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Deep Geologic Nuclear Waste Disposal

http://www.bbc.com/news/uk-england-cumbria-21253673

Key radionuclides:

Pu-239, Th-230, Am-241 — Strong interaction (colloids)
U-238, Np-237 — Moderate interaction

1-129, Tc-99 — Weak interaction (anions) 'I" Sandia

National
Laboratories



http://www.bbc.com/news/uk-england-cumbria-21253673
http://www.bbc.com/news/uk-england-cumbria-21253673
http://www.bbc.com/news/uk-england-cumbria-21253673
http://www.bbc.com/news/uk-england-cumbria-21253673
http://www.bbc.com/news/uk-england-cumbria-21253673
http://www.bbc.com/news/uk-england-cumbria-21253673
http://www.bbc.com/news/uk-england-cumbria-21253673

Layered Materials Used in Nuclear Waste Disposal
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lodide Interaction with Clays
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Retention of lodide by Clays

Clay Mineral Column K, | BatchK,

Value Value

(mL/g) (mL/g)
Opalinus (lllite) 0.008-0.02 Van Loon et al., 2003
Montmorillonite 0.57 Satoet al., 1992
Callovo-Oxfordian 0.15- Bazer-Bachiet al., 2006
(Interstratified 0.37
illite/smectite)
lHlite 27.7 Kaplan et al., 2000
Montmorillonite -0.33 Kaplan et al., 2000
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Several types of batch sorption experiments were
completed to characterize the clay surface environment

7 clays under consideration: All clays
obtained from the clay bank repository (Purdue

Univ.) Sorption experiments:
* Kaolinite *  Montmorillonite R
* Ri iollollite * Pal orskilte | N, BET
P Y89 * Methylene Blue (MB)
* lllite * Sepiolite . N h dal
« lllite/Smectite a-eéxchanged clays

* Variable amounts of MB were added until
clay surface was saturated

 BaCl, Exchange
* Excess of barium displaces native cations
* Measure native cation release

* lodide
* Solid:Liquid ratio: 100g/L
* No specific pH control; ‘natural’ pH of clay
* Seven day reaction time

Concentration (M) | NaCl | NaBr | KCl
1.0 X
0.1 X X X
0.01 X
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Surface area was separated between total, interior, and

exterior surface areas.

MB CEC BaCl, CEC BET S.A. MB S.A. Internal S.A.

(meq/100g) | (meq/100 g) (m?/g) (m?/g) (m?/g)
Kaolinite 1.50 4.61 11.31 11.76 0.45
Ripidolite 3.00 6.03 8.02 23.49 15.47
lllite 14.98 27.61 31.46 117.21 85.76
lllite.Smectite 24.69 30.39 29.82 193.23 163.41
Montmorillonite 109.53 151.92 28.29 857.17 828.88
Sepiolite 17.41 8.98 201.43 136.27 -65.16
Palygorskite 39.96 29.22 141.52 625.45 483.93

Sandia
m National

Laboratories




lodide uptake is dependent on ionic composition
of swamping electrolyte.

- T
~ NaCl NaBr KCI
m 4.61 1.61 (0.28) 0.02 (0.63) -0.01 (0.22)
Ripidolite 6.03 1.13 (0.38) -0.16 (0.72)  -0.31(0.17)
Layered | [ 76 054(012)  0.13(0.002)  -0.50(0.24)
lllite.Smectite 30.39 0.38(0.08)  -0.01(0.11)  -0.49(0.11)
Fibrous 8.98 0.01 (0.28) 0.79 (0.14) 0.11 (0.30)
W Palygorskite 29.22 0.24 (0.30) 1.26 (0.05) 0.99 (0.17)

All electrolytes at 0.1M
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lodide uptake is dependent on ionic composition
of swamping electrolyte.

- T
~ CaCl, CaBr, MgCl,
Kaolinite [N 034(035)  034(028)  0.09(0.43)
Ripidolite 6.03 0.16 (0.33) -0.05 (0.01) 0.22 (0.66)
Layered _ 27.61 1.02 (0.22) -0.48 (0.32) 0.37 (0.01)
Illite.Smectite 30.39 0.87 (0.16) -0.30 (0.09) 0.90 (0.34)
i 151.92 0.56 (0.18) -2.16(0.53)  -1.70(0.47)
Fibrous 8.98 0.43 (0.12) 0.52 (0.25) (0.37)
W Palygorskite 29.22 0.41 (0.78) 0.80 (0.41) 0.48 (0.10)

All electrolytes at 0.05M
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Ky value (mL/g)
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Ky values trend with total surface area, suggesting

interactions with negatively charged surfaces.
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Nanogeochemistry: Nanostructures, emergent properties and their @Cmmk
control on geochemical reactions and mass transfers

Yifeng Wang

Sandia National Laboratories, P.O. Box 5800, Albuguerque, NM 87185-0779, USA

ARTICLE INFO ABSTRACT
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Fig 2 Systematics of nanogeochemistry.
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Data is consistent with ion pair formation caused
by reduced dielectric constant of confined water
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Confined surface vs.

unconfined surface
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Kd (mL/m2)
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Nanopore Confinement and Ion Sorption
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Nanopore confinement enhances ion sorption onto a solid-water interface

for both cations and anions.

Wang et al., 2003, Mat. Res. Soc. Symp. Proc.; 2003, Geology
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Percent Zn Adsorbed
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Understanding Radionuclide Uptake in Compacted
Clay Materials

Millerand Wang (2012)
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Apparaent distribution coefficient,

Ka(cm?g)

Compaction does affect Radionuclide uptake

190
170
150
130
110
90
70
50
30
10

Tubing

PEEK fingertight fitting

Conca & Wright (1992)

Sample holder

237
Np End plate
PS L 2
L 4
FIGURE 1. Cross-section picture of the diffusion cell used for
P the sorption measurements on compacted bentonite.
TABLE 4. Ry K, amd AGy Values for Sorption of Cs* on
Compacted Bentonite for Different Bulk Dry Densities (py)°
s Thg m-7] 1300 1600 1900
0.5 1 1.5 2 2.5 [Na*] [M] 0.183 0.207 0.254
3 Ra [dm? kg~ ] 69.0 £ 2.0 100 + 4 620 4+ 4
H H K. 26 86 260
Bentonite density (g/lcm”~) AGe [k moll 76 o s

“ R4 was calculated by eq (1), K. was calculated by aq (5)
and AG ., is defined by eq (6).

_ [X—Cs][Na']
" [X—Nal[Cs']
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Future Perspectives

Nanogeochemistry may allow us
to develop a consistent
theoretical frame work for
bridging surface sorption and ion
exchange in layered materials.

Knowledge gained from materials
science research will help
develop a new generation of
buffer materials for nuclear
waste isolation.

One important issue related to
nuclear waste disposal is how the
decay heat will affect the
performance of buffer materials.
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