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New solver motivation

• Ice sheet dynamics are critical in evaluating 
potential sea level rise

• Lots of uncertain model inputs

 many repeated simulations, e.g. UQ,
inverse problems

• Linear solver time typically dominates

 many linear solvers per simulation,
nonlinear with continuation (steady state)

• Equations are simplified Stokes with variable 

• Main difficulty is anisotropic mesh

• Success with anisotropic-aware geometric MG, but want an algebraic solver



The First-Order Stokes Model 
for Ice Sheets & Glaciers

• Ice sheet dynamics are given by the “First-Order” Stokes PDEs: approximation* to 
viscous incompressible quasi-static Stokes flow with power-law viscosity.
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• Relevant boundary conditions: 

• Stress-free BC: 				2��̇� ∙ � = 0, on Γ�
• Floating ice BC: 

		2��̇� ∙ � = �
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• Basal sliding BC: 	2��̇� ∙ � + ��� = 0, on Γ�
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Ice sheet

• Viscosity � is nonlinear function given by “Glen’s law”: 
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*Assumption: aspect ratio �	is small and normals to upper/lower surfaces are almost vertical.
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Algorithmic Choices for Albany/FELIX
Discretization & Meshes

• Discretization: unstructured grid finite element method (FEM)

• Can handle readily complex geometries.
• Natural treatment of stress boundary                                

conditions.
• Enables regional refinement/unstructured                        

meshes.
• Wealth of software and algorithms.

• Meshes: can use any mesh but interested specifically in 

• Structured hexahedral meshes (compatible with CISM).
• Structured tetrahedral meshes (compatible with MPAS) 
• Unstructured Delaunay triangle meshes with regional 

refinement based on gradient of surface velocity.
• All meshes are extruded (structured) in vertical direction as        

tetrahedra or hexahedra (wedge elements did not work well).



Solver observations

AMG works 
poorly on these 
problems …

Sometimes ILU 
works great …

Sometimes ILU 
is really bad …

Floating ice is 
real trouble for 
all linear 
solvers …

Meshes with 
many vertical 
points are 
problematic

Sometimes A u = b
is easy … 

sometimes hard



Locality & thin domains

Consider   uxx + uyy = f            0 ≤ x ≤ 1  ,   0 ≤ y ≤ 

a) uy(x,0) = uy(x, ) = 0

u(0,y)  = u(1,y) = 0     

f(x,y) = (.5,y)

b) u(x,0) = 0,  uy(x, ) = 0    u(0,y) = u(1,y) = 0, f(x,y) = (.5,  /2)

thin                                                thick                = 1                       thick           = .01   

Mesh ILU its.

60 x   60 x 10 7.8

120 x 120 x 10 8.5

240 x 240 x 10 13.9

Mesh ILU its.

60 x   60 x 10 6.6

120 x 120 x 10 6.6

240 x 240 x 10 7.2

small  large 

model ice problem :



Anisotropic Phenomena & Solvers

small eigenvalues associated with weak direction 

Model problem:    uxx + uyy = f

MG perspective: hard to smooth errors
in weak direction

Remedies:  * fix smoother (e.g., line smoothing)
* coarsen only in direction that are easy to smooth

• This talks takes the 2nd approach, but does employ line smoothing to 
allow for aggressive semi-coarsening

– vertical coarsening until just one layer … then horizontal coarsening



Solver Observations Revisited

ILU & Anisotropic Problems

• Vertical line Jacobi & vertical line GS can work well

• ILU can work well if vertical coupling accurately captured

– layer-wise ordering best 
with finite elements

– DD+ILU : 2D vertical 
strip domains 

• ILU can be very poor if vertical coupling not captured!

Singularities
floating ice + 

islands or hinges

 singular matrix

ILU(0) L factor  

ILU(0) U factor  

ILU(0) mixed     



An Algebraic Multi-Level Approach

Standard AMG poorly handles bad aspect ratios!
• strength-of-connection algorithms help, but convergence rates still disappointing
• FE matrix complicates strength-of-connection
• bad scaling of Robin condition and non-uniform vertical spacing problematic
•  “carefully chosen” ILU often has better run times than AMG

…

Algebraic 
Structured MG

Algebraic 
Structured MG

Unstructured 
AMG 

Unstructured 
AMG 

Idea: 
• Apply algebraic structured MG (matrix dependent) 

to 1st coarsen vertically

• Apply traditional SA-AMG on one layer problem to
further coarsen

matrix dependent P

AMG  P



Matrix Dependent Semi-Coarsening P’s

• Collapse 3D stencils to 

1D vertical stencils

• Collect into tri-diagonal (or band) systems

– one for each vertical line 

stencil centered here
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Matrix Dependent Semi-Coarsening

• Solve tri-diagonal systems for 
prolongator coefficients 
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Practicalities

• Line Jacobi & line GS relaxation to allow for aggressive 
semi-coarsening

• Implemented in Trilinos/ML

• Almost in Trilinos/MueLu

• Only non-algebraic information needed

– must provide line orientation information of extruded mesh

– Can specify layer-wise or vertical column ordering

….  or can just provide coordinates and we figure it out

– Ideally, rigid body mode information would be needed for SA 
…. but some further code modifications needed to apply xy
rotational mode 



Numerical Results

Greenland

slight rise in solution time

• parallel efficiency drops

• its/solve increase slightly

(no           mode for SA)

• 8km/5layers  500m/80layers

Antarctica (regularized )

• larger benefit over ILU

• 8km/5layers  2km/80layers???

 nonlinear with homotopy

 # nonlinear steps increases with size

 14x coarsening rate for semi-coarsening

 V(1,1) line Jacobi with  = .55 for finer grids, Chebyshev on AMG levels



Conclusions

• thin domains & anisotropic meshes in ice sheet modeling 
pose problems for standard AMG schemes

• grounded ice is characterized by relative local behavior

– ILU with proper ordering/partitioning can sometimes work well

– # of MG levels can be somewhat limited

• matrix dependent extension to extruded meshes proposed

• AMG on 1 layer mesh is not problematic

 almost fully algebraic hybrid multilevel solver


