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Turbulence Simulations
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= RANS:
= Most widely used turbulence model

= Relies on modeling assumptions—=> Model form uncertainty
= Very difficult to assess model form uncertainty
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= |dea: Use machine learning to detect regions of high uncertainty

based on when specific model assumptions are violated




Machine Learning
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Set of data-driven algorithms for regression, classification, clustering

E.g.: linear regression, support vector machines, neural networks

Have been broadly applied in finance, software engineering, retail

Challenge: how to incorporate domain knowledge into machine

learning algori

= These technigues have a range of physics applications

thms

For this application: use binary classifier to flag regions of high

RANS uncertainty on a point-by-point basis
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Random Forests )

= Binary Decision Trees:

= “If-then” logic

Input 3 <0.5

—

Input 1<-0.1 Y=0

—

Y=1 Input 2<0.1

—

Y=0 Y=1

" Ensembles of Decision Trees:

= Random sampling with replacement to create subsets of training data
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Classifier Development ) S

Contours of velocity magnitude

Database of Angled jet in crossflow

Flows:
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Flow around square

Flow around cube

= Have database of canonical “building block” flows
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= Split data base into training and validation sets
= Train classifier
» |nput: Local flow variables from RANS
=  Qutput: Binary flag— “on” if RANS assumption violated, “off” otherwise 7
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= Use classifier to make predictions on validation set
= Evaluate classifier by comparing to high fidelity results
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Classifier Development ) S
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» Cross-validate to ensure generalization
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W = §k6?{! — QVtSij
1. Non-negativity of eddy viscosity
= (Classifier should be “on” when LES/DNS eddy viscosity goes negative

2. lsotropy of Reynolds stresses

= Classifier should be “on” when anisotropy is high

3. Linearity of Boussinesq hypothesis

= Classifier should be “on” when cubic eddy viscosity very different from
linear eddy viscosity

Inputs:

= Non-dimensional, rotationally invariant local flow variables
from RANS
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The Status Quo

Contours of velocity magnitude

-1.20
11.05
10.90

40.75
0.60
0.45
0.30
0.15
0.00

Sandia
National _
Laboratories




A Better Option ) o
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Blue: Regions where classifier predicts isotropy assumption violated
Green: Regions where classifier predicts linearity assumption violated

» 3 X more accurate than current state of the art physics-driven classifier
of Gorle et al.

» Gorle et al.’s classifier is used as an input to the ML classifier 1




Impacts iL

» Classifiers for RANS model uncertainty can transform the way
RANS results are post-processed and understood
= Clarify when RANS simulations are predictive
= Machine learning methods can significantly reduce classifier error rate

» Develop techniques for using machine learning algorithms on
physical systems

= Leverage domain knowledge and physical constraints to develop
algorithms

= Use data-driven algorithms to learn about the physical system
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Opportunities

Postdocs and internships available—come talk to me!
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Applications of Classifiers )

= Can quickly post-process RANS simulation to determine whether it’s
reliable in region of interest

= Don’t have to wait around for validation data set

= Can determine what corrections to implement

= Can enable adaptive corrections during run time

= Experimental design

= Design experiments to provide the strongest validation

= LES-RANS hybrids

= Use classifiers to inform switching function




Classifier Performance ) e,

© True Negative
® False Negative
® True Positive
® False Positive

(a)Case 1, Marker 1:
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Comparison against State of the Art @)

Machine Learned Classifier Physics-based Classifier of Gorle et al.

True Negative
® False Negative
® True Positive
® False Positive

Cross-validation Cross-validation
Error rate: 11% Error rate: 33%

» 3 X more accurate than current state of the art physics-driven classifier
of Gorle et al.
» Gorle et al.’s classifier is used as an input to the ML classifier
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