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•  Traditional relationship between hardware vendors and 
application “app” developers: machine shows up and app 
developers forced to get their code to run well on it 
–  but the gap between peak performance and actual app 

performance keeps widening (e.g. FEM unstructured mesh app 
sparse iterative solver and multigrid preconditioner achieves 
~1% of peak) 

•  Future architectures so radically different that in order to get 
reasonable performance, all teams need to work together: 
hardware, runtime environment, programming models, 
compilers, application developers        “co-design” 
–  Others have different definitions for “co-design” 
–  For this talk, we will use the above ASC view of co-design 
–  App developers would prefer it if other teams just took their 

multi-million line codes and got them to work well; not a realistic 
expectation 

 
 
 

 
 

Historical perspective 



•  If a performance proxy that captures certain key performance 
characteristics of the app can be developed, interactions 
between the apps teams and other teams could be greatly 
facilitated 

•  Need a proxy that can represent key performance aspects 
–  Careful design needed 
–  Even properly designed proxy can only be used within scope of 

design; otherwise results will be misleading 
–  Goal is to provide insight 
–  Provides concrete software for hardware vendors and apps 

developers to communicate 
–  Never forget that the app proxy is not the app 

•  Assume proxy has been properly designed and “validated” 
–  E.g. see “Assessing the Validity of the Role of Mini-Applications in 

Predicting Key Performance Characteristics of Scientific and 
Engineering Applications,” R. Barrett et al. Journal of Parallel and 
Distributed Computing, Vol 75, Jan 2015, pp 107-122 

 
 
 

Performance proxies for applications 



•  Effort during FY14 (DOE ASC “milestone”): explored how 
some tri-labs proxies perform on modern and future 
architectures 
–  Tri-labs: Los Alamos (LANL), Lawrence Livermore (LLNL), Sandia (SNL) 
–  Goal: provide some insight what to potentially expect for the future 

•  Effort focused on two proxies per lab 
–  LANL 

•  SNAP: Deterministic Sn Transport 
•  PENNANT: Unstructured hydrodynamics 

–  LLNL 
•  UMT: Deterministic Sn transport 
•  MCB: Monte Carlo particle transport 

–  SNL (focus of this talk) 
•  MiniFE: Implicit unstructured finite elements 
•  MiniAero: explicit high Mach aerodynamics 

 
 

 
 

Focus of talk 
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Implicit finite element proxy: miniFE 

•  SNL has many implicit FE apps 
•  Steady-state 3D heat equation (Poisson equation) in cube 
•  Structured mesh, but data stored as unstructured mesh 

•  had to tell one vendor that they were not allowed take 
advantage of the underlying structured mesh 

•  Finite element method with hexahedral elements 
•  FEM matrix and RHS assembly 

•  too simple for real apps; more realistic assembly needed 
•  Symmetric matrix solved by CG (no preconditioner) 

•  Lack of preconditioner: big weakness 
•  No multilevel/multigrid---critical for scaling  

•  Implemented in ~20 variants in 10 programming mechanisms 
•  Variants for several hardware platforms including vendor 

simulators 

 



miniFE single node performance 
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•  Kokkos provides performance portabillity 
–  Same code implemented using Kokkos can be run on a CPU, 

GPU or Xeon Phi 
–  Don’t give up much performance (10-20%) vs. writing own code 

or vendor library 

•    
 
 



miniFE weak scaling to 32k nodes BG/Q 

Average Mflops/node 
•  Sparse iterative solve bandwidth 

bound, so not much variation 
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Compressible flow app proxy: miniAero 

•  3D unstructured finite volume 
•  Runge-Kutta 4th order time 
•  Inviscid Roe Flux 
 

 
 •  Based on Kokkos 

•  Physics kernels are functors -> flexible 
•  Use of templates for device and algorithm choices 
•  Still under development 

–  Additional physics (LES, etc.) 
–  Point implicit solver 

 
 



miniAero single node performance 

•  ~4.2M elements 
•  500 time steps 

 
 

Platform Processor Clock Speed (GHz) Runtime (sec) 

BG/Q 16 core/64 threads 1.6 1861 

Chama Intel Xeon Sandy Bridge, 2x8 cores 2.6 587 

Compton Intel Xeon Phi 7120 (KNC), 57 cores 1.1 738 

Curie Opteron 16 cores AMD Interlagos, 2x8 cores 2.1 1787 

Curie Nvidia K20X Kepler, 2688 cores 0.7 286 



miniAero multiple nodes MPI+GPU 

•  Traditional 
 
 

Time (sec) Speedup  
Summary 
•  GPU speedups can be significant 
•  FV (explicit) amenable to threading, both CPU and GPU 

–  Thread safety required 
•  Further performance evaluation and tuning needed 
•  Additional hardware testing needed (Phi, BG/Q, Titan) 
•  Kokkos – promising for heterogeneous architectures 



Summary 

•  As part of work performed to fulfill an NNSA ASC milestone, 
the trilabs performed studies of proxy apps that concerned 
performance on current and future platforms 

•  Talk focused on two SNL proxies: miniFE and miniAero 
–  Proxies representative of important SNL apps 
–  Demonstrated that Kokkos provides performance portability 

•  Typical “rule of thumb” is that app developers can get 
80-90% of performance of native choice, but get this across 
multiple hardware choices 

–  MPI + threads effective 
•  But hard to get performance win over MPI-only for CPUs 

•  Proxy apps have demonstrated value, but full app work 
critical to understand full complexity 
–  Never forget that the proxy app is not the app 

 

 
 



Future work 

Lots and lots of it; a small sampling… 
•  More proxy apps 

–  E.g. “miniFEassembly” as miniFE matrix assembly is not 
representative of app 

•  Ensure proxy apps are really representative of app 
•  More detailed and extensive studies of proxy apps on 

architectures 
•  Studies on additional architectures 
•  Task-based parallelism approaches 

–  Unitah, Legion, Charm++, etc. 
–  Co-design issues, especially with respect to runtime systems 

 

 
 



Proxy applications value 
•  What is the value of proxy applications? 

–  effective means to isolate specific issues for current and future systems 
–  Greatly ease communication between computational scientists, 

computer scientists and computer vendors 
–  Enable rapid exploration of programming models, abstraction techniques, 

and optimization approaches in a quasi-realistic context, for subsequent 
adoption by a full application 

•  What are their short-comings? 
–  Too easy to misuse 
–  Simplicity can be misleading: a single-physics proxy application may be 

significantly easier to optimize on challenging architectures (e.g. GPUs) than 
multi-physics applications with their more dynamic behavior 

•  What recommendations could be followed to increase their value? 
–  Better documentation on how to do scaling studies (particularly 

weak scaling), physics (parameter ranges that, etc.) 
–  Better documentation on how to vary physics (i.e. how to select parameter 

ranges that test the limits of interest wrt the target computational science) 
–  Caveat: Can all of the above be done without a testing framework 

as complex to grasp and maintain as a full application? 
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