
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

SoC4HPC	
 –	
 An	
 On-­‐Ramp	
 for	
 Applica6ons	
 at	
 Exascale?	

S.D.	
 Hammond	

sdhammo@sandia.gov	

	

Scalable	
 Computer	
 Architectures	

Center	
 for	
 Compu6ng	
 Research	

Sandia	
 Na6onal	
 Laboratories,	
 NM,	
 USA	

SAND2015-9079C

Mini-­‐Overview	
 of	
 Sandia	

§  Na6onal	
 Laboratory	
 with	
 sites	
 in	
 across	
 the	

country	
 (DOE,	
 DoD,	
 Industry	
 etc)	

§  Part	
 of	
 the	
 NNSA	
 Trilab	
 complex	
 associated	

with	
 ensuring	
 safety	
 of	
 the	
 na6ons	
 nuclear	

arsenal	
 (Sandia	
 focused	
 on	
 engineering)	

§  We	
 do	
 much	
 more	

§  Leadership	
 in	
 wide	
 range	
 of	
 engineering	

§  Supports	
 complex	
 data	
 analy6cs	
 research	

§  Renewable	
 energy	

§  Partnerships	
 with	
 industry	

§  Systems	
 for	
 space/satellites/hos6les	

§  Strong	
 mathema6cs	
 research	

§  Quantum	
 compu6ng	
 and	
 novel	
 devices	

§  All	
 supported	
 by	
 broad	
 HPC	
 requirements	

What	
 is	
 the	
 Scale	
 of	
 Our	
 Applica6ons?	

~11.6M Application Lines of Code
(Several Applications, Much Shared)

>50 Third Party Libraries

~4.2M Lines of Code
(Very Large Proportion Shared)

This	
 is	
 just	
 a	
 small	
 part	
 of	
 our	
 applica6on	
 porUolio	
 hVps://github.com/trilinos/trilinos	

This is lines of code, does not include comments, white space, documentation etc, no meshing, viz, analysis etc

Typical	
 Single	
 Physics	
 Research	
 Codes	

~65K Application Lines of Code
>5 Third Party Libraries

~4.2M Lines of Code
(Very Large Proportion Shared)

hVps://github.com/spdomin/Nalu	
 hVps://github.com/trilinos/trilinos	

Challenges	

§  The	
 size	
 and	
 complexity	
 of	
 these	
 codes	
 is	
 a	
 significant	

challenge	
 (mul?ple	
 millions	
 of	
 SLOC)	

§  Complexity	
 is	
 very	
 high,	
 wriVen	
 by	
 world	
 class	
 specialists	
 in	
 their	
 field	

§  Some	
 of	
 algorithms	
 and	
 techniques	
 are	
 not	
 well	
 documented	
 in	

literature	

§  Some	
 of	
 the	
 code	
 is	
 old,	
 well	
 trusted	

§  Analysts	
 demand	
 high	
 reproducibility	

§  Varied	
 problem	
 scales	
 and	
 processor	
 cores	

§  Depends	
 on	
 use	
 cases	

§  Creates	
 pressure	
 to	
 op6mize	
 for	
 weak	
 and	
 strong	
 scaling	

§  Challenging	
 to	
 move	
 the	
 code	
 base	
 to	
 new	
 architectures	

quickly,	
 easily	
 and	
 accurately	

§  Need	
 to	
 do	
 so	
 in	
 order	
 to	
 cope	
 with	
 demands	
 from	
 users	

“Wow,	
 Aren’t	
 you	
 Guys	
 Screwed?”	

§  Personal	
 opinion	
 –	
 no,	
 in	
 fact,	
 we’re	
 making	

huge	
 progress	
 but	
 this	
 is	
 hard	

§  Internal	
 adop?on	
 of	
 the	
 Kokkos	
 Programming	

Model	
 giving	
 us	
 ability:	

§  Abstract	
 parallel	
 execu6on	
 dispatch	

§  Abstract	
 data	
 access	
 paVerns	
 and	
 alloca6ons	

§  Retarget	
 code	
 for	
 execu6on	
 at	
 compile	
 6me	

(including	
 mul6ple	
 backends	
 in	
 a	
 single	

applica6on)	

§  Proven	
 record	
 of	
 delivering	
 prototypes	
 across	

mul?-­‐core,	
 many-­‐core	
 and	
 GPU	
 devices	

§  POWER8,	
 Xeon	
 Phi	
 (KNC	
 and	
 KNL),	
 Xeon,	
 NVIDIA	

and	
 recent	
 prototypes	
 on	
 AMD	

https://github.com/kokkos/kokkos, Work with H.C. Edwards and C.R. Trott

“So	
 Why	
 SoC”?	

§  Code	
 abstrac?on	
 opens	
 up	
 even	
 more	
 opportuni?es	

§  Much	
 of	
 our	
 mathema6cs	
 kernels	
 are	
 abstracted	
 (at	
 some	
 level)	

§  Par6cular	
 complex	
 solvers	
 which	
 are	
 key	
 to	
 our	
 applica6on	
 scaling	
 and	

performance	

§  Lots	
 of	
 data	
 structures	
 (meshes)	
 are	
 abstracted	
 at	
 some	
 level	

§  Means	
 we	
 can	
 look	
 for	
 opportuni?es	
 to	
 accelerate	
 our	
 most	

important	
 kernels	
 with:	

§  BeVer	
 hardware?	

§  More	
 specific	
 fixed-­‐func6on	
 accelerators	
 (e.g.	
 SoC?)	

§  BeVer	
 soeware/run6me	
 support	

§  Huge	
 poten?al	
 for	
 impact	
 in	
 performance	
 &	
 energy	

efficiency	
 	

What	
 Do	
 We	
 Need?	

§  Abstrac?ons	
 s?ll	
 need	
 exposure	
 to	
 hardware	
 at	
 the	
 lowest	

level	
 and	
 are	
 incredibly	
 hard	
 to	
 get	
 right	

§  Can	
 we	
 u6lize	
 some	
 of	
 our	
 exis6ng	
 interfaces?	

§  System	
 soeware/run6mes	
 have	
 a	
 huge	
 role	
 to	
 play	
 here	

§  Compilers	
 can	
 transform	
 the	
 code	
 for	
 SoC?	

§  Mapping	
 to	
 libraries?	

§  Want	
 to	
 explore	
 keeping	
 changes	
 to	
 applica?ons	
 to	
 a	

minimum	

§  Requires	
 us	
 to	
 make	
 decisions	
 about	
 what	
 can	
 accelerate	
 our	

applica6on	
 por+olio	
 the	
 best	
 (Sandia	
 will	
 oeen	
 answer	
 itera6ve	

solvers	
 but	
 there	
 is	
 a	
 more	
 spectrum	
 here)	

§  Look	
 for	
 commonali6es	
 across	
 our	
 workflow	
 (at	
 SNL	
 and	
 other	
 labs)	

§  Leads	
 to	
 mathema6cs	
 primi6ves?	

GETTING	
 STARTED	
 WITH	
 SOC	
 IN	
 HPC	

Fixed	
 func6on	
 accelera6on	
 for	
 basic	
 primi6ves	

Mo6va6ng	
 Context	

§  Mo?va?ng	
 Use	
 Case:	
 MiniFE	
 CG	
 Solve	

	

§  Simplis6c	
 but	
 represents	
 kernels	
 which	
 are	
 important	
 to	
 ASC	

applica6on	
 porUolio	
 at	
 Sandia	

§  Dominated	
 (in	
 ?me)	
 by	
 Sparse	
 Matrix-­‐Vector	
 Products	

§  Heavily	
 memory	
 bound,	
 saturate	
 memory	
 sub-­‐system	
 quickly	

§  Insufficient	
 balance	
 in	
 processor	
 to	
 meet	
 all	
 the	
 demands	
 of	

the	
 cores	

§  Dual-­‐socket	
 Ivy	
 Bridge	
 XC30,	
 2.4GHz,	
 12-­‐cores/socket	

§  Op6mized	
 libraries,	
 Intel	
 15.2.164	
 compiler,	
 AVX-­‐enabled	

MiniFE	
 Simple	
 CG	
 Solve	

§  Simple	
 Finite	
 Element	
 Mesh	

§  Basic	
 solve,	
 simple	
 kernels,	
 op6mized	
 for	
 OpenMP	
 and	
 AVX	

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4 5 6 7 8 9 10 11 12

En
er

gy
 C

on
su

m
ed

 (J
)

Energy Consumed
Joules

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12

So
lv

e
Ti

m
e

(S
ec

s)

CG Solve Time
Solve Time

Cores

Work with S. Hammond, S. Olivier, T.J. Mannos and J. Lewy (Sandia)

Looking	
 Deeper…	

§  Approximately	
 10%	
 -­‐	
 12%	
 increase	
 in	
 energy	
 consump6on	

§  No	
 significant	
 change	
 in	
 run6me	

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11 12

En
er

gy
 C

on
su

m
ed

 (J
)

Energy Consumed
Joules

0
2
4
6
8

10
12
14
16
18
20

1 2 3 4 5 6 7 8 9 10 11 12

So
lv

e
Ti

m
e

(S
ec

s)

CG Solve Time
Solve Time

Cores

Work with S. Hammond, S. Olivier, T.J. Mannos and J. Lewy (Sandia)

Thoughts	
 on	
 MiniFE	
 Example	

§  Small,	
 very	
 simple	
 example	
 –	
 this	
 is	
 just	
 part	
 of	
 an	
 applica?on	

§  When	
 combined	
 into	
 larger	
 codes	
 we	
 see	
 many	
 different	
 behaviors	

§  Input	
 and	
 problem	
 dependent	

§  Given	
 the	
 importance	
 of	
 some	
 kernels	
 can	
 we	
 make	

accelerated	
 func6ons	
 a	
 part	
 of	
 our	
 design?	

§  Showed	
 small	
 gain	
 in	
 energy	
 efficiency	

§  Performance	
 wins	
 are	
 less	
 clear	
 in	
 this	
 example	
 which	
 is	
 heavily	

memory	
 bandwidth	
 bound	

§  …	
 but	
 we	
 are	
 busy	
 thinking	
 about	
 this	
 problem	

Can	
 We	
 Have	
 Impact?	

§  The	
 SpMV	
 kernels	
 in	
 MiniFE	
 are	
 the	
 workhouse	
 of	
 some	
 of	

Sandia’s	
 workflow	
 (but	
 an	
 important	
 class	
 of	
 problem)	

§  Between	
 40	
 to	
 95%	
 of	
 applica6on	
 6me	
 spent	
 on	
 these	
 kernels	

in	
 real	
 problems	

§  Scale	
 with	
 memory	
 bandwidth	
 not	
 computa6onal	

performance	

§  So	
 have	
 seen	
 very	
 poor	
 op6miza6on	
 over	
 the	
 past	
 decade	

§  Seeing	
 similar	
 uses	
 in	
 analy6cs	
 and	
 commercial	
 environments	

DISCUSSION	
 AND	
 THOUGHTS	

Summary	

§  HPC	
 applica?ons	
 are	
 large	
 and	
 complex,	
 even	
 simple	
 ones	

are	
 hard	
 to	
 rewrite,	
 there	
 are	
 many	
 in	
 the	
 community	
 that	

we	
 depend	
 on	

§  This	
 is	
 going	
 to	
 cost	
 serious	
 dollars	
 and	
 6me	
 if	
 we	
 really	
 make	

developers	
 rewrite	
 their	
 code	
 (ASC	
 could	
 be	
 O($M)	
 –	
 O($Bn))	

§  Valida6on	
 and	
 verifica6on	
 costs	
 for	
 climate,	
 weapons	
 etc	
 are	
 huge	

(and	
 in	
 some	
 ways	
 may	
 totally	
 dominate	
 our	
 real	
 cost)	

§  Need	
 to	
 consider	
 total	
 workflow	
 and	
 not	
 just	
 the	
 “sexy”	
 scien6fic	

simula6on	

§  At	
 some	
 level	
 there	
 really	
 are	
 common	
 kernels	
 and	
 pa[erns	

§  Think	
 of	
 Phil	
 Colella’s	
 Applica6on	
 Dwarves	
 (s6ll	
 drives	
 how	
 I	
 think	

about	
 our	
 community)	

§  Doesn’t	
 cover	
 100%	
 of	
 codes	
 but	
 we	
 will	
 never	
 remove	
 the	
 need	
 for	

general	
 purpose	
 processor	
 cores	

On	
 SoC..	

§  SoC	
 is	
 an	
 opportunity	
 to	
 rethink	
 our	
 plans	
 for	
 Exascale	

§  Think	
 smaller	
 general	
 purpose,	
 silicon	
 devoted	
 to	
 the	
 things	
 we	

actually	
 run	

§  Non-­‐trivial	
 and	
 pushes	
 complexity	
 to	
 the	
 run6mes,	
 libraries	
 and	

compilers	

§  But	
 this	
 is	
 an	
 area	
 where	
 these	
 communi6es	
 tend	
 to	
 work	
 best	

§  In	
 my	
 opinion	
 we	
 need	
 to	
 focus	
 on	
 areas	
 where	
 data	

movement	
 limits	
 performance	

§  Move	
 computa6on	
 to	
 the	
 data	
 (fixed	
 func6ons?)	

§  More	
 efficient	
 mechanisms	
 to	
 handle	
 data	
 movement	
 (gather/scaVer)	

§  Parallelism	
 enablement	
 which	
 the	
 wider	
 community	
 may	
 not	
 need	

(par6cularly	
 complex	
 atomic	
 opera6ons	
 in	
 memory)	

Resources	

§  Many	
 resources	
 we	
 use	
 day-­‐to-­‐day	
 are	
 online	
 or	
 significant	

parts	
 are	
 online:	

§  hVps://github.com/spdomin/Nalu	
 (Single	
 Physics	
 App)	

§  hVps://github.com/trilinos/trilinos	
 (Solvers)	

§  hVps://github.com/kokkos/kokkos	
 (C++	
 Programming	
 Model)	

§  hVps://github.com/sstsimulator	
 (HW	
 Simula6on	
 Infrastructure)	

§  hVp://www.cs.sandia.gov/qthreads/	
 (Lightweight	
 On-­‐node	
 Tasking)	

§  	
 hVp://www.cs.sandia.gov/Portals	
 (NIC	
 Accelera6on)	

§  hVp://www.mantevo.org	
 (Mini-­‐Apps)	

§  Con6nue	
 to	
 look	
 for	
 great	
 summer	
 students,	
 interns,	
 post-­‐
docs	
 and	
 staff	
 ..	
 come	
 be	
 part	
 of	
 our	
 team!	

