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 RANS:
 Most widely used turbulence model 

 Relies on modeling assumptions Model form uncertainty

 Very difficult to assess model form uncertainty

 Idea: Use machine learning to detect regions of high uncertainty 
based on when specific model assumptions are violated



Machine Learning
 Set of data-driven algorithms for regression, classification, clustering

 E.g.: linear regression, support vector machines, neural networks

 Have been broadly applied in finance, software engineering, retail

 Challenge: how to incorporate domain knowledge into machine 
learning algorithms
 These techniques have a range of physics applications

 For this application: use binary classifier to flag regions of high 
RANS uncertainty on a point-by-point basis
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Random Forests
 Binary Decision Trees:

 “If-then” logic

 Ensembles of Decision Trees:
 Random sampling with replacement to create subsets of training data
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 Have database of canonical “building block” flows

Cross- Validate
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Classifier Development
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 Split data base into training and validation sets
 Train classifier 

 Input: Local flow variables from RANS
 Output: Binary flag– “on” if RANS assumption violated, “off” otherwise

Cross- Validate



Classifier Development
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Cross- Validate

Classifier “on”



Classifier Development

9

Database of 
Flows: 
High Fidelity 
and RANS 
Results

Training
data

Validation
data

Machine 
Learning 
Classifier

Predictions of 
Regions of High 

Uncertainty

Train

Evaluate 
performance

 Cross-validate to ensure generalization
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Assumptions Tested

1. Non-negativity of eddy viscosity
 Classifier should be “on” when LES/DNS eddy viscosity goes negative

2. Isotropy of Reynolds stresses
 Classifier should be “on” when anisotropy is high

3. Linearity of Boussinesq hypothesis
 Classifier should be “on” when cubic eddy viscosity very different from 

linear eddy viscosity
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Inputs:

 Non-dimensional, rotationally invariant local flow variables 
from RANS



The Status Quo
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Contours of velocity magnitude



A Better Option

Blue: Regions where classifier predicts isotropy assumption violated
Green: Regions where classifier predicts linearity assumption violated 
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Contours of velocity magnitude

 3 X more accurate than current state of the art physics-driven classifier 
of Gorle et al.
 Gorle et al.’s classifier is used as an input to the ML classifier



Impacts

 Classifiers for RANS model uncertainty can transform the way 
RANS results are post-processed and understood
 Clarify when RANS simulations are predictive

 Machine learning methods can significantly reduce classifier error rate

 Develop techniques for using machine learning algorithms on 
physical systems
 Leverage domain knowledge and physical constraints to develop 

algorithms

 Use data-driven algorithms to learn about the physical system
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Applications of Classifiers

 Can quickly post-process RANS simulation to determine whether it’s 
reliable in region of interest
 Don’t have to wait around for validation data set

 Can determine what corrections to implement

 Can enable adaptive corrections during run time

 Experimental design
 Design experiments to provide the strongest validation

 LES-RANS hybrids
 Use classifiers to inform switching function
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Classifier Performance
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Comparison against State of the Art
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Physics-based Classifier of Gorle et al.Machine Learned Classifier

Cross-validation 
Error rate: 11% 

Cross-validation 
Error rate: 33% 

 3 X more accurate than current state of the art physics-driven classifier 
of Gorle et al.
 Gorle et al.’s classifier is used as an input to the ML classifier


