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Reactive Multilayers
Al + Pt > AIPt (intermetallic phase) + 100 kJ-mol--atm

« Exothermic heat generation upon ignition. Al/Pt multilayer
TEM Cross-section

» Self-propagating reaction.

 DC Magnetron sputtered layers
e 10 - 15 A thickness variation
e 1to1Al/Ptratio

* Adiabatic reaction temperature = 2798 °C
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Melting not required for ignition




Ignition and
Reaction Propagation

lenition by capacitive discharge

~ 600 microseconds after ignition




Laser Ignition
T Joining
Laser irradiation leads to more control over energy

delivered to foil. @

Laser irradiation allows for remote ignition.

Study effects of rate of heat input on ignition. C ——7 " Reactive Foil
- =

Vary pulse length from femtosecond to millisecond
to study effects of heating rate on ignition.
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Bilayer Dependence

* Propagation speed increases with decreasing bilayer
thickness.

* Shorter diffusion distances lead to shorter reaction times.

* Pre-mixing affects propagation speed of thinnest bilayers.
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Determining Laser N
.y e Laser energy is increased
Ignition Threshold until foil ignites.

Foil not on substrate * Non-irradiated region of
sample is used for each test.
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Heat FIOW and Change interaction volume
Interaction Volume Laser Spot Size

Q;,= Laser Power 100 um 314 pm
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Intensity Threshold

Intensity (W/cm?) calculated using energy density and pulse length.

Fluence
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t = 2.88 ms Foil Ignites

Imaging Ignition

High-speed imaging of Al/Pt foil from the Al side
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Incident Pulse Length

Laser-Foil Interaction Time

tIgnition t=0

* Effective pulse length calculated by observing when ignition begins. I
* Effective pulse length is usually shorter than incident pulse length. ‘I_
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* Shorter pulses require energy to be delivered at a higher rate (power). _
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Self-Propagating Reaction
after Ignition

10 ms Incident Pulse

164 nm Bilayer
894 W/cm? 4 ps/frame lgnition ~ 3.500 ms after laser turn on




Solid-State Reaction vs.
Self-Propagating Reaction

* Dark center suggests ignition begins as a slow, non-propagating reaction.

* Bright annulus suggests these regions are hotter than surrounding regions.
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Shorter Pulses — Mechanisms Change
150 fs Pulse

* Measured temporal distribution is Gaussian.

Ignition occurs — no annulus observed.

100 us Pulse

Central, irradiated area ignites.

Mechanisms are intensity dependent
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* “Flat-top” spatial distribution.
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Ignition Threshold

*  “Flat-top” beam is used for all pulse lengths — defines the interaction area

* 150 fs: mechanism changes from solid-state ignition to laser-induced melting and ablation.

Shorter Pulses
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Simulation show temperature profiles as function of
time
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Temperature Evolution Caused by

Laser Pulse
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Conclusions

Reactive foils are ignited using single laser pulses.
Laser pulse lengths ranging from femtoseconds to milliseconds can ignite foils.

Laser ignition threshold depends on pulse duration, laser spot size, and foil
bilayer thickness.

Increasing laser spot size and decreasing bilayer thickness increases the volume-
specific interfacial surface area, leading to decreased ignition threshold.

Dependence of threshold on laser pulse duration likely due to competition
between rate of heat input delivered by laser pulse and conductive heat losses.

High-speed photography shows ignition usually occurs during laser irradiation.
Separate reaction zones are present during laser irradiation and ignition.

lgnition mechanism depends on the laser pulse length.
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Laser Irradiation
Al/Pt Irradiated at 80% ignition threshold

100 fs pulse

SEM Cross-section

Reactive Foil

Layer Mixing

SiO, Substrate

Picard, Yoosuf N. Ph.D. thesis University of Michigan, 2006.
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Effective Pulse Length
Depends on Intensity

1 ms Incident Pulse

65 nm Bilayer
% Above Threshold Effective Pulse Length
(ms)
0 0.892
49 0.440
100 0.300




Diffusion Zone Size
Depends on Pulse Length

65 nm Bilayer

Incident Pulse Length Diffusion Zone Diameter (um)
(ms)

0.1, 9 mW 18
0.1, 9 mW 18

1,9 mwW a2
1,45 mW 44
1,55 mW 28
1,55 mW 22
10, 36 mW 73
10, 36 mW 36
10, 36 mW 44

164 nm Bilayer

Incident Pulse Length Diffusion Zone Diameter
(ms) (Lm)
0.1, 12 mW 0
0.1, 12 mW 0
1, 8 mW 18
1, 8 mW 22
10, 52 mW 49
10, 52 mW 52




Sub-threshold Irradiation

95% Ignition Threshold

2.94 ms Incident Pulse
65 nm Bilayer 10 ps/frame




Ignition and Melting

10 ms Incident Pulse
65 nm Bilayer
36 mW

~ 2.60 ms after laser turns on ~ 2.61 ms after laser turns on




Reflectance Measurements

10 ms Incident Pulse

65 nm Bilayer
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