
Photos placed in horizontal position
with even amount of white space

 between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

A	
 Kokkos	
 Implementa/on	
 of	
 Albany:	
 A	
 Performance	

Portable	
 Mul/physics	
 Simula/on	
 Code	

Irina	
 Demeshko,	
 ,	
 Andrew	
 M.	
 Bradley,	
 Eric	
 C.	
 Cyr,H.	
 Carter	
 Edwards,	

	
 Michael	
 A.Heroux,	
 Eric	
 T.	
 Phipps,	
 Andrew	
 G.	
 Salinger	

SIAM	
 CSE,	
 2015	

SAND2015-2186C

Outline	

§  Introduction

§  Kokkos

§  Albany

§  Albany Greenland Ice Sheet Model (FELIX)

§  Albany ThermoMechanics Application

§  Performance results

§  Conclusion

2	

Introduc/on	

3	

Tianhe-2 (National SuperComputer
Center in Guangzhou)
Intel Xeon E5-2692+ Intel Xeon Phi

TITAN (ORNL)
Cray XK7 , Opteron 6274 NVIDIA
K20x

Sequoia (DOE/NNSA/LLNL)
BlueGene/Q, Power BQC,
Custom

Performance	
 portability	
 has	
 become	
 a	
 cri/cal	
 issue	
 	

parallel	
 code	
 needs	
 to	
 be	
 executed	
 correctly	
 and	
 performant	

despite	
 variaJon	
 in	
 the	
 architecture,	
 operaJng	
 system	
 and	

soKware	
 libraries.	

4	

Approach:	
 Kokkos	
 programming	
 model	
 	
 	

C++	
 library,	
 which	
 provide	
 performance	
 portability	
 across	
 diverse	

devices	
 with	
 different	
 memory	
 models.	

5	

Kokkos*	
 programming	
 model	

§  Kokkos	
 -­‐	
 C++	
 library	
 to	
 provide	
 scienJfic	
 and	

engineering	
 codes	
 with	
 an	
 intuiJve	
 manycore	

performance	
 portable	
 programming	
 model.	

ü  Standard	
 C++,	
 Not	
 a	
 language	
 extension	

ü  Uses	
 C++	
 template	
 meta-­‐programming	

ü  Provides	
 portability	
 across	
 manycore	
 devices	

(Mul/core	
 CPU,	
 NVidia	
 GPU,	
 Intel	
 Xeon	
 Phi	

(poten/al:	
 AMD	
 Fusion)	
)	

ü  Abstract	
 data	
 layout	
 for	
 non-­‐trivial	
 data	

structures	

6	
 * Trilinos package

Kokkos*	
 programming	
 model	

§  Kokkos	
 :	

ü  Single	
 code	
 base	
 	

ü  Support	
 most	
 of	
 the	
 	
 	
 current	
 (and	
 future)	
 hardware	
 	

ü  Flexible	
 run	
 configura/ons	
 MPI-­‐Only	
 	

²  MPI	
 +	
 Threads	

²  MPI	
 +	
 GPU	

²  MPI	
 +	
 GPU	
 +	
 Threads	
 	

ü  Close	
 to	
 op/mal	
 performance	
 (i.e.	
 performance	
 of	
 a	

specialized	
 code)	
 	

ü  Use	
 vendor	
 compilers	
 	

ü  	
 Simple	
 code	
 	

7	
 * Trilinos package

Kokkos*	
 programming	
 model	

A	
 programming	
 model	
 with	
 two	
 major	
 components:	
 	

§  Data	
 access	
 abstrac/on	
 	

ü  Change	
 data	
 layout	
 at	
 compile	
 Jme	
 without	
 changing	
 access	
 syntax	
 =>	

OpJmal	
 access	
 pa[ern	
 for	
 each	
 device	
 	

ü  Data	
 padding	
 and	
 alignment	
 is	
 transparent	

Access	
 traits	
 for	
 portable	
 support	
 of	
 hardware	
 specific	
 load/store	
 units	
 	

§  Parallel	
 dispatch	

ü  Express	
 algorithms	
 with	
 parallel_for,	
 parallel_reduce	
 etc.	

Using	
 functor	
 concept	
 (functor:	
 construct	
 allowing	
 an	
 object	
 to	
 be	
 invoked	
 or	
 called	
 as	
 if	
 it	

were	
 an	
 ordinary	
 funcJon)	

ü  Transparently	
 mapped	
 onto	
 back-­‐end	
 languages	
 	

	
 	
 	
 	
 	
 	
 	
 (e.g.	
 OpenMP,	
 CUDA,	
 Pthreads	
 …)	
 	

8	

9	

Albany	
 :	
 agile	
 component-­‐based	
 parallel	

unstructured	
 mesh	
 applica/on	
 	

§  A	
 finite	
 element	
 based	
 applicaJon	
 development	
 environment	
 containing	
 the	

"typical"	
 building	
 blocks	
 needed	
 for	
 rapid	
 deployment	
 and	
 prototyping	
 of	
 analysis	

capabiliJes	
 	

§  A	
 mechanism	
 to	
 drive	
 and	
 demonstrate	
 the	
 AgileComponents	
 rapid	
 soKware	

development	
 vision	
 and	
 the	
 use	
 of	
 template-­‐based	
 generic	
 programming	
 (TBGP)	

for	
 the	
 construcJon	
 of	
 advanced	
 analysis	
 tools	
 	

10	

§  A	
 Trilinos	
 demonstraJon	

applicaJon,	
 built	
 almost	

exclusively	
 from	
 reusable	

libraries.	
 Albany	
 leverages	

100+	
 packages/libraries.	
 	

§  Open-­‐source	

Main

PDE Assembly

Solvers

Field Manager

Discretization

Interoperability
Use Case

Nonlinea
r Model

Nonlinear

Transient

Optimization

UQ

Analysis Tools

Iterative
Linear Solvers

 Multi-Level

Mesh Tools

Mesh I/O

Mesh Database

Problem
Discretizatio
n

ManyCore Node

Multi-Core
Accelerators

Application

Linear Solve

Load Balancing

Input Parser

Node Kernels

Regression Testing

Version Control
Build System

Libraries Interface
s

Software Quality Tools Demo Apps

PDE Terms

Albany Structure:

Albany	
 :	
 agile	
 component-­‐based	
 parallel	

unstructured	
 mesh	
 applica/on	
 	

Agile	
 component	
 design	
 provides	
 	

§  Efficient	
 in-­‐memory	
 integraJon	
 of	
 external	
 mesh	
 database	
 	

§  Abstract	
 interfaces	
 to	
 components	
 (mesh,	
 solvers,	
 assembly,	
 analysis	
 tools)	
 	

§  Requirements	
 imposed	
 on	
 external	
 tools	
 through	
 generic	
 interfaces	
 	

Fully	
 representa/ve	
 of	
 a	
 typical	
 advanced	
 implicit,	

unstructured	
 finite	
 element	
 applica/on	
 	

§  Trilinos	
 supplies	
 components:	
 modern	
 linear	
 &	
 nonlinear	
 solvers,	

precondiJoning	
 strategies,	
 conJnuaJon	
 tools,	
 ...	
 	

§  Genericism	
 of	
 physics	
 evaluaJon,	
 residual	
 based,	
 with	
 Sacado	
 Jacobian	
 and	

matrix	
 free	
 opJons	
 	

§  	
 Parallel	
 MPI(+X)	
 	

§  Large	
 problems,	
 representaJve	
 boundary	
 condiJons,	
 test	
 suite	
 230+	
 problems	
 	

§  Embedded	
 SA	
 &	
 UQ	
 	

§  Large	
 problems,	
 representaJve	
 boundary	
 condiJons	
 	

§  Open	
 source	
 	

11	

Albany	
 to	
 Kokkos	
 refactoring	

12	

Phalanx Intrepid

Kokkos

Albany
FELIX

Trilinos

Phalanx Intrepid

Kokkos

Albany
FELIX

Trilinos

Phalanx Intrepid

Kokkos

Albany
FELIX

Trilinos

Phalanx Intrepid

Kokkos

Albany
FELIX

Trilinos

Phalanx Intrepid

Kokkos

Albany
FELIX

Trilinos

Piro Tpetra

MueLu

Albany Greenland Ice Sheet
model

13	

Albany	
 Greenland	
 Ice	
 Sheet	
 Model	
 	

(FELIX	
 project)	

§  An	
 unstructured-­‐grid	
 finite	
 element	
 ice	
 sheet	

code	
 for	
 land-­‐ice	
 modeling.	

	

§  Project	
 objec/ve:	
 	

§  Provide	
 sea	
 level	
 rise	
 predicJon	

§  Run	
 on	
 new	
 architecture	
 machines	
 (hybrid	

systems).	

–  50%	
 /me	
 spent	
 in	
 FE	
 Assembly	

–  50%	
 Jme	
 spent	
 in	
 Linear	
 Solves	

14	

Funding	
 Source:	
 SciDAC	
 	

	

Collaborators:	
 SNL,	
 ORNL,	
 LANL,	
 LBNL,	
 UT,	
 FSU,	
 SC,	
 MIT,	
 NCAR	

	

Sandia	
 Staff:	
 A.	
 Salinger,	
 I.	
 Kalashnikova,	
 M.	
 Perego,	
 	

R.	
 Tuminaro,	
 J.	
 Jakeman,	
 M.	
 Eldred	

Greenland	
 Ice-­‐Sheet	
 	
 model	
 	

15	

Gather Solution

Gather Coordinate Vector

Compute Basis Functions

2:1

VecInterpolation

3:0 3:2

VecGradInterpolation

4:0 4:2

ViscosityFO

5:4

Load State Field

GradInterpolation

7:2 7:6

Stokes BodyForce

8:7

Stokes Resid

9:2

9:3 9:4

9:5 9:8

Scatter Stokes

10:9

Greenland	
 Ice-­‐Sheet	
 	
 model	
 	
 	

(Kokkos	
 implementa/on)	

16	

Device:

Copy solution vector to the Device

Copy residual vector to the Host

Loop over the number of worksets

Gather Solution

Gather Coordinate Vector

Compute Basis Functions

2:1

VecInterpolation

3:0 3:2

VecGradInterpolation

4:0 4:2

ViscosityFO

5:4

Load State Field

GradInterpolation

7:2 7:6

Stokes BodyForce

8:7

Stokes Resid

9:2

9:3 9:4

9:5 9:8

Scatter Stokes

10:9

Kokkos_functor	
 example:	
 Jacobian	

template<typename	
 EvalT,	
 typename	
 Traits>	

KOKKOS_INLINE_FUNCTION	

void	
 Jacobian<EvalT,	
 Traits>::	
 operator	
 ()	
 (const	
 int	
 i)	
 const	

	
 {	

	
 	
 	
 	
 for(int	
 qp	
 =	
 0;	
 qp	
 <	
 numQPs;	
 qp++)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 for(int	
 row	
 =	
 0;	
 row	
 <	
 numDims;	
 row++){	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 for(int	
 col	
 =	
 0;	
 col	
 <	
 numDims;	
 col++){	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 for(int	
 node	
 =	
 0;	
 node	
 <	
 numNodes;	
 node++){	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 jacobian(cell,	
 qp,	
 row,	
 col)	
 +=	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 coordVec(cell,	
 node,	
 row)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 *basisGrads(node,	
 qp,	
 col);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	
 //	
 node	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	
 //	
 col	

	
 	
 	
 	
 	
 	
 	
 	
 }	
 //	
 row	

	
 	
 	
 	
 	
 }	
 //	
 qp	

	

}	

//***	

template<typename	
 EvalT,	
 typename	
 Traits>	

Void	
 Jacobian<EvalT,	
 Traits>::evaluateFields(typename	

Traits::EvalData	
 d)	

{	

	
 	
 	
 Kokkos::parallel_for	
 (worksetNumCells,	
 *this);	

}	

	

17	

template<typename EvalT, typename Traits>
Void Jacobian<EvalT, Traits>::evaluateFields(typename
Traits::EvalData d)
{
for(int cell = 0; cell < worksetNumCells; cell++) {
 for(int qp = 0; qp < numQPs; qp++) {
 for(int row = 0; row < numDims; row++){
 for(int col = 0; col < numDims; col++){
 for(int node = 0; node < numNodes; node++){
 jacobian(cell, qp, row, col) +=

 coordVec(cell, node, row)
 *basisGrads(node, qp, col);
 } // node
 } // col
 } // row
 } // qp
 } // cell
}

Albany	
 ThermoMechanics	
 problem	

§  The	
 ThermoMechanics	

applicaJon	
 problem	
 is	
 a	
 study	
 of	

how	
 a	
 container	
 will	
 deform	

under	
 certain	
 external	
 loads.	

§  The	
 model	
 includes	
 Jght	

coupling	
 of	
 a	
 J2-­‐plasJcity	

mechanics	
 model	
 with	
 heat	

transfer,	
 where	
 we	
 solve	
 for	
 the	

displacement	
 vector	
 and	

temperature	
 as	
 the	
 loading	

increases.	
 	

§  A	
 fully-­‐implicit	
 precondiJoned	

Newton-­‐Krylov	
 soluJon	
 method	

is	
 used	
 to	
 solve	
 the	

unstructured-­‐grid	
 finite	
 element	

discreJzaJon.	

18	

Gather Coordinate Vector

ComputeBasisFunctions

1:0

Gather Solution

DOFVecInterpolation

3:13:2

TimeConstitutive Model Parameters

DOFVecGradInterpolation

6:16:2

Kinematics

7:1

7:6

ConstitutiveModelInterface

8:1

8:48:58:7

FirstPK

9:7

9:8

MechanicsResidual

10:1

10:3

10:9

Scatter

11:10

Performance  
results"

19	

20	

Performance	
 Results	

Evaluation
Environment:
Shannon
 (NVIDIA GPU
cluster):
32 nodes (results
presented for 1 node):

•  Two 8-core Sandy
Bridge Xeon
E5-2670 @ 2.6GHz
(HT deactivated)
per node,

•  128GB DDR3
memory per node,

•  2x NVIDIA K40x per
node

0

50

100

150

200

317 5072

tim
e,

 s
ec

of elements per workset

Total Time for FEA

0
20
40
60
80

100
120

317 5072
tim

e,
 s

ec

of elements per workset

FEA-Gather/Scatter

0

10

20

30

40

317 5072

tim
e,

 s
ec

of elements per workset

FEA Residual

0

50

100

150

317 5072

tim
e,

 s
ec

of elements per workset

FEA Jacobian

Serial CUDA OpenMP

Down is better.

3.7x 11.6x

11x

14x

1.4x

6x

8x

15x

Evaluation
Environment:
Shannon
 (NVIDIA GPU
cluster):
32 nodes (results
presented for 1 node):

•  Two 8-core Sandy
Bridge Xeon
E5-2670 @ 2.6GHz
(HT deactivated)
per node,

•  128GB DDR3
memory per node,

•  2x NVIDIA K40x per
node

0

50

100

150

200

317 5072

tim
e,

 s
ec

of elements per workset

Total Time for FEA

0
20
40
60
80

100
120

317 5072
tim

e,
 s

ec

of elements per workset

FEA-Gather/Scatter

0

10

20

30

40

317 5072

tim
e,

 s
ec

of elements per workset

FEA Residual

0

50

100

150

317 5072

tim
e,

 s
ec

of elements per workset

FEA Jacobian

Serial CUDA OpenMP

Down is better.

3.7x 11.6x

11x

14x

1.4x

6x

8x

15x

FELIX	
 Performance	
 results	
 	

Evaluation environment:
Compton:
42 nodes:

 Two 8-core Sandy Bridge Xeon
E5-2670 @ 2.6GHz (HT
activated) per node,
 24GB (3*8Gb) memory per
node,
Two Pre-production KNC (Intel
MIC) 2 per node (57 cores per
each)

Shannon:
32 nodes:

Two 8-core Sandy Bridge Xeon
E5-2670 @ 2.6GHz (HT
deactivated) per node,
128GB DDR3 memory per
node,
2x NVIDIA K20x per node

FELIX code: 1 element block, up to 10144 elements per workset on GPU

21	

Performance	
 Results	

Evaluation
Environment:
Shannon
 (NVIDIA GPU
cluster):
32 nodes (results
presented for 1 node):

•  Two 8-core Sandy
Bridge Xeon
E5-2670 @ 2.6GHz
(HT deactivated)
per node,

•  128GB DDR3
memory per node,

•  2x NVIDIA K40x per
node

0

50

100

150

200

317 5072

tim
e,

 s
ec

of elements per workset

Total Time for FEA

0
20
40
60
80

100
120

317 5072
tim

e,
 s

ec

of elements per workset

FEA-Gather/Scatter

0

10

20

30

40

317 5072

tim
e,

 s
ec

of elements per workset

FEA Residual

0

50

100

150

317 5072

tim
e,

 s
ec

of elements per workset

FEA Jacobian

Serial CUDA OpenMP

Down is better.

3.7x 11.6x

11x

14x

1.4x

6x

8x

15x

Evaluation
Environment:
Shannon
 (NVIDIA GPU
cluster):
32 nodes (results
presented for 1 node):

•  Two 8-core Sandy
Bridge Xeon
E5-2670 @ 2.6GHz
(HT deactivated)
per node,

•  128GB DDR3
memory per node,

•  2x NVIDIA K40x per
node

0

50

100

150

200

317 5072

tim
e,

 s
ec

of elements per workset

Total Time for FEA

0
20
40
60
80

100
120

317 5072
tim

e,
 s

ec

of elements per workset

FEA-Gather/Scatter

0

10

20

30

40

317 5072

tim
e,

 s
ec

of elements per workset

FEA Residual

0

50

100

150

317 5072

tim
e,

 s
ec

of elements per workset

FEA Jacobian

Serial CUDA OpenMP

Down is better.

3.7x 11.6x

11x

14x

1.4x

6x

8x

15x

FELIX	
 Performance	
 results	

Evaluation environment:
TITAN:
18,688 AMD Opteron nodes:

•  16 cores per node,
•  1 K20X Kepler GPUS per node,
•  32GB + 6GB memory per node

3.00E+00

5.00E+00

7.00E+00

9.00E+00

1.10E+01

1.30E+01

1.50E+01

1.00E+01 1.00E+02 1.00E+03

tim
e(

se
c)

Total number of Threads

Weak scalability (8km, 4km, 2km, 1km GIS)

MPI-Only MPI+2 OpenMP threads per 1 MPI MPI+4 OpenMP threads per 1 MPI

~68% faster than MPI-Only

22	

Performance	
 Results	

Evaluation
Environment:
Shannon
 (NVIDIA GPU
cluster):
32 nodes (results
presented for 1 node):

•  Two 8-core Sandy
Bridge Xeon
E5-2670 @ 2.6GHz
(HT deactivated)
per node,

•  128GB DDR3
memory per node,

•  2x NVIDIA K40x per
node

0

50

100

150

200

317 5072

tim
e,

 s
ec

of elements per workset

Total Time for FEA

0
20
40
60
80

100
120

317 5072
tim

e,
 s

ec

of elements per workset

FEA-Gather/Scatter

0

10

20

30

40

317 5072

tim
e,

 s
ec

of elements per workset

FEA Residual

0

50

100

150

317 5072

tim
e,

 s
ec

of elements per workset

FEA Jacobian

Serial CUDA OpenMP

Down is better.

3.7x 11.6x

11x

14x

1.4x

6x

8x

15x

Evaluation
Environment:
Shannon
 (NVIDIA GPU
cluster):
32 nodes (results
presented for 1 node):

•  Two 8-core Sandy
Bridge Xeon
E5-2670 @ 2.6GHz
(HT deactivated)
per node,

•  128GB DDR3
memory per node,

•  2x NVIDIA K40x per
node

0

50

100

150

200

317 5072

tim
e,

 s
ec

of elements per workset

Total Time for FEA

0
20
40
60
80

100
120

317 5072
tim

e,
 s

ec

of elements per workset

FEA-Gather/Scatter

0

10

20

30

40

317 5072

tim
e,

 s
ec

of elements per workset

FEA Residual

0

50

100

150

317 5072

tim
e,

 s
ec

of elements per workset

FEA Jacobian

Serial CUDA OpenMP

Down is better.

3.7x 11.6x

11x

14x

1.4x

6x

8x

15x

ThermoMechanics	
 problem	
 Performance	
 results	
 	

Evaluation environment:
Compton:
42 nodes:

 Two 8-core Sandy Bridge Xeon
E5-2670 @ 2.6GHz (HT
activated) per node,
 24GB (3*8Gb) memory per
node,
Two Pre-production KNC (Intel
MIC) 2 per node (57 cores per
each)

Shannon:
32 nodes:

Two 8-core Sandy Bridge Xeon
E5-2670 @ 2.6GHz (HT
deactivated) per node,
128GB DDR3 memory per
node,
2x NVIDIA K20x per node

0.1

1

10

100

0 50 100 150 200 250

tim
e,

se
c

#elements per workset

Serial
OpenMP
CUDA

TermoMecanics code: several element blocks, up to 100 elements per workset on GPU

Not enough parallelism for GPU

Conclusion	

Conclusions:	

•  Kokkos	
 provides	
 a	
 portable	
 implementaJon	
 environment	
 for	

emerging	
 node	
 architectures;	
 	

•  New	
 version	
 of	
 Albany	
 provides	
 an	
 interface	
 for	
 rapid	

development	
 of	
 architecture-­‐portable	
 Finite	
 Element	
 code;	

•  MPI-­‐only	
 is	
 not	
 sufficient.	

	

Ongoing	
 work:	

§  Kokkos	
 kernels	
 opJmizaJon	

§  PorJng	
 Trilinos	
 Linear	
 Algebra	
 Libraries	
 to	
 Kokkos	

23	

