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Performance	
  portability	
  has	
  become	
  a	
  cri/cal	
  issue	
  	
  
parallel	
  code	
  needs	
  to	
  be	
  executed	
  correctly	
  and	
  performant	
  
despite	
  variaJon	
  in	
  the	
  architecture,	
  operaJng	
  system	
  and	
  
soKware	
  libraries.	
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Approach:	
  Kokkos	
  programming	
  model	
  	
  	
  
C++	
  library,	
  which	
  provide	
  performance	
  portability	
  across	
  diverse	
  
devices	
  with	
  different	
  memory	
  models.	
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Kokkos*	
  programming	
  model	
  
§  Kokkos	
  -­‐	
  C++	
  library	
  to	
  provide	
  scienJfic	
  and	
  

engineering	
  codes	
  with	
  an	
  intuiJve	
  manycore	
  
performance	
  portable	
  programming	
  model.	
  

ü  Standard	
  C++,	
  Not	
  a	
  language	
  extension	
  
ü  Uses	
  C++	
  template	
  meta-­‐programming	
  
ü  Provides	
  portability	
  across	
  manycore	
  devices	
  

(Mul/core	
  CPU,	
  NVidia	
  GPU,	
  Intel	
  Xeon	
  Phi	
  
(poten/al:	
  AMD	
  Fusion)	
  )	
  

ü  Abstract	
  data	
  layout	
  for	
  non-­‐trivial	
  data	
  
structures	
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Kokkos*	
  programming	
  model	
  
§  Kokkos	
  :	
  
ü  Single	
  code	
  base	
  	
  
ü  Support	
  most	
  of	
  the	
  	
  	
  current	
  (and	
  future)	
  hardware	
  	
  
ü  Flexible	
  run	
  configura/ons	
  MPI-­‐Only	
  	
  

²  MPI	
  +	
  Threads	
  
²  MPI	
  +	
  GPU	
  
²  MPI	
  +	
  GPU	
  +	
  Threads	
  	
  

ü  Close	
  to	
  op/mal	
  performance	
  (i.e.	
  performance	
  of	
  a	
  
specialized	
  code)	
  	
  

ü  Use	
  vendor	
  compilers	
  	
  
ü  	
  Simple	
  code	
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Kokkos*	
  programming	
  model	
  

A	
  programming	
  model	
  with	
  two	
  major	
  components:	
  	
  
§  Data	
  access	
  abstrac/on	
  	
  

ü  Change	
  data	
  layout	
  at	
  compile	
  Jme	
  without	
  changing	
  access	
  syntax	
  =>	
  
OpJmal	
  access	
  pa[ern	
  for	
  each	
  device	
  	
  

ü  Data	
  padding	
  and	
  alignment	
  is	
  transparent	
  
Access	
  traits	
  for	
  portable	
  support	
  of	
  hardware	
  specific	
  load/store	
  units	
  	
  

§  Parallel	
  dispatch	
  
ü  Express	
  algorithms	
  with	
  parallel_for,	
  parallel_reduce	
  etc.	
  

Using	
  functor	
  concept	
  (functor:	
  construct	
  allowing	
  an	
  object	
  to	
  be	
  invoked	
  or	
  called	
  as	
  if	
  it	
  
were	
  an	
  ordinary	
  funcJon)	
  

ü  Transparently	
  mapped	
  onto	
  back-­‐end	
  languages	
  	
  
	
  	
  	
  	
  	
  	
  	
  (e.g.	
  OpenMP,	
  CUDA,	
  Pthreads	
  …)	
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Albany	
  :	
  agile	
  component-­‐based	
  parallel	
  
unstructured	
  mesh	
  applica/on	
  	
  
§  A	
  finite	
  element	
  based	
  applicaJon	
  development	
  environment	
  containing	
  the	
  

"typical"	
  building	
  blocks	
  needed	
  for	
  rapid	
  deployment	
  and	
  prototyping	
  of	
  analysis	
  
capabiliJes	
  	
  

§  A	
  mechanism	
  to	
  drive	
  and	
  demonstrate	
  the	
  _AgileComponents_	
  rapid	
  soKware	
  
development	
  vision	
  and	
  the	
  use	
  of	
  template-­‐based	
  generic	
  programming	
  (TBGP)	
  
for	
  the	
  construcJon	
  of	
  advanced	
  analysis	
  tools	
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§  A	
  Trilinos	
  demonstraJon	
  
applicaJon,	
  built	
  almost	
  
exclusively	
  from	
  reusable	
  
libraries.	
  Albany	
  leverages	
  
100+	
  packages/libraries.	
  	
  

§  Open-­‐source	
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Albany	
  :	
  agile	
  component-­‐based	
  parallel	
  
unstructured	
  mesh	
  applica/on	
  	
  

Agile	
  component	
  design	
  provides	
  	
  
§  Efficient	
  in-­‐memory	
  integraJon	
  of	
  external	
  mesh	
  database	
  	
  
§  Abstract	
  interfaces	
  to	
  components	
  (mesh,	
  solvers,	
  assembly,	
  analysis	
  tools)	
  	
  
§  Requirements	
  imposed	
  on	
  external	
  tools	
  through	
  generic	
  interfaces	
  	
  

Fully	
  representa/ve	
  of	
  a	
  typical	
  advanced	
  implicit,	
  
unstructured	
  finite	
  element	
  applica/on	
  	
  

§  Trilinos	
  supplies	
  components:	
  modern	
  linear	
  &	
  nonlinear	
  solvers,	
  
precondiJoning	
  strategies,	
  conJnuaJon	
  tools,	
  ...	
  	
  

§  Genericism	
  of	
  physics	
  evaluaJon,	
  residual	
  based,	
  with	
  Sacado	
  Jacobian	
  and	
  
matrix	
  free	
  opJons	
  	
  

§  	
  Parallel	
  MPI(+X)	
  	
  
§  Large	
  problems,	
  representaJve	
  boundary	
  condiJons,	
  test	
  suite	
  230+	
  problems	
  	
  
§  Embedded	
  SA	
  &	
  UQ	
  	
  
§  Large	
  problems,	
  representaJve	
  boundary	
  condiJons	
  	
  
§  Open	
  source	
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Albany	
  to	
  Kokkos	
  refactoring	
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Albany Greenland Ice Sheet 
model 
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Albany	
  Greenland	
  Ice	
  Sheet	
  Model	
  	
  
(FELIX	
  project)	
  

§  An	
  unstructured-­‐grid	
  finite	
  element	
  ice	
  sheet	
  
code	
  for	
  land-­‐ice	
  modeling.	
  

	
  
§  Project	
  objec/ve:	
  	
  
§  Provide	
  sea	
  level	
  rise	
  predicJon	
  
§  Run	
  on	
  new	
  architecture	
  machines	
  (hybrid	
  

systems).	
  
–  50%	
  /me	
  spent	
  in	
  FE	
  Assembly	
  
–  50%	
  Jme	
  spent	
  in	
  Linear	
  Solves	
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Greenland	
  Ice-­‐Sheet	
  	
  model	
  	
  

15	
  

Gather Solution

Gather Coordinate Vector

Compute Basis Functions

2:1

VecInterpolation

3:0 3:2

VecGradInterpolation

4:0 4:2

ViscosityFO

5:4

Load State Field

GradInterpolation

7:2 7:6

Stokes BodyForce

8:7

Stokes Resid

9:2

9:3 9:4

9:5 9:8

Scatter Stokes

10:9



Greenland	
  Ice-­‐Sheet	
  	
  model	
  	
  	
  
(Kokkos	
  implementa/on)	
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Kokkos_functor	
  example:	
  Jacobian	
  
*************************************************	
  
template<typename	
  EvalT,	
  typename	
  Traits>	
  
KOKKOS_INLINE_FUNCTION	
  
void	
  Jacobian<EvalT,	
  Traits>::	
  operator	
  ()	
  (const	
  int	
  i)	
  const	
  
	
  {	
  
	
  	
  	
  	
  for(int	
  qp	
  =	
  0;	
  qp	
  <	
  numQPs;	
  qp++)	
  {	
  
	
  	
  	
  	
  	
  	
  	
  	
  for(int	
  row	
  =	
  0;	
  row	
  <	
  numDims;	
  row++){	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for(int	
  col	
  =	
  0;	
  col	
  <	
  numDims;	
  col++){	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for(int	
  node	
  =	
  0;	
  node	
  <	
  numNodes;	
  node++){	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  jacobian(cell,	
  qp,	
  row,	
  col)	
  +=	
   	
   	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  coordVec(cell,	
  node,	
  row)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  *basisGrads(node,	
  qp,	
  col);	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  }	
  //	
  node	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  }	
  //	
  col	
  
	
  	
  	
  	
  	
  	
  	
  	
  }	
  //	
  row	
  
	
  	
  	
  	
  	
  }	
  //	
  qp	
  
	
  
}	
  
//*************************************************	
  
template<typename	
  EvalT,	
  typename	
  Traits>	
  
Void	
  Jacobian<EvalT,	
  Traits>::evaluateFields(typename	
  
Traits::EvalData	
  d)	
  
{	
  
	
  	
  	
  Kokkos::parallel_for	
  (worksetNumCells,	
  *this);	
  
}	
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template<typename EvalT, typename Traits> 
Void Jacobian<EvalT, Traits>::evaluateFields(typename 
Traits::EvalData d) 
{ 
for(int cell = 0; cell < worksetNumCells; cell++) { 
     for(int qp = 0; qp < numQPs; qp++) { 
        for(int row = 0; row < numDims; row++){ 
           for(int col = 0; col < numDims; col++){ 
              for(int node = 0; node < numNodes; node++){ 
                  jacobian(cell, qp, row, col) +=   

   coordVec(cell, node, row) 
                                *basisGrads(node, qp, col); 
               } // node 
            } // col 
        } // row 
     } // qp 
   } // cell 
} 



Albany	
  ThermoMechanics	
  problem	
  
§  The	
  ThermoMechanics	
  

applicaJon	
  problem	
  is	
  a	
  study	
  of	
  
how	
  a	
  container	
  will	
  deform	
  
under	
  certain	
  external	
  loads.	
  

§  The	
  model	
  includes	
  Jght	
  
coupling	
  of	
  a	
  J2-­‐plasJcity	
  
mechanics	
  model	
  with	
  heat	
  
transfer,	
  where	
  we	
  solve	
  for	
  the	
  
displacement	
  vector	
  and	
  
temperature	
  as	
  the	
  loading	
  
increases.	
  	
  

§  A	
  fully-­‐implicit	
  precondiJoned	
  
Newton-­‐Krylov	
  soluJon	
  method	
  
is	
  used	
  to	
  solve	
  the	
  
unstructured-­‐grid	
  finite	
  element	
  
discreJzaJon.	
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Performance	
  Results	
  

Evaluation 
Environment: 
Shannon 
 (NVIDIA GPU 
cluster): 
32 nodes (results 
presented for 1 node): 

•  Two 8-core Sandy 
Bridge Xeon 
E5-2670 @ 2.6GHz 
(HT deactivated) 
per node, 

•  128GB DDR3 
memory per node, 

•  2x NVIDIA K40x per 
node 
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FELIX	
  Performance	
  results	
  	
  
Evaluation environment: 
Compton:  
42 nodes: 

 Two 8-core Sandy Bridge Xeon 
E5-2670 @ 2.6GHz (HT 
activated) per node, 
 24GB (3*8Gb) memory per 
node,  
Two Pre-production KNC (Intel 
MIC) 2 per node (57 cores per 
each) 

 
Shannon: 
32 nodes: 

Two 8-core Sandy Bridge Xeon 
E5-2670 @ 2.6GHz (HT 
deactivated) per node, 
128GB DDR3 memory per 
node, 
2x NVIDIA K20x per node 
 
 

 
 

FELIX code: 1 element block, up to 10144 elements per workset on GPU 
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FELIX	
  Performance	
  results	
  

Evaluation environment: 
TITAN: 
18,688 AMD Opteron nodes: 

•  16 cores per node, 
•  1 K20X Kepler GPUS per node, 
•  32GB + 6GB memory per node 

 
 

 
 

3.00E+00 

5.00E+00 

7.00E+00 

9.00E+00 

1.10E+01 

1.30E+01 

1.50E+01 

1.00E+01 1.00E+02 1.00E+03 

tim
e(

se
c)

 

Total number of Threads 

Weak scalability (8km, 4km, 2km, 1km GIS) 

MPI-Only MPI+2 OpenMP threads per 1 MPI MPI+4 OpenMP threads per 1 MPI 

~68% faster than MPI-Only 



22	
  

Performance	
  Results	
  

Evaluation 
Environment: 
Shannon 
 (NVIDIA GPU 
cluster): 
32 nodes (results 
presented for 1 node): 

•  Two 8-core Sandy 
Bridge Xeon 
E5-2670 @ 2.6GHz 
(HT deactivated) 
per node, 

•  128GB DDR3 
memory per node, 

•  2x NVIDIA K40x per 
node 

 

 

0 

50 

100 

150 

200 

317 5072 

tim
e,

 s
ec

 

# of elements per workset 

Total Time for FEA 

0 
20 
40 
60 
80 

100 
120 

317 5072 
tim

e,
 s

ec
 

# of elements per workset 

FEA-Gather/Scatter 

0 

10 

20 

30 

40 

317 5072 

tim
e,

 s
ec

 

# of elements per workset 

FEA Residual 

0 

50 

100 

150 

317 5072 

tim
e,

 s
ec

 

# of elements per workset 

FEA Jacobian 

Serial                  CUDA                  OpenMP   

Down is better. 

3.7x 11.6x 

11x 

14x 

1.4x 

6x 

8x 

15x 

Evaluation 
Environment: 
Shannon 
 (NVIDIA GPU 
cluster): 
32 nodes (results 
presented for 1 node): 

•  Two 8-core Sandy 
Bridge Xeon 
E5-2670 @ 2.6GHz 
(HT deactivated) 
per node, 

•  128GB DDR3 
memory per node, 

•  2x NVIDIA K40x per 
node 

 

 

0 

50 

100 

150 

200 

317 5072 

tim
e,

 s
ec

 

# of elements per workset 

Total Time for FEA 

0 
20 
40 
60 
80 

100 
120 

317 5072 
tim

e,
 s

ec
 

# of elements per workset 

FEA-Gather/Scatter 

0 

10 

20 

30 

40 

317 5072 

tim
e,

 s
ec

 

# of elements per workset 

FEA Residual 

0 

50 

100 

150 

317 5072 

tim
e,

 s
ec

 

# of elements per workset 

FEA Jacobian 

Serial                  CUDA                  OpenMP   

Down is better. 

3.7x 11.6x 

11x 

14x 

1.4x 

6x 

8x 

15x 

ThermoMechanics	
  problem	
  Performance	
  results	
  	
  

Evaluation environment: 
Compton:  
42 nodes: 

 Two 8-core Sandy Bridge Xeon 
E5-2670 @ 2.6GHz (HT 
activated) per node, 
 24GB (3*8Gb) memory per 
node,  
Two Pre-production KNC (Intel 
MIC) 2 per node (57 cores per 
each) 

 
Shannon: 
32 nodes: 

Two 8-core Sandy Bridge Xeon 
E5-2670 @ 2.6GHz (HT 
deactivated) per node, 
128GB DDR3 memory per 
node, 
2x NVIDIA K20x per node 
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Conclusion	
  
Conclusions:	
  
•  Kokkos	
  provides	
  a	
  portable	
  implementaJon	
  environment	
  for	
  
emerging	
  node	
  architectures;	
  	
  

•  New	
  version	
  of	
  Albany	
  provides	
  an	
  interface	
  for	
  rapid	
  
development	
  of	
  architecture-­‐portable	
  Finite	
  Element	
  code;	
  

•  MPI-­‐only	
  is	
  not	
  sufficient.	
  
	
  
Ongoing	
  work:	
  
§  Kokkos	
  kernels	
  opJmizaJon	
  
§  PorJng	
  Trilinos	
  Linear	
  Algebra	
  Libraries	
  to	
  Kokkos	
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