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Motivation: Science/Technology and Mathematical / Computational

Science / Technology Motivation:

Resistive and extended MHD models
important plasma physics systems

= Astrophysics: Magnetic reconnection,
solar flares, ..

» Planetary-physics: Earth’s
magnetospheric sub-storms, Aurora, geo-
dynamo, planetary-dynamos

= Fusion: Magnetic Confinement [MCF]
(e.g. ITER), Inertial Conf. [ICF] (e.g. NIF,
Z-pinch)

Mathematical/Computational Motivation:

Achieving Scalable Predictive Simulations of

Complex Highly Nonlinear Multiphysics
Systems to Enable Scientific Discovery and

Engineering Design/Optimization
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What are multi-physics systems? (A multiple-time-scale perspective)

These systems are characterized by a myriad of complex, interacting,
nonlinear multiple time- and length-scale physical mechanisms.

These mechanisms:

- can be dominated by one, or a few processes, that drive a short dynamical
time-scale consistent with these dominating modes,

- consist of a set of widely separated time-scales that produce a stiff system
response,

- nearly balance to evolve a solution on a dynamical time-scale that is long
relative to the component time scales,

- or balance to produce steady-state behavior.

Sandia
National
Laboratories



view of Desired Characteristics for Multiphysics Time Integration

Stable, accurate, and efficient integration of multiple-time-scale multiphysics
systems (time-steps consistent with the dynamical time-scales of interest)

Higher-order (e.g. 2"d — 5t); A-, L-stability, SSP, ..
Flexible algorithmic structure for time-accurate & robust pseudo-transient

Consistent nonlinear residual-based description facilitating
* Robust scalable nonlinear / linear solution of strongly coupled implicit
multiphysics operators (e.g. Newton-Krylov-AMG)

 Beyond forward simulations (optimization, inversion, UQ, ..)

Mathematical structure enabling the use of adjoint-enhanced methods
« Integrated local sensitivity analysis,
* Reduction of effective UQ parameter space exploration
- Efficient UQ surrogate construction
« Dual weighted a posteriori error-estimation

Mathematical structure consistent with enforcing nonlinear stability
constraints (e.g. positivity / monotonicity preservation, TVD, LED, ....)
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Implicit / Explicit (IMEX) Methods Appear Promising (in this context)

Governing PDE Semi-discretized in Space (e.g. FV, FD, FE) written as an ODE system

ut—I—F(u)—I—G_(l'l_),:O

' .
Slow, Explicit  Fast, Implicit

IMEX Multistep Methods (e.g. BDF type methods) form the consistent nonlinear residual:

k k k
Zajun_j + ZBjAfF(lln_j) == ijAtG(un_j) = 0.

7=0 g=1 7=0

High-order accuracy (e.g. 2" — 5t), various stability properties have been demonstrated A-, L-
stability, Strong Stability Preserving (SSP), TVB, ....

See for e.g. Hundsdorfer and Ruuth (2007)
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Implicit / Explicit (IMEX) Methods Appear Promising (in this context)

Governing PDE Semi-discretized in Space (e.g. FV, FD, FE) written as an ODE system

ut—I—F(u)—I—G_(l'l_),:O

' .
Slow, Explicit  Fast, Implicit

IMEX Multi-stage Methods (RK-type) form a consistent set of nonlinear residuals:
i—1 i
u(z) —u” 4 At Z &Z]F(u(j)) — At Z a,ijG(u(j)) fore=1... S,
j=1 j=1
u"tt =u" + At Z b;F(u®) — At Z b; G (u®).
' i=1

=1

High-order accuracy (e.g. 2" — 5t), with various stability properties have demonstrated
A-, L-stability, Strong Stability Preserving (SSP), TVB, ....

See for e.g. Ascher, Ruuth and Wetton (1997), Ascher, Ruuth and Spiteri (1997),
Carpenter, Kennedy, et. al (2005), Higueras et. al. (2011)
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A Heuristic Discussion of Time Scales (as a reminder)

Coupled transport physics: Consider a linearized transient convection-diffusion-reaction
equation, performing a Von Neumann stability analysis (amplification factor) for explicit time
integration for specific discrete systems will essentially identify the following time-scales

0,
a—?—l—w-Vu—DVZu—l—Su:()
h h? 1

“Ew PTD TS
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A Heuristic Discussion of Time Scales (as a reminder)

Coupled 1 order wave interaction physics, (e.g. Maxwell’s Eq. inavacuum, J = 0; p. = 0).
Coupling time scale is illustrated by derivation of the 2" order system from 15t order system

OE
EOILLOE—VXB:O, V-B=0

Taking curl of Faraday’s Law and using V x V x E = —V?E + V(V - E)
O°E 1

ot?  eoto

V’E =0

Von Neumann stability analysis (amplification factor) for explicit time integration for specific
discrete systems will essentially identify the following time-scale

h 1
TEM = —  Wwhere ¢ =
& v/ €00
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A Heuristic Discussion of Time Scales (as a reminder)

Desire to select dynamical time scale of interest Atdyn

and take stable time steps. Of course stable does not imply accurate.

h 1 B2 h

,TS%|—, TD —

Te s eees ,TEM—E

&

Iw|

Atgyn Algyn
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Illustrative IMEX accuracy results (Convection-diffusion)

au 8“ . 622/[/ 107 , : . o o . ldEm
o o T o 20 ordor \_
u(z,t) = Aexp(—vk*t) sin (2rk(z — at)) = aul

3rd order

« Explicit Convection

« Implicit Diffusion
4th order

* Fixed CFL

SSP-MEX-DIRK-BCZ 2]
SSP-IMEX-DIRK-BC(3,3}
SSP-IMEX-DIRK-BC(4,7)
=2
P=3
P=4
= === PRIMEX-88P2(22,2)

IH

At
New set of IMEX SSP/L-stable methods (with S. Conde and S. Gottlieb, U Mass - Dartmouth)
Both explicit and implicit part are SSP/L-stable and overall IMEX is SSP/L-stable

*Comparison with 2" order SSP3(3,3,2) [Pareschi and Russo (2000,2005)] ﬁgg%
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Illustrative IMEX accuracy results (Convection-Diffusion-Nonlinear Reaction)

JdT

ot

02 T
()x2

ec)T Sy + Explicit Convection

i ) ()X

—T°(1-T) . Implicit Diffusion, Reaction
. Fixed CFL

(f

Tix.t) = % <1 — tanh [X —Er = e)t/o‘D

0

L-2 Error

Error

2nd order Pareschi and Russo (2000,2005) SSP3(3,3,2), SSP2(3,3,2)
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Illustrative IMEX accuracy results (Navier-Stokes - Incompressible)

Exact Solution to
Navier-Stokes:
Decaying Vortex

Order of Accuracy | |u] | for Vortex Decay Problem

1.E-01
Error ~ At%Y2,

1.E-02

S

T

(g

—
1.E-03

==MEX SSP3(3,3,2)
1.E-04
1.00E-03 1.00E-02 1.00E-01

At
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CR Ethier and DA Steinman (1994) Natoral
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lllustrative IMEX Stability Results (Navier-Stokes — Low Mach number)

Convergence in time for Stokes 2" Problem (Low-Mach version, fixed CFL)

* Explicit advection

* Implicit diffusion, Implicit sound wave operators

Error in velocity
1.E+00

1.E-01

L1 Error Norm
—
m
o
N

1.E-03

1.E-04

2.50E-02

Order of Accuracy of Drekar/Rythmos Time Integration:
Stokes 2nd Problem (Ux)

IMEX

——BDF2: Ux Error
——SDIRK(2,2): Ux Error
—2nd Order

BDF1: Ux Error
= 1st Order
IMEX RK1: Ux Error
IMEX RK2SSPEq17

2.50E-01

. . Sandia
2.50E+00 National
Laboratories



3D Resistive MHD Equations: VMS FE Formulation

Resistive MHD Model in Residual Notation

Opv
R, = gt + V. [pvev—(T+Ty)+202xv—pg=0 )
5 T=-[P— g,u(v V)T 4 p[Vv + VvT]
_or _ L _LBp
Rp at+V (pv) =0 Ty = —~Be@B- o -|B|’l
0 1
R. = (apte)—I—V-[pve—l—q]—T:VV—nH—VXBHQZO
o
0B -
Rg=— +V-|Bev-vaB— - (VB-(VB)T)+4I| =0
ot Ho
R,=V-B=0
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Multiple-time-scale systems: E.g. 2D Tearing Mode
Low Mach number compressible; M ~ 10-4; Fully-implicit (BDF2), IMEX (SSP3)

Time = 0.000

Approx. Computational Time Scales:

* Divergence Constraint (v-B=0): 1/cc =0 + Advection (c,): o to 101

- Fast Magnetosonic Wave (c;): 10 to 102 . piffusion: 10+ to 10-2

- Alfven Wave (c,): 104 to 102 : : RS

« Slow Magnetosonic Wave (c.): 102 to 10 Macroscopic Tearing Mode: 10

« Sound Wave (c): 10-2 Fully-implicit (BDF2) / IMEX SSP3

Max CFL.:
CFLy, =0
CFL, ~105to 10*
Wave speeds CFLCL ~ 105 to 104

[all, [lall £ ¢s, [lul] £ cq, [Jul| £ cf, £en CFL,, ~10%to 102 .
CFL, ~103 to 102 I,
CFL,, ~ 1 to 0.1 Laboratories




Target — Multi-fluid 5 Moment Plasma System Models

IPa
Density Ot + V: (paus) = 0
I(palia) )
Momentum % + V- (Pala @ g + pod +11;) = gang (E +u, X B)
Energy
Charge and ) ) |
Current q = Z qrTlE J = Z qrTip Uy
: k k
Density
T a~xreall? 1 OFE .
l\AIaxv\.?ll S V x B = poJ + —— vV.E= 41
Equations c2 Ot €0
oB
V- -B=0 NSO = ———
ot
Pa 1 o
Eq. of State €a = il T 5Pl
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lllustrative IMEX accuracy results (Full Maxwell — Electron Plasma Oscillation)
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lllustrative IMEX accuracy results (Full Maxwell — Electron Plasma Oscillation)
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lllustrative IMEX accuracy results (Full Maxwell — Electron Plasma Oscillation)

4.0E+05
+ SDIRK(5,4)

® IMEXRK-SSP3: delta t =tau_e/22
3.0E+05

L
[

g
Bos

=
.

— -
- [

hn

2.0E+05
1.0E+05
><I
(T1]
0.0E+00

-1.0E+05

-2.0E+05

Ht
11 |
g

it
il
kg

il

-3.0E+05

-4.0E+05
0 2E-10 4E-10 6E-10 8E-10 1E-09 1.2E-09

Time



lllustrative IMEX accuracy results (Full Maxwell — Electron Plasma Oscillation)
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lllustrative IMEX accuracy results (Full Maxwell — Electron Plasma Oscillation)
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lllustrative IMEX accuracy results (Full Maxwell — Electron Plasma Oscillation)
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Illustrative IMEX (Full Maxwell —ion/Electron Plasma Oscillation)

_E_edgeX vs. Time at Pt: 0.005 5e-06 5e-06
Time = 0.0000e+00

1.39219e-09 2.78438e-09 4.17657e-09 5.56876e-09
Time
ELECTRON and ION RHO_UX vs. Time at Pt: 0.005 5e-06 5e-06

ELECTRON and ION RHO_UX

1.39219e-09 2.78438e-09 4.17657e-09 5.56876e-09

Time
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Conclusions

* Preliminary results for IMEX multistage RK type methods is encouraging. Accuracy
and stability.

* Flexibility of assignment of equations / operators as explicit or implicit is very useful in
multiphysics simulations to deal with multiple-time-scale and choices of dynamic time
scales of interest.

» Code structure to support IMEX methods and dynamic assigment requires significant
abstractions to facilitate this approach (e.g. Phalanx, Panzer — package from Trilinos
(Pawlowski, Cyr) , and Degree of Freedom Manager (Cyr)

* New IMEX RK SSP/L-stable methods appear promising.
* Next Steps

* More quantitative analysis of the stability and accuracy of the methods on
prototype problems for MHD.

» More extensive evaluation of methods on important MHD and multi-fluid / Full
Maxwell.

* Demonstration and evaluation of adjoint-enhanced methods for sensitivity, UQ
tools (active-subspaces, surrogate construction, etc.,) error-estimation
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