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Motivation

• Less data than ideal available for irradiation creep in new alloys

• Ion beams allow for rapid simulated testing
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• We want to perform experiments with simultaneous mechanical 
loading, specimen heating, and ion irradiation

Future Reactors
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Tension Testing
• AERE Harwell, 1977

10 cm
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Hudson, et al, J Nucl Mater, 1977.

• Lots of information:
o E, σy, σUT, elongation, 

toughness, n, m

• More information:
o m, ΔV, creep 

• Gold standard for bulk mechanical properties
o Nontrivial to implement in an end station

• Complementary in situ TEM experiments for microstructural mechanisms 
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Major Components

• Tension stage: MTI/Fullam SEMTester

o 4500 and 450 N load cells

• ±0.2% full scale sensitivity

o Ambient to 1200 °C

• Accelerator: HVE EN Tandem

o 0.8 to 6 MV terminal voltage

o SNICS, Alphatross, Hiconex
834 sputter, and duoplasmatron
ion sources

• Array of beamline components

10 cm

1 m
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Design and Construction

• Components created and assembled in SolidWorks prior to 
actual construction
o Assured fit of components and alignment of the beam

• Viewports for beam alignment and sample monitoring
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Sample Considerations

1. Beam transparency

2. Stage compatibility
o Load/extension limits

3. Standard geometry 
o Based on ASTM-E8

o Literature comparison

4. Proton activation concerns
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Can apply up to 30 GPa stress and accommodate 58% strain

Commercial OFHC Cu used as a model system

• 50 and 100 µm thicknesses



SRIM Damage Estimation

• 4.5 MeV H+ into 50 µm thick Cu
o Limited for radiation safety, not by the accelerator capability

• 2.1 × 1011 ions cm-2s-1 1.4 × 10-8 mean DPA s-1

• Ion energy and type can be changed to vary damage rate 
and type, with consideration for film thickness and density
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Basic Tension Testing

• Reproducible results and reasonable strain 

• In agreement with bulk annealed Cu (70 MPa yield, 220 MPa UTS)
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• 0.25mm/min elongation rate (initial engineering strain rate 2.1 × 10-2 s-1)
o ~17 minute tests



Tension + Irradiation
• Similar elongation rate 

• Beam cycled on/off at 60 s intervals

TMS 2015 9

• Measured temperature rise of ~0.25 °C when beam is turned on

• Small but measureable change in stress-strain curve when beam cycled on/off
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• Overall strengthening after pre-irradiation to 4-5 × 10-5 DPA

• Effects of continuous irradiation during the test are not yet clear

• Pre-irradiation to 6 × 1014 ions cm-

2 (~4 × 10-5 DPA)

• Pre-irradiation followed by 
irradiation during test (additional 
~1.3 × 10-5 DPA)

• Minimal change in elongation to 
failure

Tension + Irradiation



Stress Relaxation

TMS 2015 11

• Offset likely an artifact

• Different relaxation rates with beam on and off

• Similar 0.25mm/min elongation rate to 22.5 N load
o Approximately 75% of typical ultimate tensile load

o 900 s hold at constant position

o Beam cycled on/off at 60 s intervals



Micro- and Nanoscale Testing
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Kiener, et al, Nat Mater, 2011.

Sharon, et al, Mater Res Lett, 2014.

• Wealth of small-scale mechanical testing methods developed in last decade

• Recent experiments with radiation-damaged materials

• Combining these methods with in situ irradiation

1.1 MeV H+

0.8 DPA

30 MeV Cu5+

100 DPA



Sandia’s In situ Ion Irradiation 
TEM (I3TEM)

Direct real time observation of ion 
irradiation, ion implantation, or both 
with nanometer resolution.
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10 kV Colutron - 200 kV TEM - 6 MV Tandem

Ion species & energy introduced into the TEMCollaborator: D.L. Buller

Hattar, et al, Nucl Instr Meth Phys Res B, 2014.

Similar beams can be directed to 
the TEM and end stations.



In Situ Irradiation: 3.6 MeV Au6+

• Au6+ at 2.1 × 108 ions cm-2 s-1 into Au foil
• Large defect clusters from cascades
• Sample stability under these conditions

14

Video speed ×5.

TMS 2015
Hattar, et al, Nucl Instr Meth Phys Res B, 2014.



In Situ TEM Nanoindentation

FIB-lift out from the same 
Cu stock material
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Hysitron PI95 In Situ Nanoindentation TEM Holder
• Sub nanometer displacement resolution
• Quantitative force information with µN resolution
• Concurrent real-time imaging by TEM
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• FIB window from PLD Ni film
• Single indentation to 60 nm
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In Situ TEM Nanoindentation

• Able to sequentially irradiate and perform indentations

• Investigating feasibility of concurrent irradiation + deformation



Quantifying Radiation-Induced 
Microstructural Change

• Automated crystallographic 
orientation mapping
o EBSD-like maps from the TEM

• Less sensitivity to strain, 
diffraction, and defect 
contrast

• Established data analysis 
tools
o Grain size

o Grain boundary character

o Pole figures
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Before

After

nc Au before and after xx × 10y 10 MeV Si3+ cm-2



• Successfully integrated a tensile load frame into an end station
o Proof-of-concept demonstrations with Cu specimens and 4.5 MeV H+

• Developing in situ TEM methods with combined irradiation + 
deformation
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Summary and Conclusions
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