11]. SuperLU-Dist uses a two-
dimensional data layout and avoids pivoting by using a
MWCM that maximizes the sum of the diagonal element
(MC64) [12]. In each block matrix, SuperLU-Dist performs
a supernodal based LU factorization. Supernodal factorization
groups a cluster of columns/rows that will have a similar
nonzero structure after factorization together and performs
the update using BLAS operations [1]. However, supernodal
methods have limitations in sparse LU. These limitations
include that a pivot could only be chosen from inside a single
supernode, fill-in must be known before hand, and scaling is
limited to by the size of supernodes [13]. A share-memory
version SuperLU-MT [13] exists, however the shared-memory
version only uses a one-dimensional data layout.

Pardiso [4] is shared-memory sparse LU solver that uses a
number of advanced techniques to achieve high performance.
These techniques include using a left-right looking strategy to
reduce synchronization and provide three levels of parallelism,
namely from the etree, hybrid (left-right) at top levels, and
pipelining parallelism. This strategy is applied using a supern-
odal method similar to SuperLU-Dist. One version of this
solver has been added to Intel MKL library, and we compare
against it in Section V.

KLU [5] is a serial Gilbert-Peierls algorithm solver de-
signed for circuit simulation problems. It achieves good per-
formance by permuting the circuit coefficient matrix first into
BTF . It then uses the Gilbert-Peierls algorithm to discover
the nonzero pattern due to fill-in during numeric factoriza-
tion in time propoortional to arithmetic operations. However,
KLU has no method to factor any part in parallel. Basker was
designed to replace KLU for circuit simulation problems by
adding parallel execution both between blocks and within
blocks of BTF . It will be added to Trillinos through both
Amesos2 and ShyLU [14] packages.

Basker differs from the above solvers in the following way:

e Basker is a nonsupernodal factorization unlike SuperLU-
Dist and Pardiso ;

e Basker uses a heirarchy of structures and revealing or-
ders;

e Baskeruses both a MWCM and pivoting unlike
SuperLU-Dist and Pardiso ;

e Basker is a templeted C++ solver using a a many-core
portable package supporting muliple backends such as
OpenMP, PThreads and QThreads.

III. BASKER STRUCTURE

The nonzero pattern in the coefficient matrix determines not
only the work but the maximum performance and speedup
achievable by sparse factorization. Most shared-memory LU
factorization codes utilize a flat one-dimensional layout of
blocks where blocks are derived from some ordering or the
etree [1]. However, using only one-dimensional methods
limit the exploitation of sparsity patterns within and between
block structures. For instance, a supernodal factorization’s
speedup will be either multithreaded BLAS calls or efficiently
overlapping serial BLAS calls. Furthermore, algorithms that
do not use multthreaded BLAS will have speedups limited by
the number of columns that need to be factorized in serial,
which can be greater than 10% [6].

Due to this observation, Basker uses a variety of structuring
or reordering methods, such as BTF and ND, to derive a
hierarchy of two-dimensional sparse blocks. This structur-
ing allows Basker to fit the irregular nonzero pattern into a
hierarchy of blocks that fit the memory structure of many-
core nodes. Additionally, this structure breaks columns into
multiple submatrices allowing for multiple threads to work
on a column that would have been serial in a nonsupernodal
method, or efficiently use multiple calls of serial BLAS.
Here, we will only focus on two levels of structures, i.e.,
structure from BTF and ND . BTF is the first coarse structure
and ND is the second fine structure. However, additional
levels of structures could also be used, such as an additional
level of supernodes inside of the ND structure when two-
dimensional blocks become dense. On top of this structure,
BASKER_FACTOR (Alg. 1) is called. Additionally, the fine
structure of ND is used to provide a parallel Gilbert-Peierls
algorithm in NFACT_LARGEBLK.

A. Block Triangular Structure, Level 1

The first level of structure used by Basker is the block
triangular form (BTF) of the coefficient matrix. This form
is commonly used when dealing with unsymmetric coefficient
matrices, particularly those from circuit and powergrid sim-
ulations. Basker first permutes the coefficient matrix based
on an ordering found from MWCM (F,,1) in order to ensure
that the system does not become structurally singular. Next,
the strongly connected components are found, and coefficient
matrix is reordered (P,) so that each strongly connected com-
ponent becomes a block on the diagonal. The reordered coef-
ficient matrix, i.e., P, P,,1 AP,, produces a structure similar to
that in Figure 1(a). The form in Figure 1(a) is analogous to the
fine decomposition of square center block found in Dulmage-
Mandelsohn decomposition [10]. We note that if the matrix
is structurally singular, than other blocks from the coarse
decomposition of DM will exist, but will not for Basker if
the matrix is structurally nonsingular. Additionally, any of
the three diagonal blocks may not exist if it is structurally
nonsingular. For example, coefficient matrices coming from
many solid mechanic codes using finite elements will only
have the center block.

(a) Level 1 of hierarchy structure, BTF (PchAPCT). The
first level allows Basker to both reduce factorization work by
only factoring the diagonal blocks, and exposes that blocks
within D1, D2, andD3 can be factorized independently.

(] e

Ay

(b) Representation of SMALLBLK layout, i.e., D1 and Ds.
The SMALLBLK have multiple small subblocks on the
diagonal that can be factored independently. The off-diagonal
subblocks do not need factored. Each thread takes a group
of blocks based on estimated float-point operations. The
coloring of the blocks suggest one possible mapping of thread
and blocks.

Fig. 1. Level 1 coarse (BTF) hierarchy structure and fine Level 2
structure within D7 and Dg3. Top level structure used in Algorithm 1
BASKER_NFACTOR.

In Figure 1(a), a two-dimensional structure exists with three
diagonal blocks exist, namely Di, Do, and D3, along with
upper off-diagonal blocks C42, C13, and Cs3. Each block has
a sparse nonzero pattern. The blocks D; and Ds consists
of multiple tiny subblocks on the diagonal, and the block
Dy consists of one or more large subblocks. These multiple
tiny subblocks in D; and D3 provide enough parallelism by
using their derived ordering from BTF as their second level
structure as well. Basker uses SMALLBLK methods for these
structures. In contrast, D> must be further structured, and
will use LARGEBLK methods depending on this second level.
An overview of the complete Basker algorithm using these
methods is listed in Algorithm 1
SMALLBLK. The substructure of Dy and D3 are easily dealt
with as subblocks are independent of each other. Therefore,
the sparsity pattern of each subblock and factorization can
be computed concurrently. A typical representation of this
block is given in Figure 1(b), where diagonal submatrices

Algorithm 1 BASKER_FACTOR

1: Based on level 1 structure, BTF

2: CALL SYMBFACT_SMALL on D and D3
3: CALL SYMBFACT_LARGE on Ds

4: CALL NFACT_SMALL on D and D3

5: CALL NFACT_LARGE on Do

A;; needs to be factored. A two-dimensional sparse block
structure is used here as well. This structure allows for
each diagonal submatrix to be handled independently. The
off-diagonal blocks are stored so they can be easily used
with sparse matrix-vector multiplication when solving for a
given right-hand side vector. We note that these off-diagonal
submatrices could further be split, however they tend to be
very sparse as they are in the original nonzero pattern and
further blocking and using multiple threads will be typically
inefficient.

Basker first performs a symbolic factorization of this block
as in Algorithm 2. This symbolic factorization first reorders
each diagonal submatrix using AMD . Next, symbolic factor-
ization finds the number of nonzeros of each column and an es-
timates the number of float-point operations required to factor.
From the number of float-point operations, Basker partitions
the submatrices among the threads and memory for LU is
allocated. The coloring in Figure 1(b) provides one division
of how four threads may be divided among the blocks.

Algorithm 2 SYMBFACT_SMALLBLK

1: for all subblocks on diagonal (A;;) do

2: CALL AMD on A;; — Pumd

3: CALL COL_COUNT on P,,qAi; — CCJi|[], OP[{](]

4: end for

5: //Based on estimated operation in O P[][] divide subblocks equally among
p threads.

. for all p threads do

Initialize LU structure based on C'C[](]

8: end for

N

NFACT_SMALLBLK. After the symbolic factorization, the
numeric factorization simply uses the same thread mapping
to submatrices to call sparse LU factorization using Gilbert-
Peierls algorithm . No algorithm block is given, since it is a
simple parallel for loop over the diagonal submatrices.

B. Nested-Dissection Structure, Level 2

The block D5 in Figure 1(a) contains one or more of the
largest strongly-connected components in the coefficient ma-
trix. This whole block must be factored, i.e., Dy = Lp,Up,,
in order to solve for a given right-hand side vector. Addi-
tionally, this block dominates factorization time, but provides
no direct way with natural ordering to factor with multiple
threads. In KLU , this block would simply be ordered with
AMD and factored by one thread serially after the blocks
before it. We note that this block constitutes an average of
68.4% of the total matrix size in our circuit problem test
suite (see Section V). Therefore, factoring this block in a
single thread does not provide enough parallelism to achieve

acceptable speedup; Basker devises a nested method using
Gilbert-Peierls algorithm to solve this problem.

We use nested-dissection ordering on D in order to dis-
cover smaller independent subblocks to factor in parallel.
Basker first permutes Do using a MWCM (FP,,2) to find the
locally best matching and reduce the need to pivot. Next,
Basker compute ND ordering on the graph of Do+DJ1 with a
separator tree that contains p leaves, where p is the number of
threads available. The resulting ND ordering (P,,q4) if applied
resulting in P,,LdengPgd. The structure of the reordered
coefficient matrix is shown in Figure 2(a) for four threads.
This two-dimensional structure of sparse matrices is used to
store both the reordered matrix and factorization. The colors
suggest one possible layout where blocks of a particular color
are shared by a thread.

Figure 2(b) provides a modified separator tree of the nested-

dissection ordering. This tree is modified by providing one
extra level that allows us to write the dependencies of the
two-dimensional structure more efficiently. Dependencies of
submatrices within a treenode are based on line position from
top to bottom, i.e., matrices on line two require matrices found
in line one. Dependencies between treenodes are presented as
arrows. The modified tree may also be used to statically assign
threads, and one such assignment is indicated by the node
colors. Additionally, a constrained fill reduced ordering, such
as constrained AMD (P,,,4), is used where the constraints are
based on levels in the tree.
LARGEBLK. After Dy has been moved into the two-
dimensional structure, a symbolic analysis is used to estimate
the number of nonzeros in the L and U corresponding to each
block. This is done by following the ND tree-structure from
the leaf nodes to the root. The general idea of the algorithm is
to first find the structure of the diagonal submatrix in the leaf
node in Figure 2(b) using an etree (Lines 3-5 in Alg 3). Next,
the algorithm finds nonzero counts of off-diagonal submatrices
by walking paths in the etree (Lines 8-29 in Alg 3).

In more detail, Basker performs symbolic factorization on
the leaf nodes, i.e., level 0 in Figure 2(b), by forming
etree(A;;), etree(A;+AL), or etree(A; AL) depending on
the level of symmetry and pivoting needed. COL_COUNT in
lines 3-5 of Algorithm 3 provides the nonzero count for each
submatrix A;; by simple transversal of the etree [15].

Basker now moves up the tree with the loop found on line
8 in Alg. 3. The nonzero counts of U;; in the levels are
found with a call to COL_COUNT_UPPER on line 13. For
U,;(k) where k is the column, the nonzero count is found by
walking the etree of Aj;; starting at points corresponding to
nonzero entries in column k. We note that all of the etree need
not be walked as already explored paths are marked to limit
computation. Additionally, we keep track of the beginning of
paths in the etree fo the submatrix. This bookkeeping allows
us to estimate fill-in in parent blocks.

After computing the nonzero estimates of U;;, the nonzero
count estimate is found for L;; on line 14 with a call to
COL_COUNT_LOWER. Again, the etree of A;; is used, but in a
slightly different manner. For each column k in the submatrix,

Ase Ayy
Ase| Asy
Ass Ags As7
Ay Ay Azs WAz

(a) Matrix in nested-dissection ordering, P qPrndPm?2 D2PT PaTm 4 of
D5. Each submatrix is stored by Basker as a sparse matrix. One possible
thread layout indicated by color.

Separator 0
A77- LU;7

level 3

Separator1
A33— LU33
Us;7

Separator2
Age— LUge
Us,7

level 2

level 1 [U13U17][U23U27] [U43U47][Us3Us7]

A11*LU11 Azz*’«”zz A44*LU44 Ass — LUss
level 0 i
31L71 L3zl LeaLes LesLes

(b) Modified nested-dissection tree. Submatrix dependencies between tree
nodes mark with arrows. Dependencies within nodes based on line.

Fig. 2. Level 2 fine (ND) structure used to extract fine-grain parallelism
from a single large connected-component. This structure is used within
BASKER_NFACTOR by NFACT_LARGEBLK to perform a parallel Gilbert-
Peierls algorithm .

the etree is traversed backwards to determine which columns
may contribute to the nonzero structure (Str) of L;;(k). More
precisely, this is written as: Str(L;;(k)) = Str(A;:(k)) U,
Str(Lj;(v)), where v are columns corresponding to nodes
preceding the etree node of k. Furthermore, bookkeeping of
the starting and ending of paths in the submatrix is stored.

Next, Basker has to find nonzero counts for more off-
diagonal submatrices if level < logs(p) where p is the number
of threads. If the nonzeros of more off-diagonal submatrices
are needed, then the loop on line 16 is executed. If not, the
loop is skipped over. Either way, a reduction of the paths found
while finding nonzero count of in lines 13 and 14 need to
be found. REDUCE_PATH on lines 19 and 25 matches the
stored starting path of U;; with a path stored in the exploration
of Lj;. If in the inner loop, then COL_COUNT_UPPER and
COL_COUNT_LOWER is called. Else, COL_COUNT_SEP is
used to estimate the nonzero in the diagonal separator sub-
matrix by using the reduction path and adding the nonzero
structure of the submatrix. . We additionally note that for many
submatrices on the diagonal corresponding to separators can
be assumed to be dense with very little memory impact.

Algorithm 3 SYMBFACT_LARGEBLK

1: //Find leaf node etree (Domains)

2: for all p threads do

3 Map p — 7 where ¢ is a leaf node
4 CALL COIL_COUNT — etree;
5: end for

6: **ALLSYNC**
7

8

9

: //Get counts of all parent nodes (Separators)

: for all level =1 : loga(p) do
: Map level — j

10: //Factor Domain U's

11: for all p threads do

12: Map p — ¢ where ¢ is a leaf node

13: CALL COL_COUNT_UPPER — upaths;
14: CALL COL_COUNT_LOWER — Ipaths;
15: //Update Parent Separators In Same Column
16: for all sublevel =1 : level — 1 do

17: Map sublevel — 1

18: ** ALLSYNC**

19: CALL REDUCE_PATH — paths;

20: CALL COL_COUNT_UPPER — upaths;
21: CALL COL_COUNT_LOWER — lpaths;
22: end for

23: //Find nnz for submatrix Aj;

24: ## ALLSYNC#*

25: CALL REDUCE_PATH — paths;

26: CALL COL_COUNT_SEP

27: end for

28: end for

NFACT_LARGEBLK. We now provide an overview of
the numerical factorization algorithm. The numerical fac-
torization algorithm has two main phases, i.e., factorization
of blocks corresponding to leaf nodes and factorization of
blocks corresponding to separator nodes. Leaf node matrices,
i.e., block matrices at level O in Figure 2(b), are processed
by factoring the submatrices in the node column-by-column
reading from top to bottom, e.g., L11Uy1, L31, then Lg;.
Each node is processed by a thread independently. Separator
nodes matrices, i.e., level 1-3 in Figure 2(b), are computed
by processing submatrices corresponding the separator node
from level 1 up to the separator node. For example, at
separator 1 Basker computes U; 3& Uz 3 in level 1, then
L33 & Us 3z in level 2. For separator 0, level 1 computes
U1777 U2,7, U477, &U577, level 2 computes U377&U677, and
finally level 3 computes L7 7Uz 7.

We now provide a more an in-depth examination of Al-
gorithm. 4. The leaf node matrices are handled first. This is
done by each thread first using Gilbert-Peierls algorithm to
factor A;; with a call to GP_FULL_BLK (Line 6). The lower
diagonal submatrices corresponding to the leaf node diagonal
submatrices are factored using the U;; just found using a call to
GP_LOWER_UPDATE (Line 7). This call translates to finding
Lji(k) = Aji(k) \ U;i(k). This diagonal block factor and
off-diagonal factors are done column-by-column to reuse the
found U. After all the submatrices are factored in level O,
all threads are synced as indicated by the ALLSYNC. More
details on all syncronization made in Basker in Section IV.

The factorization of separator node matrices are more
complex. We provide Figure 3 to better illustrate the process.
Figure 3 illustrates the computation of the first 4 threads when

>

Sublevels ~

sublevel =1

Ol |
] =1
=
g
E %0 = N sublevel =2
\ 1 :. n
s o b
o 9 3 o
Z 0 e
7} &
ty a3 5
_— Q ﬂ.l
g & G
o .
£ / -
& o t
S V=1 a 9
n
! >3 a sublevel =3
© e} ~
[] =
O il
=4 a
w
9 E 3,
[2 3 &
7 Ne=1
- k>nmk=1
A
3
g L7 2
gl t3 b T fk>nk=1
I = 1
] =
© g O by = k=1n
T
a -
t3 g a! e 2 to
7 G ty 49 n
s Y 3 TE
E’/ 2 8 3=
w > | 15
e fk=1 2 g =
=) =1
o 2 =6
[o &
a
4 ’
@® 4 t; Notshown
o0 o 7 7’

. /

Fig. 3. Diagram corresponding to loop on lines 11-34 in Algorithm 4 when
level = log2(8), showing the execution pattern of the first 4 threads (to-
t3). The blocks are colored to correspond to the primary thread executing
the operation based on the assignment in Figure 2(a). Lines 16 maps to
sublelve = 0, lines 18-24 map to sublevel = 1,2, and lines 27-31 map
to sublevel = 3.

level=logs(p) in Algorithm 4 where p = 8, i.e., the last column
of block submatrices in Figure 2(a). Each thread (,) first
factors U;; where i corresponds the submatrix on the diagonal
in level 0.

After, a reduction-factor method is used to computed the
submatrices on the remaining levels, called sublevels, up
to the root. A point-to-point synchronize, i.e., PSYNC, of
threads is used to combine the solutions from a sublevel
for the next sublevel. We will refer to this combining as
reduction, i.e., REDUCE_COL (Line 21), and has the form:
Ai(k) = Ayj(k) — > s Li1,sUs (k) where L is the index
based on level, [is the index based on sublevel, s is the
index of all submatrices below [in the modified tree, and
k is the column in the submatrix. Each thread computes their
LU update and subtracts it from the column. For example, ¢
and t; synchronizes in sublevel 1 to form 1213715 = A315 —
L31Ui 15 — L3 2Us,15. Once formed, the updated matrix is
factored using a call to GP_UPPER (Line 23), and repeated
for all the columns in the block. The example in Figure 3
repeats this method for sublevel 1 and 2. Thread teams fit
naturally to this type of reduction were threads have to work
on shared portions of data.

Once all sublevels < level are handled, the submatrix on
the diagonal that requires full LU factorization, e.g., Ass in

Algorithm 4 NFACT_LARGEBLK

1: //Note, all function calls are made column-by-column to limit workspace
and enhance reuse of U

2:

3: //Factor all leaf nodes (Domains)

4: for all p threads do

S: Map p — % where ¢ is a leaf node
6 CALL GP_FULL_BLK — Ly;,U;;
7 CALL GP_LOWER_UPDATE — Ly;Vk
8: end for

9: **ALLSYNC**

10: //Factor all parent nodes (Separators)
11: for all level =1 : log2(p) do

12: Map level — j

13: //Factor Domain U's

14: for all p threads do

15: Map p — i where i is a leaf node

16: CALL GP_UPPER — Uj;

17: //Update Parent Separators In Same Column
18: for all sublevel =1 : level — 1 do

19: Map sublevel — 1

20: **PSYNC** .

21: CALL REDUCE_COL — Ay;

22: **PSYNC**

23: CALL GP_UPPER — Uj;

24: end for

25: /[Factor Separator Node

26: **¥PSYNC** .

27: CALL REDUCE_COL — Aj;

28: **PSYNC**

29: CALL GP_FULL_BLK — L;;,Ujj
30: **PSYNC**

31: CALL GP_LOWER_UPDATE — ijVk
32: end for

33: **ALLSYNC**

34: end for

Figure 2(a), can be updated based on the submatrices in that
iteration same loop of level (Line 11). The forming of this
submatrix is similar to that used for sublevels. A PSYNC is
used and the reduction is formed. The difference is that now
a full LU factorization is called on the block using a call to
GP_FULL_BLK (Line 31). Off-diagonal L submatrices may
need to be computed after the factorization, e.g., L7 3 after
L3 3Us3 5 in Figure 2(a). This is the case when level < loga(p).
When multiple L submatrices need to be computed with calls
to GP_LOWER_UPDATE (Line 31), a PSYNC needs to be
called so that multiple threads can compute these submatrices
in parallel.

IV. BASKER IMPLEMENTATION

In this section, we describe how Basker was implemented
and decisions that impact its performance. Particularly, we
focus the implementation of data layout, Kokkos, and barriers.

A. Two-Dimensional Layout

Basker uses a hierarchy of two-dimensional sparse matrix
blocks to store both the original matrix and LU factors.
The 2D structure is composed of multiple compressed sparse
column (CSC) format matrices. Parallelism must be extracted
from between blocks in the BTF structure and within large
blocks in order to achieve speedup on low fill-in matrices.
A one-dimensional sparse block layout would be sufficient in
extracting parallelism between blocks in the BTF structure,

but is not enough within the large blocks. In particular, a
hierarchical structure needs to be exploited to reveal more
parallelism. Additionally, this also breaks the problem into
fine-grain data structures that better fit the structure of mod-
ern many-core processor nodes. Basker implements this by
building this structure during the symbolic factorization after
applying the aforementioned orderings. Since the structure is
built before numeric factorization, the algorithm determines a
static assignment of threads to sparse submatrices.

B. Kokkos

Basker is implemented using Kokkos [7] package in Trili-
nos. Kokkos is a C++11 package that allows coding portable
algorithms on different many-core devices. Using Kokkos,
traditional arrays are replaced with views that both pad data
to better fit cache lines and promote vectorization. Parallel
regions are than executed using a data-parallel method, such as
parallel for. Kokkos allows for teams of threads to be launched
together to work on regions, and members of a team can
synchronize using barriers.

C. Barriers

Light weight synchronizations are needed to allow multiple
threads to work on a single column in Basker . There are
multiple places where these synchronizations need to happen
in Basker , and they are marked in Algorithm 4 either as
ALLSYNC or PSYNC. ALLSYNC indicate that all threads
need to synchronize and PSYNC indicate that only select
threads need to synchronize. However, the number of threads
that need to synchronize depends on location and iteration in
the algorithm. For instance, all threads need to synchronize
moving from factoring leaf nodes and parent nodes, but only
two threads need to synchronize in columns related to first
level separators.

A traditional data-parallel approach launches
parallel_for over a set of threads, and these threads
rejoin the master only after the end of the loop. However,
if synchronization takes place between all threads at every
level, the overhead would be too high. In particular, the total
time spent for synchronization for factorizing matrix G2
Circuit with 8 cores is 11% of total. Thread teams can be
used to synchronize a smaller set of threads that are launched
together, and they are supported by both OpenMP and
Kokkos. If thread teams are used to reduce synchronization
overhead, the total time spent for synchronization for matrix
G2 Circuit with 8 cores is 4.5% of total.

However, neither of these methods are ideal for Basker ,
because which threads that need to synchronize varies even
within a column corresponding to a separator. For example,
thread 0 and 1 need to sync for sublevel 1 and thread O
and 2 need to sync for sublevel 2 in Figure 3. Therefore,
Basker uses a different mechanism to synchronize between
threads. This mechanism is a point-to-point synchronization
that utilizes writing to a volatile where synchronization only
happens between two threads that have a dependency. A
detailed explanation of how point-to-point synchronization

can speedup sparse triangular solve is outlined in work by
Park et al. [16]. Using this method, Basker is able to reduce
synchronization overhead to 2.3% of total for Matrix G2
Circuit, and is able to apply run on higher core counts.

V. EMPIRICAL EVALUATION

We now evaluate Basker against the solver packages of
Pardiso MKL and KLU on a set of spare matrices from circuit
and powergrid simulations. We use the Pardiso package from
MKL 11.2.2 (PMKL), and note that this not an exact copy of
the standalone Pardiso package.

A. Experimental Setup

System Setup. Two systems are used for evaluation. The
first system contains two eight-core Xeon E5-2670 running
at 2.6GHz, and we denote this system as SandyBridge. The
two processors are interconnected using Intel’s QuickPath
Interconnect (QPI), and share 24GB of DRAM. The second
system is a Intel Xeon Phi ran in native mode with 61 cores
running at 1.238GHz and 16GB of memory. All codes are
compiled using Intel 15.2 with -03 optimization.

Test Suite. Basker is evaluated over a test suite of circuit and
powergrid matrices taken from Xyce [] and the University of
Florida Sparse Matrix Collection [17]. These matrices vary in
size, sparsity pattern, and number of BTF blocks. Additionally,
these matrices vary in fill-in density, i.e., |L‘ZU‘ where |A| is
the number of nonzeros in A. In Davis and Natarajan [5],
coefficient matrices coming from circuit simulation generally
have lower fill-in density than those coming from two an
three dimensional problems, i.e., |L‘Z‘U| < 4.0. Matrices with
lower fill-in tend to perform better using a Gilbert-Peierls
algorithm than a supernodal approach. For fairness, we include
seven matrices with fill-in density larger than 4.0. Table I V-A
provides a list of all matrices sorted by increasing fill-in
density measured using KLU. The dimension of A is denote
as n, the percent of matrix composed of small independent
diagonal submatrices, i.e., SMALLBLK, is denoted by BTF%,
and the total number of diagonal submatrices that exist in
BTF form is denoted by BTF blocks. Matrices internal to
Sandia/Xyce are marked with ”*” and those from powergrids
marked with ”+”. A double line divides matrices with fill-in
density higher than 4.0. Additionally, the number of nonzeros
in L + U is included for KLU, PMKL, and Basker . The
nonzeros reported for PMKL and Basker from using 8 cores on
SandyBridge, and we note that this number varies for Basker
depending on number of cores. We bold the entry for nonzero
in L+U that is the smallest between PMKL and Basker .

B. Fill-In

We first consider the memory needed by Basker and PMKL.
Though the number of processing threads are increasing on
many-core systems, the size of memory unfortunately is not in-
creasing at the same rate. Therefore, memory is very important
on a shared-memory node. Here, we regard memory in terms
of nonzero entries in the factored matrix. Table V-A provides
the nonzero for the factored matrix for both Basker and

TABLE I
MATRIX TEST SUITE. n REPRESENTS DIMENSION OF MATRIX, |.| IS THE
NUMBER OF NONZEROS IN THE MATRIX. THE NUMBER OF NONZEROS IN
THE FACTORIZATION OF A MATRIX IS BOLDED IF MINIMUM BETWEEN
BASKER AND PMKL. * INDICATES SANDIA/XYCE MATRICES, +
INDICATES POWERGRIDS.

KLU |Pardiso|Basker | BTF| BTF | KLU
Matix | n | [A] ||L+U]| |L+U] ||L+U]| % |blocks | AT
RS_b39c30+ | 6.0E4 | 1.1E6 | 6.9E5 | 6.3E6 | 6.9ES | 100 | 3E3 0.6
RS_b678c2+|3.6E4 | 8.8E6 | 5.8E6 | 5.9E7 | 5.8E6 | 100 | 271 0.7
Power0*+ |9.8E4|4.8E5| 6.4E5 | 9.1E5 | 6.4E5 | 100 | 7.7E3 | 1.3
CircuitS5M | 5.6E6|6.0E7| 6.8E7 | 3.1E8 | 74E7 | 0 1 1.3
memplus | 1.2E4|9.9E4| 1.4E5 | 1.3E5 | 1.4E5 | 0.1 23 14
rajat21 4.1E5|1.9E6| 2.8E6 | 49E6 | 2.8E6 | 2 |S59E3| 1.5
trans5 1.2E5|7.5E5| 1.2E6 | 1.3E6 | 1.2E6 | O 1 1.6
circuit_ 4 |8.0E4|3.1E5| 5.0E5 | 5.8E5 | 5.1E5 |34.8 | 2.8E4| 1.6
XyceO* | 6.8ES|3.9E6| 4.7E6 | 3.8E7 | 4.8E6 | 85 |5.8E5| 1.8
Xyced* | 6.2E6|7.3E7| 4.5E7 | 5.0E7 | 45E7 | 12 |75E5| 2.0
Xycel* |4.3E5|2.4E6| 5.1E6 | 5.6E6 | 5.1E6 | 21 |99E4 | 24
asic_680ks |6.8ES|1.7E6| 4.5E6 | 2.9E7 | 4.5E6 | 86 | 5.8E5| 2.6
beircuit | 6.9E4|3.8E5| 1.1E6 | 1.1E6 | 1.1E6 | O 1 2.8
scircuit 1.7E5|9.6E5 | 2.7E6 | 2.7E6 | 2.7E6 | 0.3 | 48 2.8
hvde2+ 1.9E5|1.3E6| 3.8E6 | 3.0E6 | 3.8E6 | 100 | 67 2.8
Freescalel |3.4E6|1.7E7| 7.1E7 | 5.6E7 | 6.8E7 | 0 1 4.1
hcircuit 1.1E5|5.1E5| 7.3E5 | 6.7E5 | 7.1E5 | 13 | 1.4E3| 6.9
Xyce3* 1.9E6|9.5E6| 7.6E7 | 43E7 | 7.7E7 | 20 |4.0E5| 9.2
memchip |2.7E6|1.3E7| 1.3E8 | 6.5E7 | 94E7 | 0 1 9.9
G2_Circuit |1.5E5|7.3E5| 2.0E7 | 1.3E7 | 2.0E7 | 0 1 27.7
twotone 1.2E5|1.2E6| 4.8E7 | 2.7E7 | 47E7 | 0O 5 39.9
onetonel |3.6E4|3.4ES5| 1.4E7 | 43E6 | 1.2E7 | 1.1 | 203 40.8

MKL. The solver using the fewest nonzeros is bolded. We
observe that for matrices with fill-in density matrices < .4
Basker provides factors that have less nonzero entries. This
reduce can be as high as an order of magnitude for the
matrix RS_b678c2+, and is the result of using a structure that
avoids unnecessary factoring and uses fill reduced ordering
on subblocks. However, PMKL uses slightly less memory on
matrix with fill-in density > .4. than Basker . The additional
memory used by Basker is far less than the additional used
by PMKL on the first group of matrices. One reason for
additional nonzero entries in Basker is the restrictions placed
on constrained AMD in order to allow pivoting within a local
submatrix.

C. Performance

We now examine the speedup of the numeric factorization
phase of Basker and PMK. Only the numeric factorization
phase is consider, since the symbolic factorization of both
Basker and PMKL is limited by finding the ND ordering.
Finding such solvers an ordering in parallel in shared-memory
is an expensive problem that does not scale well. In order
to better compare, we use the relative speedup to KLU, i.e.,
Speedup(matriz, solver,p) = gﬁpﬁ%ﬂiﬁf;ﬁigl) , where

e ¥ er,p)
Time is the time of the numeric factorization phase, matrix
is the input matrix, solver is either Basker or PMKL, and p
is the number of cores.

In Figure 4(a), the speedup of six matrices on SandyBridge
is given. These six matrices where selected due to their fill-in
density, and are ordered from least to greatest fill-in density. In
these graphs, we observe that Basker can achieve up to 11.15x

Solver Basker - PMKL

)
< Power0 rajat21 ‘8 ‘asicﬁGBOks hvdc2 ‘ Freescalel Xyce3 ‘
4 q 4 J 2

g;g- g- i- 754 34 6

26-] b 5.0 1 fe—44

33- 2y 24, 2544, 24 J

o KA . Al ta—a— T 425 faa—u, | 2

@ 0~ O 1 0 0 I T I '
(% 24 8 16 1224 8 16 1224 8 16 24 8 16 1224 8 16 1224 8 16

SandyBridge Cores

(a) SandyBridge speedup comparison of Basker and PMKL relative to
KLU.

3 ‘ Power0 ‘ rajat21 ‘ asic_680ks hvde2 ‘ Freescalel‘ Xyce3 ‘
Y- 47 754 2154 A 60+ A
¢ 3 - 759 /4 i |
6- 5.0 i 10 404
= 2 | 5.0 4 2
3344 it 125 254 5+ 7
j=§
»n MmM816 32 M8 16 32 ™8 16 32 m8 16 32 m8 16 32 m8 16 32
Phi Cores

(b) Phi speedup comparison of Basker and PMKL relative to KLU.
Fig. 4. Speedup of Basker and PMKL relative to KLU. The

speedup and outperform PMKL in all but one case, i.e., Xyce3
with a high fill-density of 9.2. Moreover, we observe that
PMKL has a value less than 1 in serial for four problem
demonstrating the inefficiency of a supernodal algorithm to a
Gilbert-Peierls algorithm for matrices with low fill-in density.
By adding more cores, PMKL is not able to recover from this
inefficiency and reach a max speedup of 2.34x on the first
four problems. The poor performance of PMKL is due to a
semi-dense columns that that Basker is able to avoid factoring.
However, PMKL does factor Xyce3 faster with its high fill-
in density, but Basker is still able to have a similar speedup
curve.

The relative speedup of the same six matrices on the Intel
Xeon Phi are given in Figure 4(b). Here, Basker is able to
out perform PMKL on four out of the six matrix. Basker now
achieves a 10.76x max speedup on these six matrices and
PMKL achieves 63 x. We first observe that any overhead from
using a Gilbert-Peierls algorithm algorithm on a matrix with
high fill-in density is magnified by the Intel Phi. This magnifi-
cation is exposed and seen in both Freescalel and Xyce3. One
possible reason for this is that the submatrices in the lowest
level of the hierarchical structure are too large to fit into a
cores’s personal L2 cache, i.e., 512K B. Basker currently only
has an option to make the submatrices as large as possible
to allow for more pivoting. However, Basker still achieves
speedups higher than PMKL on the four matrices with low
fill-in density.

Now we compare the performance on the whole test
suite. On SandyBridge, the geometric mean of speedup with
Basker is 5.91x and with PMKL is 1.5x using 16 cores. On
16 cores, Basker is faster than PMKL on 17 matrices, and all
the ones PMKL is faster have a high fill-in density. On Phi, the
geometric mean speedup with Basker is 7.4x and with PMKL
is 5.78x using 32 cores. On 32 cores, Basker is faster than
MKL on 16 matrices. This include the same matrices as on
the Sandybridge plus now Freescalel. The reason for such a
high speedup for PMKL on Phi is again its higher performance
on high fill-in density matrices. PMKL range of speedups on

low density matrices is only slightly better, i.e., a maximum
increase of 3.12x for on particular matrix (hvdc2).

Now, we consider a performance profile to gain an under-
standing of the performance over the test suite. The perfor-
mance profile measures the relative time of a solver on a given
matrix to the best solver. After, these values are plotted for
all matrices in a graph with an x-axis of time relative to best
time and a y-axis of fraction of matrices. The result is a figure
where a point(x,y) is plotted if a solver takes no more than x
times the runtime of of the fastest solver for y problems.

We first provide the performance profile of Basker , PMKL,
KLU in serial on SandyBridge in Figure 5(a). This profile
provides a baseline of how well each method is without
threads. We observe that Basker is better on over 77% of the
problems, while the supernodal method of PMKL is within 5x
of the the best solver, i.e, Basker , for 77%. However, PMKL is
only better than under 34% of the problems. Despite have very
similar algorithms, Basker is able to slightly beat KLU. This
slight difference may be caused by Kokkos memory padding,
and by slightly different AMD calls being used.

The performance profile for SandyBridge with 16 cores is
given in Figure 5(b). KLU is now not include as it is serial.
We first observe that Basker is the best solver for 80% of the
matrices, and PMKL is within 15x slower than Basker on
80% of the matrices. PMKL is only the best solver for under
30% of the matrices, which correspond to matrices with high
fill-in density. This demonstrates that a supernodal method
on SandyBridge does not scale well on low fill-in density
matrices.

On IPhi with 32 cores, the performance profile is slightly
different, and given in Figure 5(c). Basker now is the best
solver for 70% matrices, and PMKL is within 6 x of Basker for
70% of matrices. The point that Basker and PMKL perfor-
mance cross is at about 80%, and these 20% are matrices
with high fill-in. However, PMKL is now able to scale better
on low fill-in density matrices that have very small dense
block. Additionally, Basker now scales less well on high fill-
in density matrices. A reason for not scaling as well is not
having a large shared L3 of the SandyBridge to share data
needed during REDUCE_COL.

D. Comparison on ideal matrices

Next, we analyze how well Basker scales on low fill-in
density matrices, compared to how well the supernodal solver
PMKL scales on 2D and 3D mesh problems. This comparison
allows us to better understand if Basker achieves speedup for
its ideal input similar to PMKL on its ideal input. PMKL has
been fined tuned to be a state-of-the-art supernodal solver, and
to achieve a similar speedups would indicate our solver method
is as well. We use a second test suite of matrices comprised
for PMKL that come from 2D and 3D mesh problems in
Table V-D. These performance of PMKL on these matrices
will be compared to the performance of Basker on the six
matrices of our primary test suite with the lowest fill-in density.

In Figure 6(a), we provide a scatter plot of the speedup
for each solver relative to itself over its ideal six matrices.

>

Fraction of problems
o o o o ©
= &

0213 ~©-Basker

04 - PMKL

. . . . i el CC

1 2 4 6 8 10 12 14
Relative Time on 1 SandyBridge core

(a) Performance Profile on 1 SandyBridge Core. Basker is
the best solver for almost 70% of the matrices and PMKL
is only the best solver for about 30%. Even in serial,
PMKL is at least 4x worse on 20% of the problems.

Y

Fraction of problems
o o © o ©
= &

01l & —&-Basker
4~ PMKL

1 2 4 6 8 10 12 14
Relative Time on 32 SandyBridge cores

(b) Performance Profile on 16 SandyBridge Cores.
Basker is the best solver for than almost 80% of the
matrices, while PMKL is the best solver for only slightly
more than 20%. Addtionall, PMKL is at least 8 X worse
on 50% of the matrices.

01+ —©-Basker
R . . . [Pk

1 2 4 8 10 12 14

6
Relative Time on 32 Phi cores

(c) Performance Profile on 32 Phi Cores. Basker is the
best solver for over 70% of the matrices, while PMKL is
the best solver slightly under 40% of the matrices.

Fig. 5. Performance Profiles of Basker and PMKL on Intel SandyBridge and
Phi. The x-axis represents the relatve time compared to the best solver for
a given matrix. The y-axis represents the percent of problems. A pont (X,y)
represents that the fraction y of the test problem you are within xx of the
best solver.

Additionally, an linear trend line is plotted through each set
of solver speedups. We observe that Basker achieve a similar
speedup trend as PMKL on SandyBridge. This demonstrates
that on systems with a large cache hierarchy Basker is able
to achieve so called state-of-the-art performance on low fill-in
density matrices. In Figure 6(b), a similar plot is given for
our Intel Phi system. This time Basker has a slightly lower
trend line starting at 16 cores. This difference demonstrate that
Basker does not scale as well as it does on the SandyBridge
system. We suspect several reasons for this difference and we
discussion future plans for improvement in Section VI.

TABLE II
2/3D MESH PROBLEMS TO TEST BEST PERFORMANCE OF MKL TO
COMPARE AGAINST BEST PERFORMANCE OF Basker .

Matrix n [A] [IL+U] Description

pwtk 2.2E5[1.2E7| 9.7E7 | Wind tunnel stiffness matrix
ecology 1.0E6 | 5.0E6 | 7.1E7 |5 pt stencil model movement
apache2 7.2E5 |4.8E6 | 2.8E8 finite difference 3D
bmwcral 1.5E5|1.1E7 | 1.4E8 stiffness matrix

parabolic_fem | 5.3E5 | 3.7E6 | 5.2E7 Parabolic finite element

helm2d03 |3.9E5|2.7E6 | 3.7E7 Helmholtz on square

© PMKL M Basker ——Linear (PMKL) ==Linear (Basker) 4 PMKL M Basker ——Linear (PMKL) =—Linear (Basker)

9

i

.
E
]
»
L
u

Speedup
crmuwE e e
IS

2 4 6 8 10 12 14 16 2 6
Number of SandyBridge cores

10 14 18 22 26 30
Number of Phi Cores

(a) SandyBridge, Basker and (b) Phi, Basker and PMKL
PMKL speedups on ideal inputs. speedup on ideal inputs. Basker
Basker is able to achieve a has a similar plot up to 16 cores
similar speedup curve as PMKL as PMKL. Fine-grain access
on 2/3D mesh problems. cause imblance at 32 cores.

Fig. 6. Basker and PMKL with on 6 ideal input matrices. In order to
understand the performance of Basker , and if solver for low fill-in density
matrices could ever achieve the performance of a supernodal solver on 2/3D
mesh problems using multithreaded BLAS.

E. Xyce

Next, we consider the use of Basker on a sequence of
matrices generated during the transient analysis of a circuit.
Xyce is a transistor-level simulator that performs a SPICE-
style simulation of circuits, where devices and their intercon-
nectivity are transformed via modified nodal analysis (MNA)
into a set of nonlinear differential algebraic equations (DAEs).
During transient analysis, these nonlinear DAEs are solved
implicitly through numerical integration methods. Any numer-
ical integration method requires the solution to a sequence of
nonlinear equations, which in-turn generates a sequence of
linear systems. A transient analysis can generate millions of
coefficient matrices with the same structure and significantly
different values. Each factorization may require a different
permuation due to pivoting for this reason. For very large
circuits, this results in the numeric factorization being the
limiting factor of the simulations overall time and scalability.
Furthermore, a solver package must reuse the symbolic factor-
ization for all matrices in the sequence as repeating symbolic
factorization would dramatically affect performance.

For this experiment, we chose a sequence from the circuit
that generated Xycel. This circuit is of particular interest
because it has been used in prior studies [18] to illustrate the
ineffectiveness of preconditioned iterative methods and direct
solvers other than KLU. In practice, KLU is the direct solver
that has been used to perform the transient simulation of this
circuit, as it was the fastest direct solver that would enable the
simulation to complete. Attempts to use the PMKL solver had
either been met with solver failure or simulation failure until
recently. Therefore, we wish to see how well Basker performs

on a sequence of these matrices (1000 matrices) which repre-
sent 10% of the desired transient length.

Over the sequence of 1000 matrices, Basker took 175.21
seconds, KLU took 914.77 seconds, and PMKL took
951.34 seconds. This is a speedup of 5.43x when us-
ing Basker instead of PMKL and 5.22x when using
Basker instead of KLU. The scalable simulation of this circuit
was previously limited by the serial bottleneck produced by
using KLU as the direct solver, which is justified due to its
performance compared to PMKL. Basker provides significant
speedup compared to either KLU or PMKL, and will finally
provide a scalable direct solver to Xyce for performing the
transient analysis of this circuit.

VI. FUTURE WORK

First, we wish to allow for additional levels of hierarchical
parallelism. This can be done by first introducing supernodes
as a level of hierarchy within sparse blocks with high fill-in
density. For example, the matrix memchip has a number of
blocks with both high and low fill-in density. It would be easy
to think of supernodes within the high fill-in density blocks
as one more level of parallelism that could be exploited.

Second, we want to improve scalability across platforms.
Therefore, we want our package to scale well on a number
of platforms, such as future Intel Phi and IBM Power series.
This requires several changes. The first is to modify the
data structure in the lowest level of the hierarchy structure
to explicitly fit the cache structure. The second change will
be adopting an asynchronous tasking system. Asynchronous
tasking would allow jobs to be launched and synchronize upon
return, and would allow for possible out-of-order jobs when
their exist imbalance.

VII. CONCLUSIONS

We introduced a new multithreaded sparse LU factorization,
Basker , that uses hierarchical parallelism and data layouts.
Basker provides a valuable alternative to traditional solver that
use one-dimensional layout with BLAS. In particular, this is
valuable to coefficient matrices with hierarchies of structure
that can be exploited. Within this structure, we provide the first
parallel implementation of Gilbert-Peierls algorithm to allow
multiple threads to work on a single column. Performance
results show that Basker is able to scale well for matrices with
low fill-in density resulting in a speedup of 5.91x (geometric
mean) over the test suite on 16 SandyBridge cores and 7.5 over
the test suit on 32 Intel Phi cores relative to KLU. Particularly,
Basker can have speedups on these matrices similar to a
supernodal solver on 2D and 3D problems, while reducing
the time spent solving a sequence of circuit problems from
Xyce by 5.43x for 16 SandyBridge cores. Basker shows that
in order to speedup sparse factorization on many-core node,
solvers must leverage all available parallelism and may do so
by using a hierarchy structure.

ACKNOWLEDGMENT

We would like to thank Erik Boman, Andrew Bradley, and Kyungjoo

Kim for algorithm insight and being a sounding board. Also, like to H.C.

Edwards, Christian Trott, and Simmon Hammond for help with Kokkos on

manycore systems. Sandia is a multiprogram laboratory operated by Sandia

Corporation, a Lockheed Martin Company, for the U.S. Department of Energy
under contract DE-AC04-94-AL85000.

[1]

[2]

[3]
[4]

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

REFERENCES

J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H.
Liu, “A supernodal approach to sparse partial pivoting,” SIAM J. Matrix
Anal. Appl., vol. 20, no. 3, pp. 720-755, May 1999.

P. R. Amestoy, 1. S. Duff, J.-Y. LExcellent, and J. Koster, “Mumps:
a general purpose distributed memory sparse solver,” in Applied Par-
allel Computing. New Paradigms for HPC in Industry and Academia.
Springer, 2001, pp. 121-130.

L. W. Nagel, “Spice 2, a computer program to simulate semiconductor
circuits,” Tech. Rep. Memorandum ERL-M250, 1975.

0. Schenk, K. Girtner, W. Fichtner, and A. Stricker, “Pardiso: A high-
performance serial and parallel sparse linear solver in semiconductor
device simulation,” Future Gener. Comput. Syst., vol. 18, no. 1, pp. 69—
78, Sep. 2001.

T. A. Davis and E. Palamadai Natarajan, “Algorithm 907: Klu, a direct
sparse solver for circuit simulation problems,” ACM Trans. Math. Softw.,
vol. 37, no. 3, pp. 36:1-36:17, Sep. 2010.

A. George, “Nested dissection of a regular finite element mesh,” SIAM
J. Numerical Analysis, vol. 10, no. 2, pp. 24-45, April 1973.

H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling
manycore performance portability through polymorphic memory access
patterns,” Journal of Parallel and Distributed Computing, vol. 74, no. 12,
pp. 3202 — 3216, 2014, domain-Specific Languages and High-Level
Frameworks for High-Performance Computing.

P. R. Amestoy, T. A. Davis, and I. S. Duff, “An approximate minimum
degree ordering algorithm,” SIAM J. Matrix Anal. Appl., vol. 17, no. 4,
pp. 886905, Oct. 1996.

H. M. Markowitz, “The elimination form of the inverse and its appli-
cation to linear programming,” Management Science, vol. 3, no. 3, pp.
pp. 255-269, 1957.

A. Pothen and C.-J. Fan, “Computing the block triangular form of a
sparse matrix,” ACM Trans. Math. Softw., vol. 16, no. 4, pp. 303-324,
Dec. 1990.

X. S. Li and J. W. Demmel, “Superlu dist: A scalable distributed-
memory sparse direct solver for unsymmetric linear systems,” ACM
Trans. Math. Softw., vol. 29, no. 2, pp. 110-140, Jun. 2003.

I. S. Duff and J. Koster, “On algorithms for permuting large entries to
the diagonal of a sparse matrix,” SIAM J. Matrix Anal. Appl., vol. 22,
no. 4, pp. 973-996, Jul. 2000.

J. W. Demmel, J. R. Gilbert, and X. S. Li, “An asynchronous parallel
supernodal algorithm for sparse gaussian elimination,” SIAM J. Matrix
Anal. Appl., vol. 20, no. 4, pp. 915-952, Jul. 1999.

S. Rajamanickam, E. Boman, and M. Heroux, “Shylu: A hybrid-hybrid
solver for multicore platforms,” in Parallel Distributed Processing
Symposium (IPDPS), 2012 IEEE 26th International, 2012, pp. 631-643.
T. A. Davis, Direct Methods for Sparse Linear Systems (Fundamentals
of Algorithms 2). Philadelphia, PA, USA: Society for Industrial and
Applied Mathematics, 2006.

J. Park, M. Smelyanskiy, N. Sundaram, and P. Dubey, “Sparsifying
synchronization for high-performance shared-memory sparse triangular
solver,” in Proceedings of the 29th International Conference on Su-
percomputing - Volume 8488, ser. ISC 2014. New York, NY, USA:
Springer-Verlag New York, Inc., 2014, pp. 124-140.

T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection.” [Online]. Available: http://www.cise.ufl.edu/research/sparse/
matrices

H. K. Thornquist, E. R. Keiter, R. J. Hoekstra, D. M. Day, and E. G.
Boman, “A parallel preconditioning strategy for efficient transistor-level
circuit simulation,” in ICCAD ’09: Proceedings of the 2009 International
Conference on Computer-Aided Design. New York, NY, USA: ACM,
2009, pp. 410-417.

