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Motivation: Cavity Flows ) s,

= |nteraction of free shear layer and cavity walls produces resonant tones with high
Sound Pressure Levels (SPL).

= Resonant tones can have high SPL up to 170 dB in some cases.

= Fluctuations provide a driver for potential large vibrations of internal stores in
weapons bays.
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Motivation rih) et

Most existing work focuses on simple rectangular cavities.

= Modal frequencies can be predicted using Heller & Bliss’s correlation, but not
the modal amplitude distribution.

= Simple cavities neglect important geometric parameters that can modify cavity
acoustics.

How do complex geometric changes to the bay affect
pressure loading?

= Asymmetric inflows.

= Complex leading edge geometry.
= Varying internal geometry.

= Doors.
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Experimental Approach ) &=,

Use a building block approach to introduce complex geometric features
one at a time into a simple rectangular cavity.

Baseline configuration: side and front ramps
Inlet geometry: center and offset scoop and tooth

Internal variations: side insert and
ramped floor

Doors (open or closed)




Experimental Approach ) s,

Trisonic Wind Tunnel

= Cavity integrated into flat-plate &4 upper test section wall
insert on upper wall. '

" |ncoming turbulent boundary Cayitgy
layer. =
= M=0.6—0.9, focused on 0.8 e
= Re=10’/m
Simple Rectangular Cavity _
. L/D -7 ‘ . lower test section wrll

= [ /W=2 - PR B




Experimental Approach =N

Instrumentation consists of pressure sensors located
throughout the cavity:

RFP1-5

Center Scoop

C2

Center Tooth/

Side Ramp

Side Insert




Simple Rectangular Cavity, PSD’s )

Cavity (Rossiter) mades are
clearly observed

= Frequenciesp
correlation of
using a = 0.25

Amplitude of flu
increases downs




Baseline Cavity, PSD’s ) e,

Similar presence of Rossiter
modes in baseline cavity.

= Modes shift to higher frequencies.

Simple rectangular cavity, FFP3

Baseline cavity, FFP3

150 - ————— — Simple rectangular cavity, AWP3
- ———— — Baseline cavity, AWP3

= Modal amplitudes ftend to
decrease.
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Rectangular cavity has high
aft-wall pressures
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= Shear layer is lifted highe =
rear cavity wall in baselj 2
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= Reduces feedback 7

acoustic tones. 1ol




Baseline Cavity, Coherence

Front coherence (FFP2-FFP4):

= High coherence of first 4 modes
in simple cavity.

Simple rectangular cavity
1 Baseline cavity

= Baseline cavity has lower i
coherence levels, c.:on5|st.ent wrfh : Fralall
lower modal amplitudes in PSD’s.

Aft wall coherence (AWP2-
AWP4):

= Coherence much lower overall
for both configurations.

Coherence

= Consistent with trends in simple
cavities: more turbulent and less
coherent fluctuations at rear of
cavity.




Baseline Cavity, Cross Correlation

Cross correlation computed
between front and rear of cavity
(FFP3-AWP3).

= Baseline cavity show much lower
correlation levels.

Dominant peak in cross correlation
near 0.5 ms, corresponding to
propagation time across the cavity.
= Propagation time is smaller in

baseline cavity, which leads to higher
Rossiter mode frequencies.

= Consistent with frequency shift seen
in PSD’s.
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Effect of Inlet Geometry, PSD’s
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Inlet design has an intermediate

effect on the flow.

Same modal frequency s
cavity.

Modal amplitudes are la
baseline cavity.

hift as baseline

'ger than

Broadband levels are sinjilar for a

configurations at the front of th

Amplitude of rear cavity
elevated and approach s
rectangular cavity level.
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Simple rectangular cavity, FFP3
Baseline cavity, FFP3

Cavity with center scoop, FFP3
Cavity with offset scoop, FFP3
——— Simple rectangular cavity, AWP3
—— Baseline cavity, AWP3

------- Cavity with center scoop, AWP3
------- Cavity with offset scoop, AWP3




Effect of Leading-Edge Tooth, PSD’s

Tooth has different
different locations i

gffects at
n cavity.

Cavity front:

——— Cavit ith t. , FFP3

=  Tooth enhances modks between 1-3 k  Cavity with contor scoop and tooth, FFP3
—_— Cavity with offset scoop, FFP3

= Largest enhancdment of mode 150 N Cavity with conter sooa. AWk

. —— Cavity with center scoo d tooth, AWP3

Center SCOOp an j tOOth I ————— Cav!ty w!th offset scoo;, :?NP:(;O

- ApprOXimately 8 kHZ|peak unde 140 ! —————— Cavity with offset scoop and tooth, AWP3

tooth at front of cavity. Cémtartine

= Corresponds to p close §130
under the front pver <

: @ 120
Cavity rear: =

=  Mode amplitudes arg 3-”10

downstream.

tooth may interflere with coherence
of shear layer.
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Effect of Side Insert, PSD’s
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Mode amplitudes are enhanced with

the presence of

side insert.

Highest enhan
insert.
Enhancement
insert and furt
Can be explaine
cavity.

Rossiter mode

length cavity sti
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Cavity with side insert, FFP5
Baseline cavity, FFP5
—e—nm— Cavity with side insert, AWP3
----------- Baseline cavity, AWP3

L/D = 3.5




Effect of Doors, PSD’s
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Doors have a significant effect on

measured spectra.

= Two open doors.
= Elevated broadbpnd frequencies

throughout cavijv.
= Worst case at end of cavity.
= One open door.

= Additional resonpnces cr
closed door.

= Resonances extdnd
= \Worst case at frgnt

| tooth
| tooth and two open doors
| tooth and R door open and L door closed
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Effect of Ramped Floor, PSD’s ) s,

Literature for S|mple rectangular
P | y.xY J P nnn faVaVaVlal nlnr\v- f\hA fala¥Val I\Iﬁ"\
cavities indicate sed door

2 insert
ramped floors.

=  We see this for FFP3, flat floor

FFP3, ramped floor
C4, flat floor

C4, ramped floor
AWP3, flat floor
AWP3, ramped floor

Sometimes thel
interactions.

=  Ramped floor i
closed door led
broadband cor
amplitudes.

=  Worst case cor
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Complex Configurations, PSD’s ) .

Simple rectangular cavity, FFP3

Can compare most complex
co n fig u rat i 0 n s to a Si m p I e Cavity with center scoop and tooth and two open doors and side insert, ramped floor, FFP3

° C_avity with center scoop and tooth and R door open and L door closed and side insert, ramped floor, FFP3
recta ngu Ia r caVIty. : ----- == Simple rectangular cavity, AWP3

----- = Cavity with center scoop and tooth and two open doors and side insert, ramped floor, AWP3
——— = Cavity with center scoop and tooth and R door open and L door closed and side insert, ramped floor, AWP3

® Much larger modal amplitudes and 150
broadband acoustics.

= Different modal frequencies not 140F 1
predicted by Heller & Bliss correlation. “

= Additional higher frequency content.

Significant potential impact on
internal stores.
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= Structural coupling could be different 110k
with shifted modal frequencies. -
= Dominant modes can shift with 100(;

configuration changes.

= Loading significantly underpredicted in
a simple rectangular cavity.




Conclusions ) i,

What complex cavity variations alter the cavity acoustics?
= Configurations that change the shear layer position with respect to the aft wall.

= Lofting the shear layer leads to reduced amplitude of modes and broadband
fluctuations.

= j.e., baseline configuration, center scoop and tooth configurations.
= Configurations that constrict the flow.
= Leads to higher frequency content and additional resonances in the spectra.
= j.e., leading edge overhang, closed doors, ramped floors and internal side inserts.

= Configurations can interact and create significantly higher pressure fluctuations
at different modal frequencies than predicted by a rectangular cavity.

= These changes must be accounted for when designing for flight.



What’s Next? rih) s

Fluid-Structure Interactions in these flows.

1) Simple Store in Simple Cavity 2) Complex Store in Simple Cavity




Simple Cavity FSI in TWT ) e,

cavity cutout

wall insert

Impact Hammer Tests

removable

store <

flange ' —_— n‘hpact hammer
— T \xQ gL\-‘Mt'umu-.-..‘..',. mum—-’

Provided structural naturaw

Triaxial accelerometers
.« Jfrequencies

provided store response.




Previous Cavity FSI in TWT ) e,

Simultaneous Pressure and Acceleration Correlation of Pressure and Acceleration

Centerline Pressure
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Strong response to cavity tones in
Each structural natural frequency streamwise and wall-normal directions,
was excited by the cavity flow. but little spanwise response.



Response to Cavity Tones? ) o,
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= Cavity flows have longitudinal pressure ® Spanwise vorticity results in
waves wall-normal gradients

Cavity resonance produces longitudinal and wall-normal gradients to drive the
store in x and y. The lack of spanwise response indicates small gradients in z.

Simple store tests taught us a lot, but to go further we need an improved store.




Store Assembly Details /SAT3 (pressure sensor)

aluminum center-body (not today) /Y
SAT2 / A2

(triaxial accelerometer)

tail

nose fore-weight aft-weight

steel center-body

b —

hollow rods Interchangeable noses, tails, and weights of
make for fixed

BCs and cencor alumlnun.1, steel, and tungsten allow natural
wire exit paths frequencies to be tuned by 10 — 400 Hz.

Allows us to ‘mode match’ cavity tones

and store natural frequencies i



Store Natural Frequencies ) .

Plan-View (x-z plane) End-View (y-z plane)
y

z 1 2

-~
‘\ )\
[ store

(AN
| post

Side-View (x-y plane) Side-View (x-y plane)

y
("
Y1l

post

* Natural frequencies labeled by their predominant direction of motion
* Five natural frequencies measured below 4 kHz

* Today we will focus on Z1, Z2, and Y1, the least damped (strongest) modes.




Variation of Natural Frequencies .

Streamwise Accelerations at A2 in Mach 0.8 Cavity Flow

Config 1
3 — Config 2
10¢ e Config 3
- Config 4
- —r—— Config 5
. eeessesse Config 6
i ———— Confi
10k tungsten weights  _. _. _.. cg:f:g;
- tungsten \_ steelyugights T Config 3
0 - nose/tail osdyainumUARTBIRYM nose/tail
N Y1
L 10°F
o : Changing nose and tail
o I results in large natural
I frequency variations.
10°
Smaller variations can
be achieved through
10'7 L 1 ] | | ] 1 [ I T I A |

0.7 0.8 1 11 19 weight changes.

0.9
f(kHz)




Wall-Normal Mode Matching (M = 0.94) ).

Simultaneous pressure and y-accelerations at A2
Config 1 (g = 78 kPa)

103~ — Config 1 - = Mode-matched case
S 32223_3, exhibits five times

— gonffjg ; | greater vibrations than
———— - Config .
B Config 6 - tungsten or aluminum
-~ ——— Config7

R - Config 8 structures.

---------- Config 9 ] .
SAT2 o . Even during mode

matching, response
remains linear with q

When Y1 natural
frequencies are within

about 3% of M2,
response remains
elevated (50% greater
than configurations 4-9).




Mach # Sensitivity Near Mode Matching® .

= Amplitude of Y1

Config 1, f2=0.83 kHz, M = 0.801 doubles when Cavity

Config 1, f2=0.92 kHz, M = 0.870

3 _— . e e
10°F ———— Config 1, £2=0.93 kHz, M = 0.918 = tone frequency is within
- ——— Config 1, f2=0.94 kHz, M = 0.936 ] 0
———— Config 1, £2=0.95 kHz, M = 0.944 ] 1-2% of structural

------ SAT2, £2=0.83 kHz, M = 0.801 . natural frequency.

Y1
When f, within 0-1%, Y1

response increases by a
factor of 5.

= This sensitivity is similar
to varying Y1 frequency
about fixed cavity tone

frequency

Similar observations on
mode matching made in
streamwise direction...




Spanwise Mode Matching

i
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Not Mode-Matched (M = 0.94)

107 -

Config 4

- Config 5
Config 6
SAT 2

210"

f(kHz)

Mode-Matched (M = 0.79)

107 -

Config 4
- Config 5
---------- Config 6
SAT 2

21 721=M2
/'\_

ot

210"

41073

0.7 0.8
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= When M2 =72, the amplitude of Z2 remains unchanged.

= Energy transfer in spanwise mode-matching is much less efficient.




Conclusions
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The complex store responds to cavity tones
in the streamwise (x) and wall-normal (y)

directions, but not the spanwise (z).
u Similar to simple store response

The worst-case-scenario for vibrations
occurs when a strong cavity tone matches

an x or y natural frequency of the store.
=  During mode-matching vibrations
increase 5 fold.
=  When frequencies within 1 — 3% of
mode-matching, store response
remains elevated by 50 — 100%.




What’s Next? rh) s

Advanced diagnostics are being implemented.
= High-frequency PSP is being implemented to spatially and temporally resolve
loading fields in the cavity.

= Uses porous ceramic binder to increase frequency response of paint.
= PSP works through oxygen quenching.
" Increasing surface area for this interaction increases frequency response.

Incident Light Luminescence

Oxygen Molecules [

surface

} Porous materiall

ILumino'i)hore Model

. Oxygen Quenching

oxygen permeation

o "o P' . }PolymerLayer
7777777 77777777777
Model

From Gregory (2008)




What’s Next? rh) teima_

Time Resolved-PIV:

= Obtain PIV movies to provides temporally correlated velocity fields.

= Challenge:
= TR-PIV has been restricted to < 16 kHz and a few mJ.
= |nadequate for a high-speed wind tunnel.

Pulse-Burst Laser:

" Manufactured by Spectral Energies, LLC.
= Bursts of pulses for 10.2 ms.

= Up to 500 kHz of pulse pairs, 20-500 mJ.
= But only one burst every 8 sec.

High-Speed Cameras:

= Photron SA-X2.
= Two side-by-side for wider field of view.

This is the first application of pulse-burst PIV in a
ground-test facility.

m ]UUUUUUU\ m [UUU\NUU\_
25 kHz 25 kHz

25 kHz



What’s Next?

Sandia
National
Laboratories

A sample TR pulse-burst PIV movie
This is a 10.2 ms movie with 256 vector fields acquired at 25 kHz.

We can visualize:

Recirculation region shifting position.

Ejection and impingement events at aft end of cavity.
Recirculation events enhancing shear layer flapping.

Growth of shear layer structures and their recirculation TR-PIV.

Such PIV measurements will be made with simultaneous pressure measurements

Flow structures will be correlated to cavity fluctuations and compared with ongoing computations.

T

T

T

t=0 us




Bring all of these capabilities together M.

Pulse-burst PIV measures

\the flow structure...
150

140
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o

measure the acoustic
environment...

SPL (dB/VHz)

Track the energy cascade
“““““““““ | through the stages of -

of fluid-structure interaction. | ° *  °

~ ...pressure sensors

...plus we will have
high-speed Pressure
Sensitive Paint for the
10" store surface...

N

I Direct quenchin, Porous surface
-~

o

...and then we can i ﬁb E/ﬂ B ﬂ

10> measure the structural
response.

SPL (dB/WHz)
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