



A Hybrid Operator Dependent MG / AMG Approach: Application to Ice Sheet Modeling

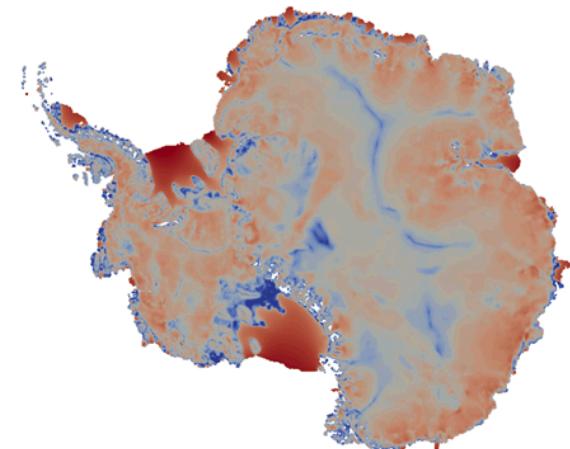
Ray Tuminaro, Sandia National Labs

Collaborators

Sandia: Irina Tezaur, Mauro Perego, Andy Salinger,

Chris Siefert

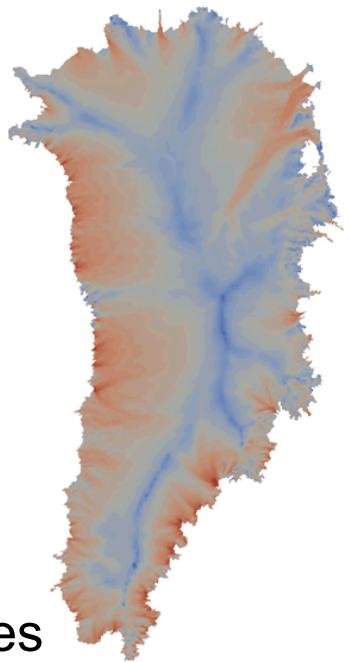
LANL: Steve Price



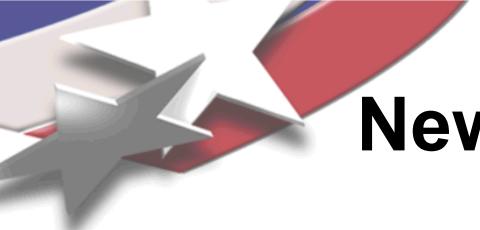
Sandia National Laboratories is a multi-program laboratory operated by Sandia Corp, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

**Sandia
National
Laboratories**

Outline

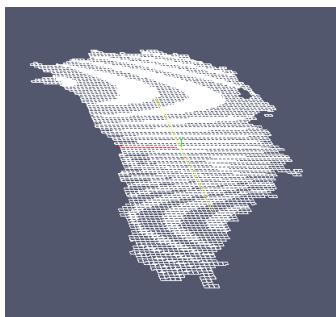
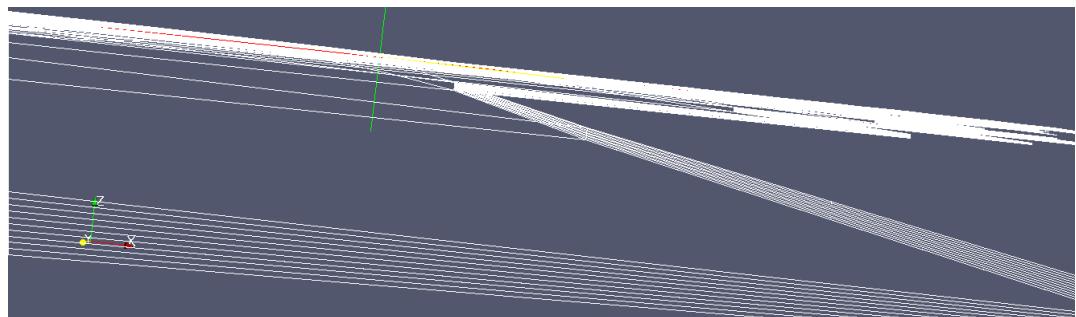


- Ice sheets & motivation
 - equations & meshes
- Linear solver observations
 - ILU solvers & orderings, parallel decompositions, singularities
- Matrix dependent semi-coarsening MG
 - Generalization for extruded meshes and aggressive semi-coarsening
- Hybrid solver
 - AMG on pancake mesh
 - Solver practicalities
- Numerical results



New solver motivation

- Ice sheet dynamics are critical in evaluating potential sea level rise
- Lots of uncertain model inputs
 - ⇒ many repeated simulations, e.g. UQ, inverse problems
- Linear solver time typically dominates
 - ⇒ many linear solvers per simulation, nonlinear with continuation (steady state)
- Equations are simplified Stokes with variable μ
- Main difficulty is anisotropic mesh



- Success with anisotropic-aware geometric MG, but want an algebraic solver

The First-Order Stokes Model for Ice Sheets & Glaciers

- Ice sheet dynamics are given by the **“First-Order” Stokes PDEs**: approximation* to viscous incompressible **quasi-static** Stokes flow with power-law viscosity.

$$\begin{cases} -\nabla \cdot (2\mu \dot{\epsilon}_1) = -\rho g \frac{\partial s}{\partial x} \\ -\nabla \cdot (2\mu \dot{\epsilon}_2) = -\rho g \frac{\partial s}{\partial y} \end{cases}, \quad \text{in } \Omega$$

$$\begin{aligned} \dot{\epsilon}_1^T &= (2\dot{\epsilon}_{11} + \dot{\epsilon}_{22}, \dot{\epsilon}_{12}, \dot{\epsilon}_{13}) \\ \dot{\epsilon}_2^T &= (2\dot{\epsilon}_{12}, \dot{\epsilon}_{11} + 2\dot{\epsilon}_{22}, \dot{\epsilon}_{23}) \\ \dot{\epsilon}_{ij} &= \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \end{aligned}$$

- Viscosity μ is nonlinear function given by **“Glen’s law”**:

$$\mu = \frac{1}{2} A^{-\frac{1}{n}} \left(\frac{1}{2} \sum_{ij} \dot{\epsilon}_{ij}^2 \right)^{\left(\frac{1}{2n} - \frac{1}{2} \right)}$$

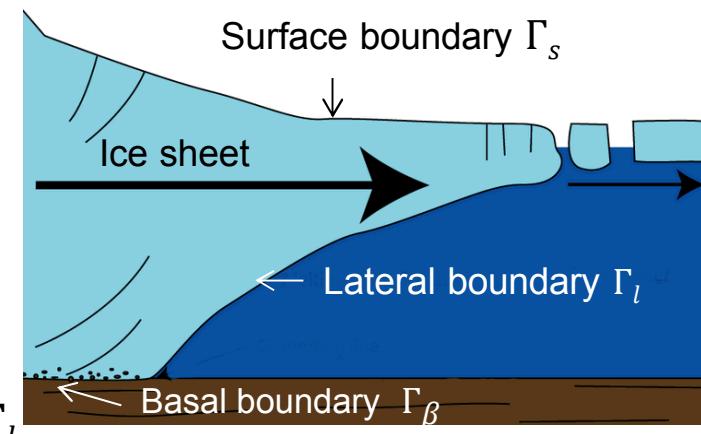
($n = 3$)

- Relevant boundary conditions:

- Stress-free BC:** $2\mu \dot{\epsilon}_i \cdot \mathbf{n} = 0$, on Γ_s
- Floating ice BC:**

$$2\mu \dot{\epsilon}_i \cdot \mathbf{n} = \begin{cases} \rho g z \mathbf{n}, & \text{if } z > 0 \\ 0, & \text{if } z \leq 0 \end{cases}, \quad \text{on } \Gamma_l$$

- Basal sliding BC:** $2\mu \dot{\epsilon}_i \cdot \mathbf{n} + \beta u_i = 0$, on Γ_b



β = sliding coefficient ≥ 0

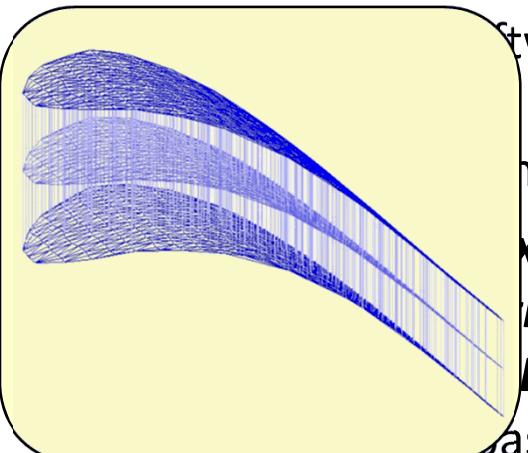
*Assumption: aspect ratio δ is small and normals to upper/lower surfaces are almost vertical.

Algorithmic Choices for Albany/FELIX

Discretization & Meshes

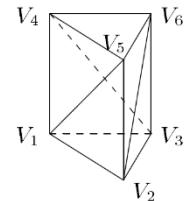
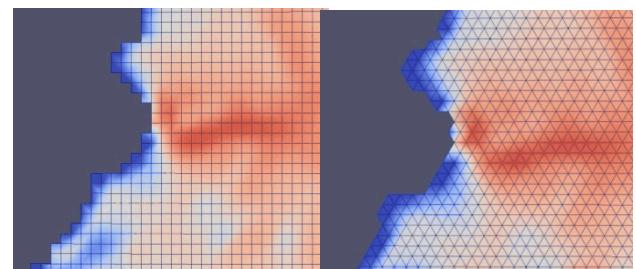
- **Discretization:** unstructured grid finite element method (FEM)
 - Can handle readily complex geometries.
 - Natural treatment of stress boundary conditions.
 - Enables regional refinement/unstructured meshes.

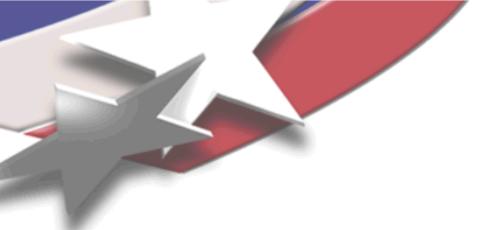
software and algorithms.



Any mesh but interested specifically in
hexahedral meshes (compatible with *CISM*).
trahedral meshes (compatible with *MPAS*)
Delaunay triangle meshes with regional
refinement based on gradient of surface velocity.

- All meshes are extruded (structured) in vertical direction as tetrahedra or hexahedra (wedge elements did not work well).





Solver observations

**Sometimes ILU
works great ...**

**AMG works
poorly on these
problems ...**

**Sometimes ILU
is really bad ...**

**Sometimes $A \ u = b$
is easy ...
sometimes hard**

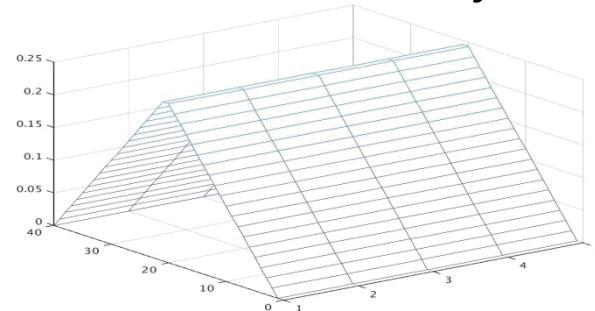
**Floating ice is
real trouble for
all linear
solvers ...**

**Meshes with
many vertical
points are
problematic**

Locality & thin domains

Consider $u_{xx} + u_{yy} = f$

$$0 \leq x \leq 1, \quad 0 \leq y \leq \varepsilon$$



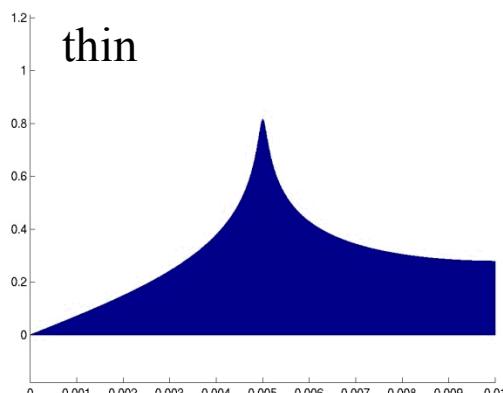
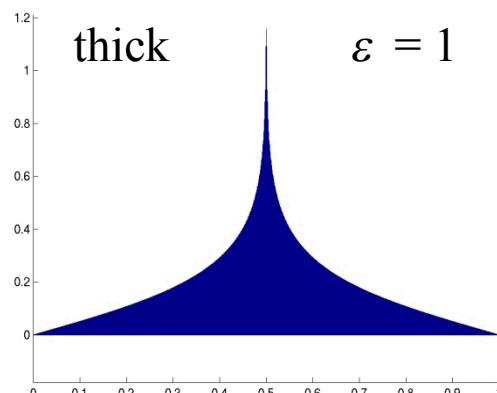
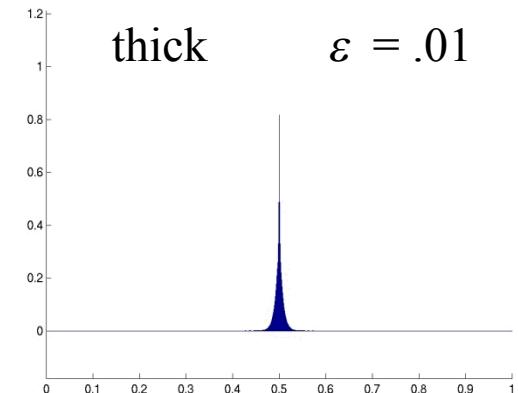
a) $u_y(x, 0) = u_y(x, \varepsilon) = 0$

$$u(0, y) = u(1, y) = 0$$

$$f(x, y) = \delta(.5, y)$$

b) $u(x, 0) = 0, \quad u_y(x, \varepsilon) = 0$

$$u(0, y) = u(1, y) = 0, \quad f(x, y) = \delta(.5, \varepsilon/2)$$



model ice problem :

Mesh	small β	ILU its.
60 x 60 x 10		7.8
120 x 120 x 10		8.5
240 x 240 x 10		13.9

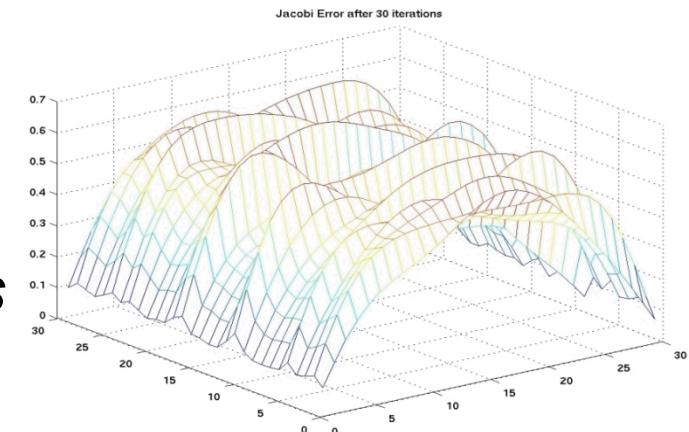
Mesh	large β	ILU its.
60 x 60 x 10		6.6
120 x 120 x 10		6.6
240 x 240 x 10		7.2

Anisotropic Phenomena & Solvers

small eigenvalues associated with weak direction

Model problem: $\varepsilon u_{xx} + u_{yy} = f$

*MG perspective: hard to smooth errors
in weak direction*



Remedies: * fix smoother (e.g., line smoothing)
* coarsen only in direction that are easy to smooth

- This talk takes the 2nd approach, but does employ line smoothing to allow for aggressive semi-coarsening
 - vertical coarsening until just one layer ... then horizontal coarsening

Solver Observations Revisited

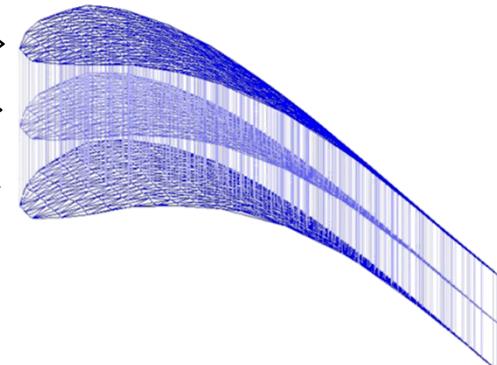
ILU & Anisotropic Problems

- Vertical line Jacobi & vertical line GS can work well
- ILU can work well **if** vertical coupling accurately captured
 - layer-wise ordering best with finite elements
 - DD+ILU : 2D vertical strip domains

ILU(0) U factor \Rightarrow

ILU(0) mixed \Rightarrow

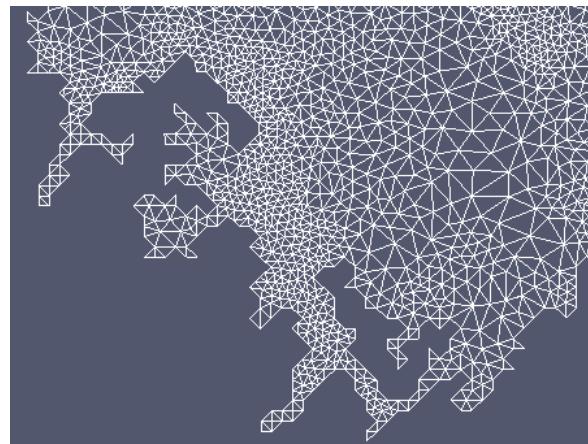
ILU(0) L factor \Rightarrow



- ILU can be very poor if vertical coupling not captured!

Singularities

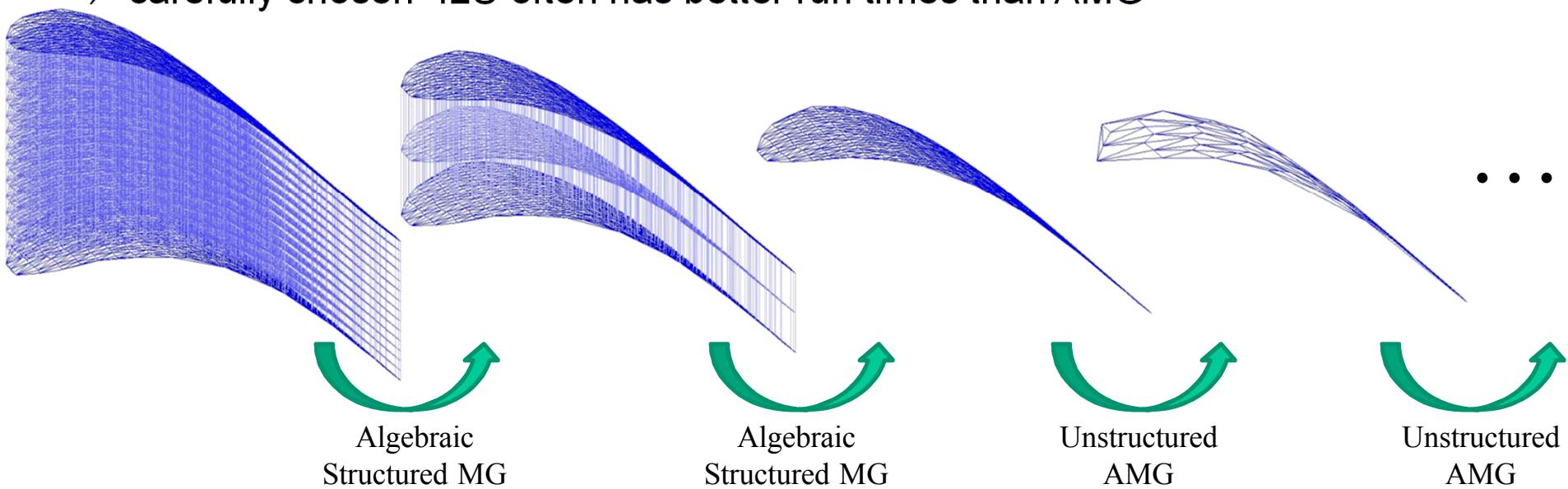
floating ice +
islands or hinges
 \Rightarrow singular matrix



An Algebraic Multi-Level Approach

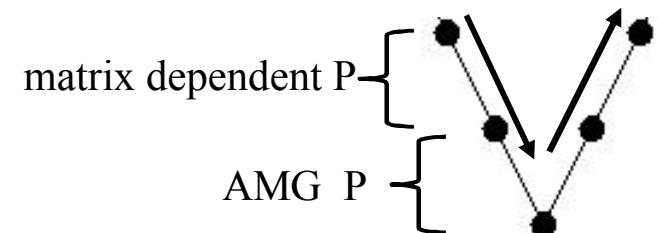
Standard AMG poorly handles bad aspect ratios!

- strength-of-connection algorithms help, but convergence rates still disappointing
- FE matrix complicates strength-of-connection
- bad scaling of Robin condition and non-uniform vertical spacing problematic
- → “carefully chosen” ILU often has better run times than AMG



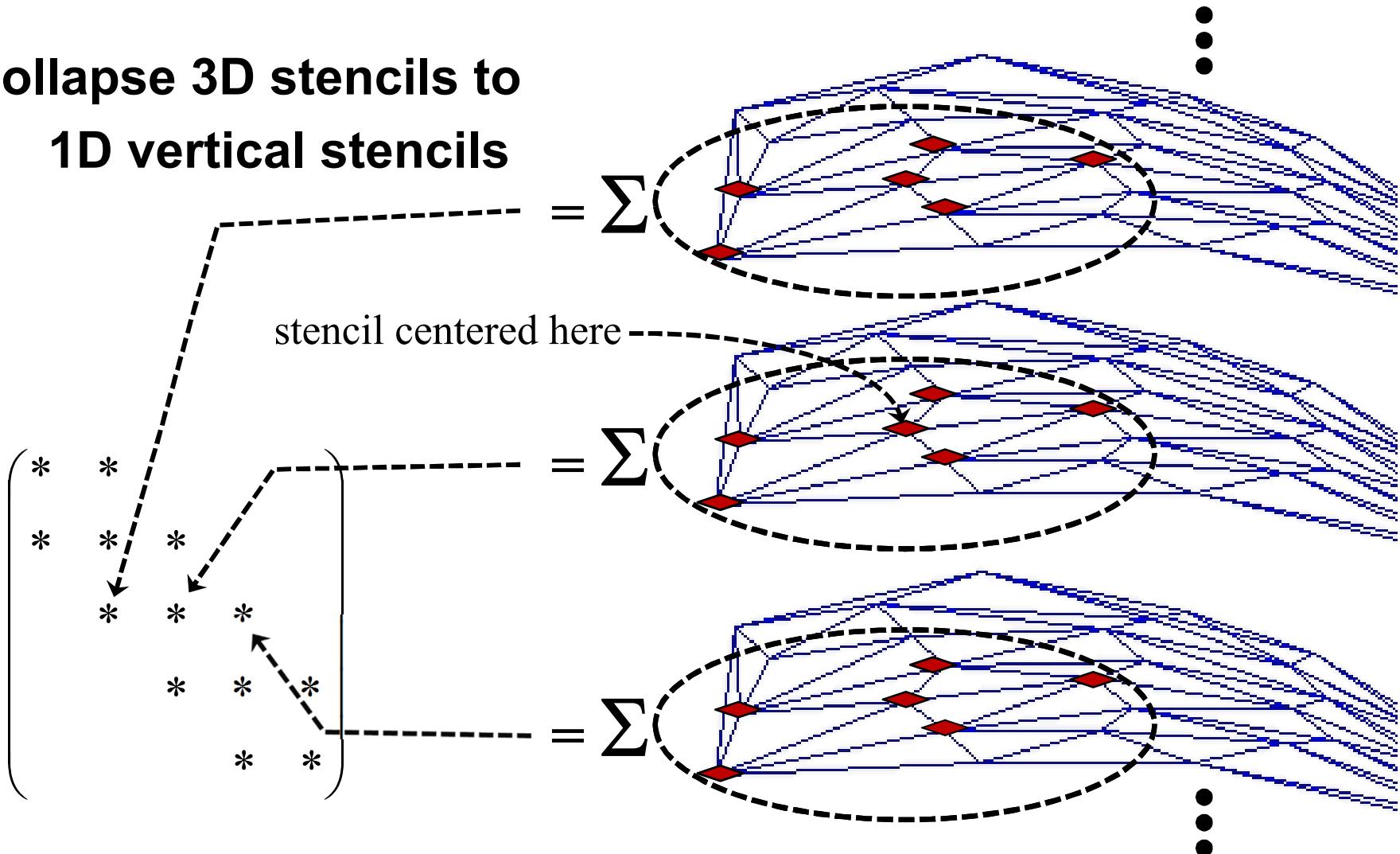
Idea:

- Apply algebraic structured MG (matrix dependent) to 1st coarsen vertically
- Apply traditional SA-AMG on one layer problem to further coarsen

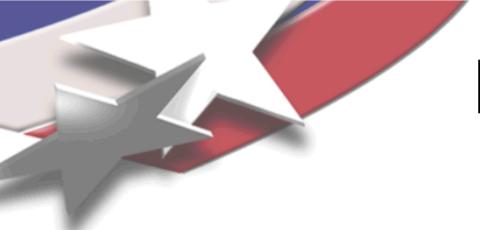


Matrix Dependent Semi-Coarsening P's

- Collapse 3D stencils to 1D vertical stencils



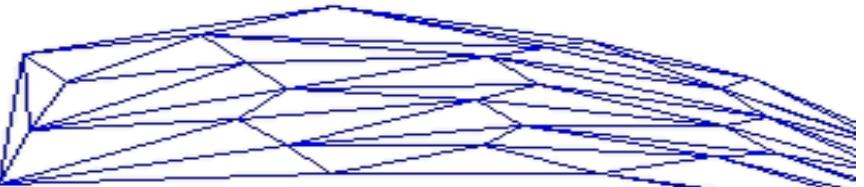
- Collect into tri-diagonal (or band) systems
 - one for each vertical line

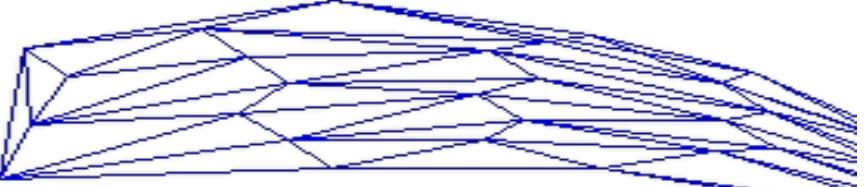


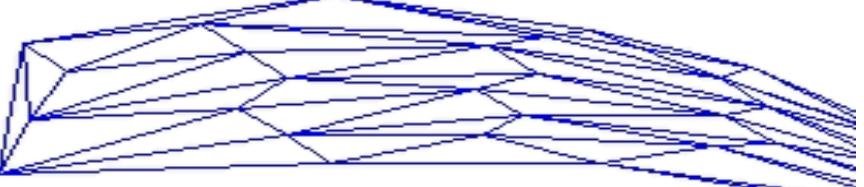
Matrix Dependent Semi-Coarsening

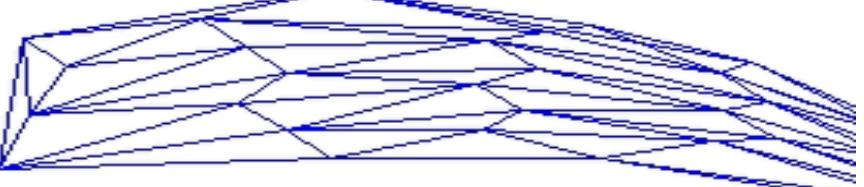
- Solve tri-diagonal systems for prolongator coefficients

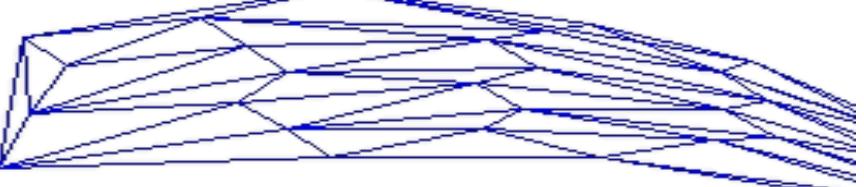
$$\begin{pmatrix} 1 & 0 & & & \\ * & * & * & & \\ & 0 & 1 & 0 & \\ * & * & * & & \\ 0 & 1 & 0 & & \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

coarse layer \Rightarrow 

coarse layer \Rightarrow 

coarse layer \Rightarrow 

coarse layer \Rightarrow 

coarse layer \Rightarrow 

Practicalities

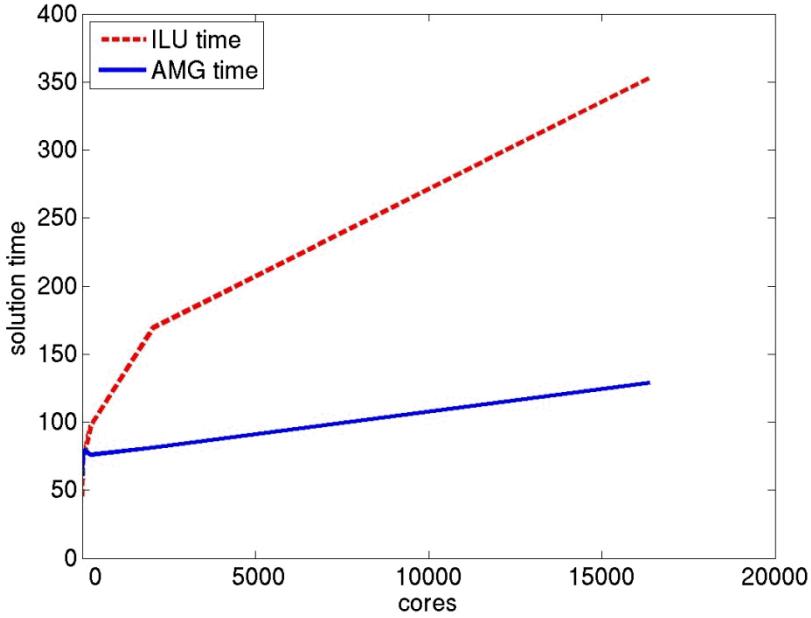
- Line Jacobi & line GS relaxation to allow for aggressive semi-coarsening
- Implemented in Trilinos/ML
- Almost in Trilinos/MueLu
- Only non-algebraic information needed
 - must provide line orientation information of extruded mesh
 - Can specify layer-wise or vertical column ordering
 - or can just provide coordinates and we figure it out
 - Ideally, rigid body mode information would be needed for SA
 - but some further code modifications needed to apply xy rotational mode

Numerical Results

Greenland

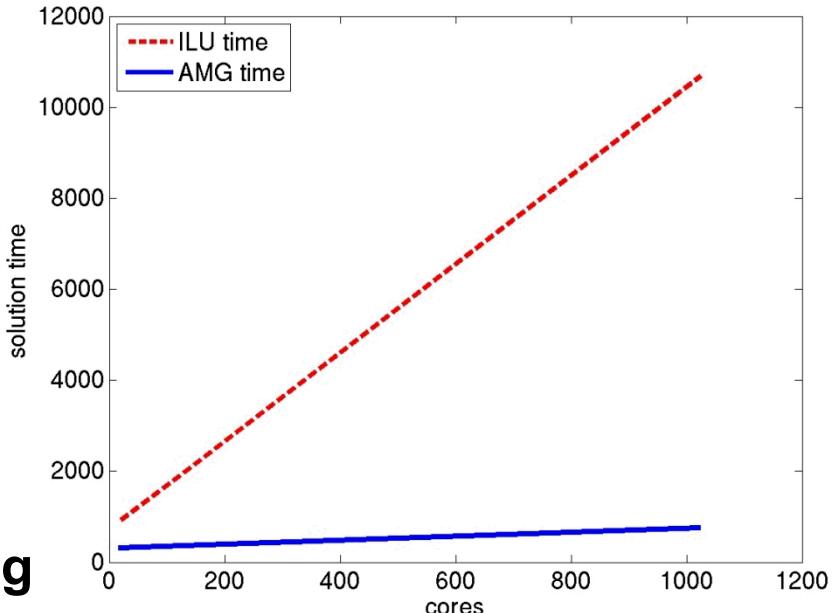
slight rise in solution time

- **parallel efficiency drops**
- **its/solve increase slightly**
(no mode for SA)
- **8km/5layers → 500m/80layers**



Antarctica (regularized β)

- **larger benefit over ILU**
- **8km/5layers → 2km/80layers???**
- **nonlinear with homotopy**
- **# nonlinear steps increases with size**
- **14x coarsening rate for semi-coarsening**
- **V(1,1) line Jacobi with $\omega = .55$ for finer grids, Chebyshev on AMG levels**



Conclusions

- **thin domains & anisotropic meshes in ice sheet modeling pose problems for standard AMG schemes**
 - **grounded ice is characterized by relative local behavior**
 - ILU with proper ordering/partitioning can sometimes work well
 - # of MG levels can be somewhat limited
 - **matrix dependent extension to extruded meshes proposed**
 - **AMG on 1 layer mesh is not problematic**
- ⇒ **almost fully algebraic hybrid multilevel solver**