
Co-design with proxy applications at the DOE
NNSA Trilabs: performance of SNL proxies on

modern and some future architectures

SIAM CSE
Salt Lake City

March 18, 2015

Paul Lin and Richard Barrett
Sandia National Labs

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department
of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

SAND2015-2169C

•  Traditional relationship between hardware vendors and
application “app” developers: machine shows up and app
developers forced to get their code to run well on it
–  but the gap between peak performance and actual app

performance keeps widening (e.g. FEM unstructured mesh app
sparse iterative solver and multigrid preconditioner achieves
~1% of peak)

•  Future architectures so radically different that in order to get
reasonable performance, all teams need to work together:
hardware, runtime environment, programming models,
compilers, application developers “co-design”
–  Others have different definitions for “co-design”
–  For this talk, we will use the above ASC view of co-design
–  App developers would prefer it if other teams just took their

multi-million line codes and got them to work well; not a realistic
expectation

Historical perspective

•  If a performance proxy that captures certain key performance
characteristics of the app can be developed, interactions
between the apps teams and other teams could be greatly
facilitated

•  Need a proxy that can represent key performance aspects
–  Careful design needed
–  Even properly designed proxy can only be used within scope of

design; otherwise results will be misleading
–  Goal is to provide insight
–  Provides concrete software for hardware vendors and apps

developers to communicate
–  Never forget that the app proxy is not the app

•  Assume proxy has been properly designed and “validated”
–  E.g. see “Assessing the Validity of the Role of Mini-Applications in

Predicting Key Performance Characteristics of Scientific and
Engineering Applications,” R. Barrett et al. Journal of Parallel and
Distributed Computing, Vol 75, Jan 2015, pp 107-122

Performance proxies for applications

•  Effort during FY14 (DOE ASC “milestone”): explored how
some tri-labs proxies perform on modern and future
architectures
–  Tri-labs: Los Alamos (LANL), Lawrence Livermore (LLNL), Sandia (SNL)
–  Goal: provide some insight what to potentially expect for the future

•  Effort focused on two proxies per lab
–  LANL

•  SNAP: Deterministic Sn Transport
•  PENNANT: Unstructured hydrodynamics

–  LLNL
•  UMT: Deterministic Sn transport
•  MCB: Monte Carlo particle transport

–  SNL (focus of this talk)
•  MiniFE: Implicit unstructured finite elements
•  MiniAero: explicit high Mach aerodynamics

Focus of talk

Contributors (SNL work)

•  Richard Barrett, Carter Edwards, Ken Franko, Si
Hammond, Glen Hansen, L., Mahesh Rajan, Dylan
Stark, Christian Trott, Courtenay Vaughan, Patrick
Xavier, Alan Williams, and others.

•  Several vendor staff, including Mike Davis (Cray),
Duncan Roweth (Cray), Justin Lutjiens (Nvidia), Intel Phi
team, and others.

•  Local testbed support, including Jim Laros, Sue Kelly,
system admin teams, and others.

•  Thanks to LC Sequoia BG/Q team for support

Mantevo project (mantevo.org)
miniapp	
 or	
 miniDriver	

CleverLeaf	
 	
 (AWE)	
 Eulerian on structured grid with AMR

CloverLeaf,	
 CloverLeaf3D	
 (AWE)	
 Compressible	
 Euler	
 eqns,	
 explicit	
 2nd	
 order	
 accurate	

CoMD	
 (LANL/LLNL)	
 Molecular	
 dynamics	
 (SPaSM)	

EpetraBenchmarkTest	
 Exercises	
 Epetra	
 sparse	
 and	
 dense	
 kernels.	

HPCCG	
 Unstructured	
 implicit	
 finite	
 element	

miniAero	
 3D	
 unstructured	
 FV	
 R-­‐K	
 4th	
 order	
 Ume,	
 inviscid	
 Roe	
 Flux	

miniAMR	
 AdapUve	
 mesh	
 refinement	
 of	
 an	
 Eulerian	
 mesh	

miniFE	
 Implicit	
 finite	
 element	
 solver	

miniGhost	
 FDM/FVM	
 explicit	
 (halo	
 exchange	
 focus)	

miniMD	
 Molecular	
 dynamics	
 (Lennard-­‐Jones)	

miniSMAC2D	
 FD 2D incompressible N/S on a structured grid.	

miniXyce	
 SPICE-­‐style	
 circuit	
 simulator	

PathFinder	
 Signature	
 search	

TeaLeaf	
 (AWE)	
 Heat	
 conducUon	
 with	
 implicit	
 solvers	
 (CG	
 and	
 Cheby)	
 on	
 a	
 5-­‐pt	
 stencil.	

miniExDyn-­‐FE	
 Explicit	
 Dynamics	
 (Kokkos-­‐based)	

miniITC-­‐FE	
 Implicit	
 Thermal	
 ConducUon	
 (Kokkos-­‐based)	

phdMesh	
 Explicit	
 FEM:	
 contact	
 detecUon	

3.0 release

Implicit finite element proxy: miniFE

•  SNL has many implicit FE apps
•  Steady-state 3D heat equation (Poisson equation) in cube
•  Structured mesh, but data stored as unstructured mesh

•  had to tell one vendor that they were not allowed take
advantage of the underlying structured mesh

•  Finite element method with hexahedral elements
•  FEM matrix and RHS assembly

•  too simple for real apps; more realistic assembly needed
•  Symmetric matrix solved by CG (no preconditioner)

•  Lack of preconditioner: big weakness
•  No multilevel/multigrid---critical for scaling

•  Implemented in ~20 variants in 10 programming mechanisms
•  Variants for several hardware platforms including vendor

simulators

miniFE single node performance

0
4
8

12
16
20
24

K20X IvyBridge SandyBridge XeonPhi B0 XeonPhi C0 IBM Power7+

MiniFE	
 CG-­‐Solve	
 /me	
 for	
 200	
 itera/ons	
 on	
 200^3	
 mesh	

NVIDIA ELL NVIDIA CuSparse Kokkos OpenMP
MPI-Only OpenCL TBB Cilk+(1 Socket)

Ti
m
e	

(s
ec
on

ds
)	

•  Kokkos provides performance portabillity
–  Same code implemented using Kokkos can be run on a CPU,

GPU or Xeon Phi
–  Don’t give up much performance (10-20%) vs. writing own code

or vendor library

• 

miniFE weak scaling to 32k nodes BG/Q

Average Mflops/node
•  Sparse iterative solve bandwidth

bound, so not much variation

1"node"

64"nodes"
4k"nodes"

2550"
2600"
2650"
2700"
2750"
2800"
2850"
2900"
2950"

p6
4t1
"

p3
2t2
"

p1
6t4
"

p8
t8"

p4
t16
"

p2
t32
"

p1
t64
"

1"node"

8"nodes"

64"nodes"

512"nodes"

4k"nodes"

32k"nodes" 1"node"
64"nodes"
4k"nodes"

0.000"
2.000"
4.000"
6.000"
8.000"

10.000"

12.000"

14.000"

p6
4t1
"

p3
2t2
"

p1
6t4
"
p8
t8"

p4
t16
"

p2
t32
"

p1
t64
"

1"node"

8"nodes"

64"nodes"

512"nodes"

4k"nodes"

32k"nodes"

Average	
 memory/node	
 (GB)	

§  1	
 MPI	
 task/node	
 (64	
 threads):	
 slow	

memory	
 growth	
 as	
 scale	

§  64	
 MPI	
 tasks/node:	
 memory	
 rapidly	

growing;	
 32k	
 nodes	
 (2	
 million	
 MPI	

tasks)	
 close	
 to	
 maxing	
 out	
 memory	

§  MPI+OpenMP	
 threads	
 can	

significantly	
 save	
 memory	

Compressible flow app proxy: miniAero

•  3D unstructured finite volume
•  Runge-Kutta 4th order time
•  Inviscid Roe Flux

 •  Based on Kokkos

•  Physics kernels are functors -> flexible
•  Use of templates for device and algorithm choices
•  Still under development

–  Additional physics (LES, etc.)
–  Point implicit solver

miniAero single node performance

•  ~4.2M elements
•  500 time steps

Platform Processor Clock Speed (GHz) Runtime (sec)

BG/Q 16 core/64 threads 1.6 1861

Chama Intel Xeon Sandy Bridge, 2x8 cores 2.6 587

Compton Intel Xeon Phi 7120 (KNC), 57 cores 1.1 738

Curie Opteron 16 cores AMD Interlagos, 2x8 cores 2.1 1787

Curie Nvidia K20X Kepler, 2688 cores 0.7 286

miniAero multiple nodes MPI+GPU

•  Traditional

Time (sec) Speedup
Summary
•  GPU speedups can be significant
•  FV (explicit) amenable to threading, both CPU and GPU

–  Thread safety required
•  Further performance evaluation and tuning needed
•  Additional hardware testing needed (Phi, BG/Q, Titan)
•  Kokkos – promising for heterogeneous architectures

Summary

•  As part of work performed to fulfill an NNSA ASC milestone,
the trilabs performed studies of proxy apps that concerned
performance on current and future platforms

•  Talk focused on two SNL proxies: miniFE and miniAero
–  Proxies representative of important SNL apps
–  Demonstrated that Kokkos provides performance portability

•  Typical “rule of thumb” is that app developers can get
80-90% of performance of native choice, but get this across
multiple hardware choices

–  MPI + threads effective
•  But hard to get performance win over MPI-only for CPUs

•  Proxy apps have demonstrated value, but full app work
critical to understand full complexity
–  Never forget that the proxy app is not the app

Future work

Lots and lots of it; a small sampling…
•  More proxy apps

–  E.g. “miniFEassembly” as miniFE matrix assembly is not
representative of app

•  Ensure proxy apps are really representative of app
•  More detailed and extensive studies of proxy apps on

architectures
•  Studies on additional architectures
•  Task-based parallelism approaches

–  Unitah, Legion, Charm++, etc.
–  Co-design issues, especially with respect to runtime systems

Proxy applications value
•  What is the value of proxy applications?

–  effective means to isolate specific issues for current and future systems
–  Greatly ease communication between computational scientists,

computer scientists and computer vendors
–  Enable rapid exploration of programming models, abstraction techniques,

and optimization approaches in a quasi-realistic context, for subsequent
adoption by a full application

•  What are their short-comings?
–  Too easy to misuse
–  Simplicity can be misleading: a single-physics proxy application may be

significantly easier to optimize on challenging architectures (e.g. GPUs) than
multi-physics applications with their more dynamic behavior

•  What recommendations could be followed to increase their value?
–  Better documentation on how to do scaling studies (particularly

weak scaling), physics (parameter ranges that, etc.)
–  Better documentation on how to vary physics (i.e. how to select parameter

ranges that test the limits of interest wrt the target computational science)
–  Caveat: Can all of the above be done without a testing framework

as complex to grasp and maintain as a full application?

Thanks For Your Attention!
Paul Lin (ptlin@sandia.gov)

The authors gratefully acknowledge funding from the DOE
NNSA Advanced Simulation & Computing (ASC) program

Acknowledgment
•  This work was performed under the DOE NNSA ASC milestone:

“Milestone #4875: Evaluate Application Performance on Advanced
Architectures,” programmatic leads: Richard Barrett (SNL), David
Daniel (LANL), Todd Gamblin (LLNL), Mike Glass (SNL), Rob
Hoekstra (SNL), Louis Howell (LLNL), Christoph Junghans (LANL)
Al McPherson (LANL), and Rob Neely (LLNL)

