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•  Motivation for Considering IMEX Methods (Multiphysics, time-scales) 
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•  Diffusion Reaction, Convection-Diffusion-Reaction 
 
•  CFD 

•  MHD (just beginning for IMEX) 
 

•  Low Mach number resistive MHD (2D Tearing Mode) 

•  Euler-Maxwell (electron, ion-electron two fluid) 

•  Preliminary Conclusions 
 



Motivation: Science/Technology and Mathematical / Computational  

Science / Technology Motivation:   

Resistive and extended MHD models 
important plasma physics systems 
§  Astrophysics: Magnetic reconnection, 

solar flares, ..  

§  Planetary-physics: Earth’s 
magnetospheric sub-storms, Aurora, geo-
dynamo, planetary-dynamos"

§  Fusion: Magnetic Confinement [MCF] 
(e.g. ITER), Inertial Conf. [ICF] (e.g. NIF, 
Z-pinch)"

 MHD Tokamak Equilibrium 

 NASA Magnetic Reconnection Animation (https://www.youtube.com/watch?v=i_x3s8ODaKg) 

Magnetic Reconnection: S = 1e+9 (left), Reconn. Rate vs. SP theory (right)  

Mathematical/Computational Motivation:   

Achieving Scalable Predictive Simulations of 
Complex Highly Nonlinear Multiphysics 
Systems to Enable Scientific Discovery and 
Engineering Design/Optimization "

 MHD Equilibrium Instability 



What are multi-physics systems? (A multiple-time-scale perspective)!
These systems are characterized by a myriad of complex, interacting, 
nonlinear multiple time- and length-scale physical mechanisms.!
These mechanisms:!
!

•  can be dominated by one, or a few processes, that drive a short dynamical 
time-scale consistent with these dominating modes,!

•  consist of a set of widely separated time-scales that produce a stiff system 
response,!
•  nearly balance to evolve a solution on a dynamical time-scale that is long 
relative to the component time scales, !
•  or balance to produce steady-state behavior. !



•  Stable, accurate, and efficient integration of multiple-time-scale multiphysics 
systems (time-steps consistent with the dynamical time-scales of interest) 

•  Higher-order (e.g. 2nd – 5th);  A-, L-stability,  SSP, .. 

•  Flexible algorithmic structure for time-accurate & robust pseudo-transient 
 

•  Consistent nonlinear residual-based description facilitating  
•  Robust scalable nonlinear / linear solution of strongly coupled implicit 

multiphysics operators (e.g. Newton-Krylov-AMG) 

•  Beyond forward simulations (optimization, inversion, UQ, ..) 

•  Mathematical structure enabling the use of adjoint-enhanced methods  
•  Integrated local sensitivity analysis, 
•  Reduction of effective UQ parameter space exploration 
•  Efficient UQ surrogate construction 
•  Dual weighted a posteriori error-estimation 

 
•  Mathematical structure consistent with enforcing nonlinear stability 

constraints (e.g. positivity / monotonicity preservation, TVD, LED, ….) 

A Subjective view of Desired Characteristics for Multiphysics Time Integration !
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A	
  Heuris3c	
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Desire to select dynamical time scale of interest 
and take stable time steps. Of course stable does not imply accurate. 
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Illustra3ve	
  IMEX	
  accuracy	
  results	
  (Convec3on-­‐diffusion)	
  

2nd order* 

3rd order 

4th order 

New set of IMEX SSP/L-stable methods (with S. Conde and S. Gottlieb, U Mass - Dartmouth) 
   Both explicit and implicit part are SSP/L-stable and overall IMEX is SSP/L-stable 
 
*Comparison with 2nd order SSP3(3,3,2)  [Pareschi and Russo (2000,2005)] 

•  Explicit Convection  
•  Implicit Diffusion 

•  Fixed CFL 

�t



 
2nd order Pareschi and Russo (2000,2005) SSP3(3,3,2), SSP2(3,3,2)  

•  Explicit Convection  
•  Implicit Diffusion, Reaction 
•  Fixed CFL 

Illustra3ve	
  IMEX	
  accuracy	
  results	
  (Convec3on-­‐Diffusion-­‐Nonlinear	
  Reac3on)	
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Illustra3ve	
  IMEX	
  accuracy	
  results	
  (Navier-­‐Stokes	
  -­‐	
  Incompressible)	
  

�t

Error ⇡ �t2.02

CR Ethier and DA Steinman  (1994) 

Exact	
  Solu3on	
  to	
  	
  
Navier-­‐Stokes:	
  
Decaying	
  Vortex	
   



Illustra3ve	
  IMEX	
  Stability	
  Results	
  (Navier-­‐Stokes	
  –	
  Low	
  Mach	
  number)	
  

Convergence	
  in	
  3me	
  for	
  Stokes	
  2nd	
  Problem	
  (Low-­‐Mach	
  version,	
  fixed	
  CFL)	
  
•  Explicit	
  advec3on	
  
•  Implicit	
  diffusion,	
  Implicit	
  sound	
  wave	
  operators	
  	
  

Error in velocity 



3D Resistive MHD Equations: VMS FE Formulation 

  

Resistive MHD Model in Residual Notation 
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Multiple-time-scale systems: E.g. 2D Tearing Mode "
Low Mach number compressible; M ~ 10-4; Fully-implicit (BDF2), IMEX (SSP3)   "

Approx. Computational Time Scales:  
•  Divergence Constraint (            ):  1/      = 0 
•  Fast Magnetosonic Wave (cf):      10-4  to 10-2  
•  Alfven Wave (ca):                           10-4 to  10-2 

•  Slow Magnetosonic Wave (cs):    10-2 to 10-1 

•  Sound Wave (c):             10-2   
   

 

•  Advection (cv):                               to 101 

•  Diffusion:        10-4 to 10-2 
•  Macroscopic Tearing Mode:  102  
 

1 1r ·B = 0

Fully-implicit (BDF2) / IMEX SSP3  
Max CFL:         

 CFLdiv =  
      CFLcf   ~ 105 to 104 

     CFLcA  ~ 105 to 104 

     CFLcs   ~ 103 to 102 
     CFLc     ~ 103  to 102 

    CFLcv   ~    1   to 0.1 

1

kuk, kuk± cs, kuk± ca, kuk± cf ,±ch

Wave speeds 
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Illustra3ve	
  IMEX	
  accuracy	
  results	
  (Full	
  Maxwell	
  –	
  Electron	
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  Oscilla3on)	
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Conclusions 
•  Preliminary  results for IMEX multistage RK type methods is encouraging. Accuracy 
and stability. 

•  Flexibility of assignment of equations / operators as explicit or implicit is very useful in 
multiphysics simulations to deal with multiple-time-scale and choices of dynamic time 
scales of interest. 

•  Code structure to support IMEX methods and dynamic assigment requires significant 
abstractions to facilitate this approach (e.g. Phalanx, Panzer – package from Trilinos 
(Pawlowski, Cyr) , and Degree of Freedom Manager (Cyr) 

•  New IMEX RK SSP/L-stable methods appear promising. 

•  Next Steps 

•  More quantitative  analysis of the stability and accuracy of the methods on 
prototype problems for MHD. 

•  More extensive evaluation of methods on important MHD and multi-fluid / Full 
Maxwell. 

•  Demonstration and evaluation of adjoint-enhanced methods for sensitivity, UQ 
tools (active-subspaces, surrogate construction, etc.,) error-estimation 


