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The Z facility combines the MJ-class Z pulsed-power ()
accelerator with the TW-class Z Beamlet Laser (ZBL)

1-4 kJ Z Beamlet Laser (ZBL)
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Up to 22 MJ stored ol il e Pl T ol i 26 MA in 100 ns
15% coupling to load G W 10 to 50 MGauss drive fields

1-3 MJ delivered to load FuEEElii 1-100 Mbar drive pressures




“Magnetic direct drive” is based on the idea that we can T
efficiently use large currents to create high pressures
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PN 'i'--= F—“L“g : Il Z today couples ~0.5 MJ
| e out of 20 MJ stored to
MagLIF target (0.1 MJ in

DD fuel).

2 2
60 } ﬁ P B _ 195(M MBar
67 TW S R
40 | - A
drive
20 | 20TW 1 current
I
O 1 1

100 MBar at 26 MA and 1 mm




We are presently using the Z facility to study the ) iz,
Magnetized Liner Inertial Fusion (MagLIF)* concept
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Liner (Li, Be, or Al)

1. A 10-50 T axial magnetic field (B,) is
applied (~3-ms rise time) to inhibit thermal
conduction losses and to enhance alpha
particle deposition

Cold DD or DT gas (fuel)

ZBL
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P~ 2. ZBL preheats the fuelto —7 ¢
- ~100-250 eV to reduce the

-+ W//////// K required compression to
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Z power flow

(A-K gap) 3. Z drive current and By field implode the liner ——xu

(via z-pinch) at 50-100 km/s, compressing the
fuel and B, field by factors of 1000

With DT fuel, simulations indicate scientific breakeven may be possible on Z
(fusion energy out = energy deposited in fusion fuel)

*S. A. Slutz et al., PoP 17, 056303 (2010). S. A. Slutz and R. A. Vesey, PRL 108, 025003 (2012).



Anatomy of a MagLIF Experiment

Field Coils:
Helmholtz-like coil
pair produce a 10-
30 T axial field w/
~3 mSs rise time

ZBL.: 1-4 kJ green
laser, 1-4 ns square
pulse w/ adjustable
prepulse (prepulse
used to help
disassemble laser
entrance window)
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Anatomy of a MagLIF Target ) &,

= Be Liner: OD =5.63 mm, E Z-Beamlet
ID = 4.65 mm, h =5-10 Laser
mm
= LEH Window: 1-3 pm
thick plastic window. - -
Supports 60 PSI pure D2 Washer T
gas fill. | LEH Window
= Washer: Metal (Al) washer A |
Channel

supporting LEH window

= Channel: Al structure used
to mitigate the wall
instability (also referred to Slotted Return |
as a “cushion”). Also Current Can

reduces LEH window
IEH -

diameter to allow thinner
windows

= Return Can: Slotted for
diagnostic access




Our initial MagLIF experiments have been
very successful, demonstrating several key
aspects of magneto-inertial fusion

Sandia
r-l'l National

Laboratories

A high aspect ratio
stagnation column

Thermonuclear High yields and FWHM 50 — 110 pm
neutron generation

temperatures
Experimental Data Gaussian Fit
4 ]
I (on Temp ]
Tr Electron Temnp Jig™
3 | I 0D yield
081 PN DT yield 1
- = "
-] o E =
506 B 9 E 2 i é E
Ll = ] Es
% 04 1 - E1|:|“:'
1= —— = — 3
™ {i 1 3 *IEIEI
0 - - - - . :
22 2.3 24 25 26 2.7 Imnlasi Imalosi Imolasi
mplosion  Implosion  Implosion
Energy [MeV] Bfield  B-field
. . Laser
Isotropic, Gaussian
DD neutron spectra Max DD neutron yield = 3e12

Max ion temp = 2.5 keV
05 0 0.5 MM




Physics

Behavior of tritium in the Z
pulsed power environment

Several key physics issues could be addressed with DT experiments

Measurement

Sampling of tritium
contamination, migration

Scaling of yield to DT—
thermonuclear?

DT yield
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Tritium fuel content
<0.1% 0.1% 1%

lon temperature and
non-thermal population

Precision nTOF and DT/DD
yield ratio

Liner/fuel mix

DT yield with tritiated gas
fill and deuterated liner

Fuel morphology

Neutron imaging

Thermonuclear reaction
history

Gamma Ray History/GCD,
Thompson parabola

Liner/fuel density, non-
thermal effects (peak
shifts)

Compact/Magnetic Recoll
Spectrometer (CRS/MRYS),
precision nTOF




There are risks and hazards associatedm =
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with implementing tritium on Z

= Zisroughly 100" in
diameter and 20’ high

= |t uses large of amounts of
oil and water for energy @ aaiRREEE
storage and pulse forming (EEESRNNSREE= TR

= MagLIF experiments will
release tritium into the
vacuum section

Bkt
--------

= Tritium could affect day to vacuum - \yarer - Ol
day operations and could (S)fc“on section  S€ction
have potential legacy Target
issues Chamber




Z offers different challenges (and opportunities) as an

HED facility

Il

Z vacuum center-section
(target chamber)

Top Vacuum

Vacuum

stack
(alternating stack|"
of Rexolite and
aluminum rings)

Magnetically
Insulated
Transmission

Lines
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Z operations requires people to work
in the target chamber for every shot

Target or |
load region k&

The MITLS must be removed and
cleaned between every shot
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Z presents a challenging and harsh environment due to the energetics
and amount of hardware destroyed during a MagLIF experiment

Pre-shot picture of MagLIF experiment

Post-shot picture of MagLIF experiment
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How much tritium in a MagLIF Target? rh) t

MagLIF target Present target size Projected target size
and inventories and inventories
h=75mm h =10 mm
ltyel = 2.32 MM ltyel = 2.75 MM
V=127 mm3 V =238 mm3
P =60 psi P =130 psi
p=0.7mg/cc p=15mg/cc
0.1% T =1.23 mCi 0.1% T =4.11 mCi
1.0% T=12.3 mCi 1.0% T=41.1 mCi
10% T =123 mCi 10% T =411 mCi

50% T = 0.62Ci 50% T =2.55Ci




We recently completed development of the Z Gas Transfer (g i,
System (ZGTS)* capable of filling MagLIF targets in-situ on
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= Robust tritium capable gas transfer

d system
‘i _ = Uses metal diaphragm puncture valve
[eiows E” runee = Minimizes tritium inventory
Cietror i = Controls when and where tritium is used
”“"éf.ﬂ.\_u = Fills target in-situ just prior to shot
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The ZGTS would increase the total inventory but the residual ) s,
tritium would be introduced to Z in an elemental state

= Elemental tritium easier to
purge or remove from the
Z chamber

= We are considering ways
to trap the residual tritium
in the ZGTS

= Total inventories for initial
low T (~ 1 %) operations
seem acceptable to
“stack” without trapping
or tritium capture

MagLIF target
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Present target size

and inventories

0.1% T =1.23 mCi
1.0% T=12.3 mCi
10% T =123 mCi
50% T = 0.62Ci

ZGTS residual
inventories

0.1% T = 16 mCi

1% T = 160 mCi
10% = 1.6 Ci
50% = 8.0Ci
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Our ability to minimize the impact on the facility depends on ) i
the ability to purge the tritium from the Z target chamber

= Z maximum shot rate is presently 1 shot

/ day

=  Z must be vented and opened after
every shot

= Can we use this to our advantage?

= PSAX was designed and implemented
to eliminate hazardous decomposition
products

= |s it sufficient for T?
= Or do we need PSAX x2, x10?

= Qvernight or extended purge vs. %5
hour?

= QOtherideas?
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Flow analysis of the Post Shot Air Exchange
System (PSAX) for Z target chamber
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Volume Z Target Chamber = 66 m3
Total surface area = 464 m?

PSAX Flow rate = 765 CFM
20 air exchanges / hr.
Typical purge time = Y2 hour 15



We will implement a new MITL refurbishment (g i
enclosure in CY16

= New enclosure will be more New MITL refurbishment enclosure

compatible with tritium
operations

= Totally enclosed Perma-Con
structure with single pass
ventilation

= May provide for contingency
ventilated decontamination of
MITLS

= Better airflow over surfaces with
gaps between MITLS

16




We may want to consider a removable target chamber () i,
concept to help minimize impact on the facility
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Removable
= Basic concept is to keep target chamber
most of the tritium and
debris inside a large
removable chamber

= This chamber would be
removed and refurbished at
a separate facility

= Goalis to minimize clean up
and decontamination
required of the main Z
chamber including the
MITLS and stack
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