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What’s	
  a	
  probabilis0c	
  complex	
  analysis	
  
q Every	
  probabilis0c	
  complex	
  analysis	
  starts	
  with	
  the	
  same	
  
4	
  ques0ons:	
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Given	
  that:	
  We	
  don’t	
  know	
  exactly	
  how	
  a	
  
component	
  behaves	
  and	
  we	
  don’t	
  know	
  
exactly	
  what	
  the	
  environment	
  (normal,	
  
abnormal,	
  hos(le)	
  is;	
  

Can	
  we	
  determine	
  if:	
  The	
  component	
  will	
  
survive	
  and	
  by	
  how	
  much	
  



How	
  do	
  we	
  quan0fy	
  uncertainty?	
  
q Through	
  data	
  from	
  experiments	
  on	
  mul0ple	
  pieces	
  of	
  hardware	
  
Ø  Pros:	
  Best	
  way	
  to	
  quan(fy	
  unit-­‐to-­‐unit	
  variability	
  
Ø  Cons:	
  $$	
  
	
  

q Through	
  historical	
  data	
  from	
  legacy	
  system	
  
Ø Warning:	
  Knowledge	
  from	
  the	
  past	
  might	
  not	
  be	
  relevant	
  to	
  the	
  future	
  
	
  

q Through	
  the	
  use	
  of	
  models	
  represen0ng	
  the	
  system	
  behavior	
  
(PFM	
  so>ware)	
  
Ø  Pros:	
  In	
  principle,	
  model	
  can	
  be	
  run	
  many	
  (mes	
  in	
  a	
  stochas(c	
  way	
  to	
  quan(fy	
  

uncertainty	
  
Ø  Cons:	
  Not	
  always	
  an	
  accurate	
  representa(on	
  of	
  the	
  real	
  system	
  behavior	
  
	
  

q A	
  combina0on	
  of	
  both	
  experiments	
  and	
  models	
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Quan0fica0on	
  of	
  margins	
  and	
  uncertainty	
  
q Quan0fies	
  the	
  performance	
  threshold	
  and	
  associated	
  margins	
  for	
  
the	
  system	
  made	
  under	
  condi0ons	
  of	
  uncertainty	
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Margin:	
  Difference	
  between	
  
system	
  nominal	
  response	
  vs.	
  a	
  
do-­‐not-­‐exceed	
  threshold	
  

Applied	
  stress	
  

Ul0mate	
  
stress	
  



Quan0fica0on	
  of	
  margins	
  and	
  uncertainty	
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M1	
  

#1	
   #2	
  

σ
1

1
MCF =

• CF1	
  >	
  CF2	
  
• For	
  Case	
  #1,	
  due	
  to	
  large	
  margin,	
  a	
  
large	
   uncertainty	
   in	
   the	
   model	
  
response	
  can	
  be	
  tolerated.	
  

M2	
  
σ
2

2
MCF =

• Conversely,	
  for	
  Case	
  #2,	
  due	
  to	
  
the	
  small	
  margin,	
  the	
  uncertainty	
  
es(mated	
  by	
  the	
  model	
  becomes	
  
very	
  important	
  and	
  thus	
  needs	
  to	
  
be	
  reduced	
  as	
  much	
  as	
  possible.	
  

• How	
  do	
  we	
  assure	
  that	
  the	
  accuracy	
  and	
  the	
  
amount	
  of	
  uncertainty	
  in	
  Response	
  R	
  is	
  adequate	
  
given	
  these	
  different	
  scenarios?	
  

• Can	
  above	
  ques(on	
  be	
  related	
  to	
  valida(on?	
  

R	
   R	
  

σ σ 



Why	
  do	
  we	
  perform	
  a	
  probabilis0c	
  analysis?	
  
q To	
  beOer	
  understand	
  performance	
  margins	
  and	
  uncertain0es	
  
	
  	
  
q Most	
  applica0ons	
  have	
  sta0s0cs-­‐based	
  performance	
  requirements:	
  
Ø  Probability	
  of	
  an	
  undesirable	
  event	
  happening	
  <	
  10-­‐m	
  

q To	
  provide	
  a	
  consistent	
  set	
  of	
  criteria	
  on	
  systems	
  so	
  that	
  resources	
  
can	
  be	
  focused	
  where	
  needed	
  most	
  

q Qualifica0on	
  support	
  
Ø  Level	
  of	
  confidence	
  in	
  design	
  
Ø  Body	
  of	
  evidence	
  that	
  the	
  system	
  meets	
  its	
  design	
  requirements	
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PFM	
  code	
  architecture	
  



PFM	
  so>ware	
  development	
  process	
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PFM	
  so>ware	
  development	
  process	
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Uncertainty	
  Quan0fica0on	
  

Physics	
  and	
  Material	
  Model	
  
Fidelity	
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PFM	
  code	
  architecture	
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Example	
  of	
  PFM	
  code	
  architecture	
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q Probabilis0c	
  simula0on	
  engine:	
  
Ø  Integrate	
  various	
  modules	
  composing	
  the	
  overall	
  model	
  under	
  one	
  umbrella.	
  
	
  

q  Input	
  interface	
  structure:	
  
Ø  Interface	
  between	
  user	
  and	
  global	
  structure.	
  
Ø Uncertainty	
  distribu(on	
  associated	
  with	
  each	
  	
  input	
  .	
  
	
  

q Determinis0c	
  model:	
  
Ø  Linking	
  sub-­‐models	
  to	
  the	
  probabilis(c	
  simula(on	
  engine.	
  
	
  

q Sampling	
  structure:	
  
Ø  Defines	
  the	
  number	
  and	
  order	
  of	
  realiza(on	
  and	
  appropriate	
  values	
  to	
  be	
  

sampled.	
  
Ø  Defines	
  different	
  sampling	
  schemes	
  available.	
  

q Landing	
  pla`orm	
  structure:	
  
Ø  Tie	
  up	
  the	
  interface,	
  sampling	
  structure	
  and	
  determinis(c	
  model.	
  
Ø  List	
  all	
  inputs	
  and	
  user	
  selected	
  op(ons	
  required	
  by	
  the	
  model.	
  



Categoriza0on	
  and	
  
propaga0on	
  of	
  uncertain0es	
  



Objec0ves	
  of	
  uncertainty	
  characteriza0on	
  in	
  PFM	
  
q Capture	
  uncertainty	
  in	
  model	
  predic(ons	
  
	
  

q Reduce	
  uncertainty	
  in	
  predicted	
  pipe	
  failure	
  frequency	
  
	
  

q Determine	
  how	
  likely	
  certain	
  outcomes	
  are	
  if	
  some	
  aspects	
  of	
  the	
  
system	
  are	
  not	
  exactly	
  known	
  

q Uncertainty	
  propaga(on:	
  “Mapping”	
  uncertainty	
  from	
  inputs	
  to	
  
outputs	
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Difference	
  between	
  epistemic	
  and	
  aleatory	
  
uncertainty	
  and	
  spa0al	
  variability	
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q  Aleatory	
  uncertainty:	
  (Perceived)	
  randomness	
  in	
  the	
  occurrence	
  of	
  future	
  events.	
  

q  Epistemic	
  uncertainty:	
  Lack	
  of	
  knowledge	
  w.r.t.	
  the	
  appropriate	
  value	
  to	
  use	
  for	
  a	
  
quan(ty	
  that	
  has	
  a	
  fixed,	
  but	
  poorly	
  known,	
  value	
  in	
  the	
  context	
  of	
  a	
  specific	
  analysis.	
  

q  Treat	
  ques(onable	
  uncertain(es	
  as	
  epistemic,	
  and	
  then	
  determines	
  the	
  ones	
  that	
  
dominate	
  the	
  epistemic	
  output	
  uncertainty.	
  Only	
  for	
  those	
  that	
  are	
  dominant,	
  
addi(onal	
  evalua(on	
  becomes	
  necessary	
  to	
  jus(fy	
  their	
  treatment	
  as	
  epistemic.	
  All	
  
other	
  uncertain(es	
  can	
  then	
  be	
  allocated	
  to	
  the	
  aleatory	
  category.	
  

q  Spa0al	
  variability:	
  inherent	
  variability	
  over	
  space	
  of	
  a	
  quan(ty,	
  that	
  usually	
  cannot	
  be	
  
measured	
  precisely	
  or	
  at	
  the	
  expected	
  scale.	
  Spa(al	
  variability	
  is	
  NOT	
  aleatory	
  or	
  
epistemic	
  uncertainty.	
  Variability	
  is	
  linked	
  to	
  uncertainty.	
  

q  Probability	
  usually	
  used	
  to	
  characterize	
  both	
  aleatory	
  and	
  epistemic	
  uncertain(es	
  and	
  
spa(al	
  variability.	
  

q  Alterna(ves	
  to	
  probability	
  to	
  the	
  representa(on	
  of	
  epistemic	
  exist,	
  such	
  as	
  evidence	
  
theory,	
  possibility	
  theory,	
  interval	
  analysis	
  and	
  others.	
  



Representa0on	
  and	
  interpreta0on	
  of	
  results	
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q  Parameters	
  selected	
  either	
  as	
  aleatory	
  or	
  epistemic:	
  Guidance	
  needed	
  
	
  
q  Inner	
  aleatory	
  loop	
  vs.	
  outer	
  epistemic	
  loop	
  
	
  
	
  
	
  
	
  
	
  
	
  
q  Interpreta0on	
  of	
  the	
  results:	
  

Aleatory	
  uncertainty	
  represents	
  the	
  risk.	
  
Not	
  simply	
  [probability]x[consequence]	
  
but	
  probability	
  and	
  consequence	
  

Epistemic	
  uncertainty	
  represent	
  the	
  level	
  of	
  
knowledge	
  we	
  have	
  with	
  respect	
  to	
  this	
  risk	
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Characteriza0on	
  of	
  uncertainty	
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q Uncertainty	
  (both	
  aleatory	
  and	
  epistemic)	
  is	
  usually	
  characterized	
  
using	
  probability	
  distribu0ons	
  

	
  

q Distribu0on	
  may	
  depend	
  on	
  the	
  type	
  of	
  uncertainty	
  selected	
  
(aleatory	
  or	
  epistemic)	
  which	
  in	
  turn	
  depends	
  on	
  the	
  problem	
  
considered	
  (study	
  of	
  one	
  weld	
  vs.	
  collec0on	
  of	
  welds)	
  

	
  

q  In	
  order	
  to	
  insure	
  that	
  the	
  combina0on	
  of	
  inputs	
  leads	
  to	
  
physically	
  acceptable	
  set,	
  rela0onships	
  may	
  be	
  required	
  amongst	
  
some	
  parameters.	
  When	
  tradi0onal	
  MC	
  used,	
  it	
  is	
  common	
  to	
  
represent	
  these	
  dependencies	
  with	
  correla0ons	
  

	
  

q Tradi0onal	
  techniques	
  to	
  generate	
  distribu0on	
  include:	
  
Ø  Expert	
  review:	
  used	
  when	
  no	
  data	
  is	
  available.	
  
Ø  Bayesian	
  upda(ng:	
  used	
  when	
  data	
  becomes	
  available,	
  to	
  update	
  expert	
  elicita(on	
  
Ø  Maximum	
  entropy:	
  used	
  when	
  enough	
  data	
  is	
  available	
  to	
  fit	
  distribu(on	
  
Ø  Bootstrap:	
  used	
  when	
  some	
  data	
  is	
  available	
  
Ø  Other	
  techniques	
  include	
  for	
  example	
  evidence	
  theory,	
  special	
  objec(ve	
  response	
  

surface	
  



Epistemic	
  uncertainty	
  characteriza0on	
  can	
  be	
  an	
  
itera0ve	
  process	
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q Possible	
  strategy:	
  
Ø  Perform	
  ini(al	
  exploratory	
  analysis	
  with	
  “crud:	
  characteriza(on	
  of	
  the	
  

distribu(ons	
  characterizing	
  epistemic	
  uncertainty	
  
Ø Use	
  sensi(vity	
  analysis	
  to	
  determine	
  the	
  elements	
  that	
  dominate	
  the	
  

uncertainty	
  in	
  analysis	
  outcomes	
  of	
  interest	
  
Ø  Perform	
  detailed	
  uncertainty	
  assessments	
  for	
  the	
  important	
  variables	
  iden(fied	
  

in	
  the	
  sensi(vity	
  analysis	
  
Ø  Carry	
  out	
  final	
  decision-­‐suppor(ng	
  analysis	
  with	
  new	
  distribu(on	
  

	
  
q Desiderata	
  in	
  epistemic	
  uncertainty	
  assessment:	
  
Ø  Avoid	
  being	
  either	
  deliberately	
  op(mis(c	
  (i.e.	
  non-­‐conserva(ve)	
  or	
  deliberately	
  

pessimis(c	
  (i.e.	
  conserva(ve)	
  in	
  uncertainty	
  assessments	
  
Ø  Be	
  honest	
  w.r.t.	
  the	
  uncertainty	
  that	
  is	
  present	
  	
  	
  

	
  



Source	
  of	
  uncertainty	
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q The	
  model	
  structure,	
  i.e.,	
  how	
  accurately	
  a	
  mathema0cal	
  model	
  
describes	
  the	
  true	
  system	
  for	
  a	
  real-­‐life	
  situa0on,	
  may	
  only	
  be	
  
known	
  approximately	
  

q The	
  numerical	
  approxima0on,	
  i.e.,	
  how	
  appropriately	
  a	
  numerical	
  
method	
  is	
  used	
  in	
  approxima0ng	
  the	
  opera0on	
  of	
  the	
  system	
  

q  Input	
  and/or	
  model	
  parameters	
  
Ø may	
  only	
  be	
  known	
  approximately.	
  
Ø may	
  vary	
  between	
  different	
  instances	
  of	
  the	
  same	
  object	
  for	
  which	
  predic(ons	
  

are	
  sought.	
  

Input	
  /	
  Environment	
   System	
  
Output	
  /	
  
Response	
  

Given	
  representa0ons	
  for	
  uncertainty	
  in	
  Y	
  and/or	
  S,	
  how	
  do	
  we	
  
propagate	
  this	
  informa0on	
  to	
  X	
  ?	
  



Advanced	
  algorithms	
  



Sampling	
  techniques	
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q Random	
  sampling	
  (Monte	
  Carlo	
  sampling)	
  
q La(n	
  Hypercube	
  Sampling	
  (LHS)	
  
q Discrete	
  Probability	
  Distribu(on	
  (DPD)	
  
q  Importance	
  sampling	
  
q Adap(ve	
  sampling	
  
q Other	
  methods	
  exist	
  (quasi-­‐MC,	
  etc).	
  
q Alterna(ve	
  to	
  sampling-­‐based	
  methods:	
  FORM,	
  SORM,	
  AMV	
  

Computational  

Simulation  

Model 

Inputs 

Information  

Required of the  

Analysis 

x11,...,xp1 

x12,...,xp2 

x1n,...,xpn 



From	
  mathema0cal	
  characteriza0on	
  to	
  
implementa0on:	
  Sampling	
  approach	
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1.  Characteriza(on	
  of	
  distribu(ons	
  on	
  the	
  uncertain	
  input	
  values	
  
2.  Genera(on	
  of	
  sample	
  from	
  those	
  distribu(ons	
  
3.  Propaga(on	
  of	
  sample	
  through	
  analysis	
  execu(on	
  repeatedly	
  
4.  Presenta(on	
  of	
  uncertainty	
  analysis	
  results	
  in	
  the	
  form	
  of	
  

distribu(ons	
  of	
  the	
  outputs	
  
5.  Determina(on	
  of	
  sensi(vity	
  analysis	
  results	
  

Simula(on	
  	
  
Model	
  
	
  

Output	
  	
  
Distribu(ons	
  N	
  samples	
  of	
  X	
  

Output	
  1	
  

Output	
  2	
  

Input	
  	
  	
  
Distribu(ons	
  

N	
  realiza(ons	
  of	
  Y	
  



LHS	
  vs.	
  Monte	
  Carlo	
  sampling	
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•  Preferred	
  when	
  sufficiently	
  large	
  samples	
  
are	
  possible	
  

•  Easy	
  to	
  implement	
  
•  Easy	
  to	
  explain	
  
•  Unbiased	
  es(mates	
  for	
  means,	
  variances	
  

and	
  distribu(on	
  func(ons	
  
•  Sufficiently	
  large	
  samples	
  may	
  not	
  be	
  

possible	
  

Random	
  sampling	
  
•  Unbiased	
  es(mates	
  for	
  means	
  and	
  

distribu(on	
  func(ons	
  
•  “Force”	
  samples	
  to	
  be	
  spread	
  out	
  across	
  

domain	
  of	
  the	
  input	
  distribu(ons	
  
•  Dense	
  stra(fica(on	
  across	
  range	
  of	
  each	
  

variable	
  
•  Used	
  when	
  large	
  samples	
  not	
  

computa(onally	
  prac(cable	
  and	
  es(ma(on	
  
of	
  high	
  quan(les	
  not	
  required	
  

•  Uncertainty/sensi(vity	
  results	
  robust	
  with	
  
rela(vely	
  small	
  sample	
  sizes	
  (e.g.,	
  nLHS	
  =	
  
50	
  to	
  200)	
  

LHS	
  



Discrete	
  Probability	
  Distribu0on	
  (DPD)	
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q DPD	
  uses	
  discrete	
  values	
  from	
  probability	
  distribu0ons	
  
Ø  Each	
  value	
  can	
  be	
  equally	
  probable	
  or	
  of	
  different	
  likelihood	
  

	
  

q Difference	
  with	
  LHS:	
  
Ø  Less	
  dense	
  stra(fica(on.	
  Worse	
  than	
  LHS	
  if	
  events	
  of	
  interest	
  occur	
  more	
  for	
  

extreme	
  values	
  of	
  inputs.	
  
Ø  Higher	
  combina(on	
  (i.e.	
  bever	
  mul(dimensional	
  coverage).	
  Bever	
  than	
  LHS	
  if	
  

events	
  of	
  interest	
  occur	
  more	
  for	
  combina(on	
  of	
  inputs.	
  



Importance	
  sampling	
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q  Importance	
  sampling	
  is	
  a	
  variance	
  reduc0on	
  technique	
  that	
  can	
  be	
  
used	
  in	
  the	
  Monte	
  Carlo	
  method	
  
Ø  Certain	
  values	
  of	
  the	
  input	
  random	
  variables	
  in	
  a	
  simula(on	
  have	
  more	
  impact	
  on	
  

the	
  parameter	
  being	
  es(mated	
  than	
  others.	
  If	
  these	
  "important"	
  values	
  are	
  
emphasized	
  by	
  sampling	
  more	
  frequently,	
  then	
  the	
  es(mator	
  variance	
  can	
  be	
  
reduced.	
  

Ø  Cannot	
  be	
  applied	
  to	
  all	
  variables!	
  
q The	
  basic	
  methodology	
  in	
  importance	
  sampling	
  is	
  to	
  choose	
  a	
  
distribu0on	
  which	
  "encourages"	
  the	
  important	
  values.	
  The	
  outputs	
  
are	
  weighted	
  to	
  correct	
  for	
  the	
  use	
  of	
  the	
  biased	
  distribu0on,	
  and	
  
this	
  ensures	
  that	
  the	
  new	
  importance	
  sampling	
  es0mator	
  is	
  
unbiased.	
  



Example:	
  DPD	
  using	
  importance	
  sampling	
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q For	
  example,	
  a	
  Fibonacci	
  series	
  works	
  well	
  for	
  interroga0ng	
  tails	
  of	
  
distribu0ons	
  

	
  
q The	
  strength	
  of	
  the	
  Fibonacci	
  series	
  can	
  be	
  controlled	
  by	
  an	
  
exponent	
  γ	
  between	
  0	
  and	
  1	
  on	
  the	
  F	
  value	
  



Op0miza0on	
  method:	
  Adap0ve	
  sampling	
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q Adap0ve	
  sampling	
  promotes	
  importance	
  sampling	
  by	
  using	
  model	
  
results	
  to	
  iden0fy	
  and	
  focus	
  on	
  space	
  of	
  interest	
  

	
  
q Adap0ve	
  sampling	
  can	
  cover	
  more	
  densely	
  disparate	
  regions	
  in	
  the	
  
input	
  space,	
  and	
  reduces	
  the	
  number	
  of	
  samples	
  needed	
  to	
  
confidently	
  es0mate	
  low	
  probability	
  (~10-­‐6)	
  



Sampling	
  correlated	
  inputs	
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q Correla0on	
  can	
  be	
  used	
  to	
  force	
  behavior	
  between	
  two	
  or	
  more	
  
variables	
  in	
  order	
  to	
  remain	
  in	
  a	
  physically	
  acceptable	
  input	
  space	
  
Ø  Individual	
  inputs	
  are	
  not	
  independent	
  

	
  
q Correla0on	
  control	
  should	
  be	
  done	
  for	
  a	
  limited	
  selected	
  variables	
  
based	
  on	
  model/input	
  recommenda0ons	
  



Sampling	
  strategy	
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q Two	
  loops	
  can	
  be	
  considered	
  (one	
  can	
  be	
  ignored	
  by	
  semng	
  the	
  
sampling	
  size	
  to	
  1).	
  For	
  each	
  loop,	
  on	
  can	
  select	
  from	
  the	
  following	
  
op0ons:	
  
Ø  Simple	
  random	
  sampling	
  or	
  La(n	
  Hypercube	
  Sampling	
  (LHS)	
  
Ø  DPD	
  
Ø  Importance	
  sampling	
  applied	
  to	
  selected	
  values	
  
Ø Use	
  of	
  op(miza(on	
  instead	
  of	
  importance	
  sampling	
  for	
  selected	
  values	
  
	
  

§  Example:	
  Possibility	
  of	
  crea0ng	
  12	
  sampling	
  combina0on:	
  [LHS	
  vs.	
  
RS]x[DPD	
  vs.	
  no	
  DPD]	
  x[No	
  importance	
  vs.	
  importance	
  vs.	
  adap0ve]	
  
for	
  each	
  loop	
  (totaling	
  122	
  combina0ons)	
  

epistemic	
  
sampling	
  

aleatory	
  
sampling	
  

simula1on	
  



Other	
  methods:	
  Response	
  surface	
  methods	
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q The	
  response	
  surface	
  approach	
  consists	
  of	
  construc0ng	
  a	
  
surrogate	
  to	
  the	
  computa0onal	
  model	
  that	
  is	
  generally	
  simpler	
  in	
  
form	
  and	
  cheaper	
  (very	
  cheep)to	
  access	
  

q The	
  response	
  surface	
  is	
  constructed	
  based	
  on	
  the	
  results	
  from	
  a	
  
set	
  of	
  simula0ons.	
  Example	
  of	
  surface	
  response	
  include	
  Gaussian	
  
response,	
  Polynomial	
  response	
  

q There	
  is	
  no	
  clear	
  “best”	
  method	
  of	
  construc0on	
  -­‐-­‐	
  a	
  preferred	
  
approach	
  depends	
  on	
  the	
  applica0on,	
  and	
  even	
  then	
  there	
  is	
  
rarely	
  a	
  clear-­‐cut	
  "best"	
  response	
  surface	
  methodology	
  

Computational  

Simulation  

Model 

Inputs 

Information  

Required of the  

Analysis 
Response Surface  
Approximation to  

the Model 

x11,...,x
p1 

x12,...,x
p2 

x1n,...,x
pn 



Verifica0on,	
  valida0on	
  and	
  
benchmarking	
  of	
  PFM	
  so>ware	
  



Verifica0on	
  vs.	
  valida0on	
  
q Verifica0on:	
  
Ø  “Are	
  we	
  solving	
  the	
  equa(ons	
  correctly?”	
  
Ø  Code	
  verifica(on:	
  Correctness	
  of	
  implemented	
  mathema(cal	
  algorithms	
  (bug-­‐

free?)	
  
Ø  Solu(on	
  verifica(on:	
  Convergence	
  to	
  the	
  correct	
  answer	
  at	
  the	
  correct	
  rate,	
  as	
  

model	
  is	
  refined.	
  
	
  

q Valida0on:	
  
Ø  “Are	
  we	
  solving	
  the	
  correct	
  equa(ons?”	
  
Ø  Correctness	
  of	
  physical	
  model	
  and	
  sufficiency	
  for	
  the	
  applica(on.	
  

q Uncertainty	
  quan0fica0on	
  
Ø Sta(s(cal	
  propaga(on	
  of	
  uncertainty	
  through	
  a	
  simula(on	
  model,	
  
and	
  sta(s(cal	
  interpreta(on	
  of	
  model	
  response.	
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Code	
  verifica0on:	
  
Are	
  so>ware	
  errors	
  or	
  algorithms	
  deficiencies	
  
corrup0ng	
  simula0on	
  results?	
  
q Apply	
  SQA	
  processes	
  
Ø  Do	
  we	
  have	
  a	
  mature	
  code	
  development	
  process?	
  
	
  

q Assess	
  SQA	
  processes	
  
Ø  Verify	
  that	
  codes	
  are	
  developed	
  with	
  an	
  appropriate	
  level	
  SQA	
  maturity.	
  
	
  

q Provide	
  adequate	
  test	
  coverage	
  
Ø  Can	
  the	
  user	
  be	
  confident	
  that	
  the	
  code	
  is	
  adequately	
  tested	
  for	
  the	
  intended	
  

applica(on?	
  
	
  

q Quan0fy	
  computa0on	
  errors	
  
Ø What	
  is	
  the	
  impact	
  of	
  undetected	
  code	
  or	
  algorithm	
  deficiencies	
  on	
  simula(on	
  

results?	
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Solu0on	
  verifica0on:	
  
Are	
  procedural	
  errors	
  or	
  numerical	
  solu0on	
  errors	
  
corrup0ng	
  simula0on	
  results?	
  
q Quan0fy	
  numerical	
  solu0on	
  errors	
  
Ø What	
  is	
  the	
  impact	
  of	
  numerical	
  solu(on	
  accuracy	
  on	
  the	
  system	
  response	
  

quan((es?	
  

q Verify	
  all	
  simula0on	
  inputs	
  and	
  outputs	
  
Ø  Have	
  corrupted	
  simula(on	
  results	
  with	
  incorrect	
  inputs	
  or	
  post-­‐processing	
  

errors?	
  

q Perform	
  technical	
  review	
  
Ø  Verify	
  that	
  the	
  solu(on	
  verifica(on	
  ac(vi(es	
  are	
  relevant,	
  adequate	
  and	
  executed	
  

in	
  technically	
  sound	
  manner?	
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Uncertainty	
  quan0fica0on	
  
q Uncertainty	
  quan0fica0on:	
  
Ø What	
  is	
  the	
  impact	
  of	
  Monte	
  Carlo	
  accuracy	
  on	
  the	
  system	
  response	
  quan((es?	
  
	
  

q Source	
  of	
  uncertainty:	
  
Ø  The	
  model	
  structure,	
  i.e.,	
  how	
  accurately	
  a	
  mathema(cal	
  model	
  describes	
  the	
  

true	
  system	
  for	
  a	
  real-­‐life	
  situa(on,	
  may	
  only	
  be	
  known	
  approximately?	
  
Ø  The	
  numerical	
  approxima(on,	
  i.e.,	
  how	
  appropriately	
  a	
  numerical	
  method	
  is	
  used	
  

in	
  approxima(ng	
  the	
  opera(on	
  of	
  the	
  systems	
  
Ø  Input	
  and/or	
  model	
  parameters	
  
	
  

q Perform	
  technical	
  review	
  
Ø  Verify	
  that	
  the	
  solu(on	
  verifica(on	
  ac(vi(es	
  are	
  relevant,	
  adequate	
  and	
  executed	
  

in	
  technically	
  sound	
  manner?	
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PFM	
  so>ware	
  valida0on	
  
q Model	
  valida0on	
  
Ø  Field	
  data	
  vs.	
  lab	
  data	
  
Ø  Valida(on	
  criteria	
  to	
  assess	
  agreement	
  between	
  data	
  and	
  model	
  predic(on	
  

•  Quan(ta(ve	
  metrics	
  
•  Criteria	
  should	
  be	
  well-­‐defined	
  and	
  reproducible	
  

Ø  Valida(on	
  with	
  alterna(ve	
  sozware	
  
Ø  Valida(on	
  with	
  engineering	
  judgment	
  (lesser	
  prominence)	
  	
  
	
  

q Range	
  of	
  applicability	
  
Ø  Is	
  the	
  valida(on	
  con(ngent	
  on	
  some	
  fixed	
  assump(on	
  for	
  model	
  parameters?	
  
Ø Only	
  applies	
  to	
  specific	
  cases?	
  
Ø  Engineering	
  judgment	
  may	
  be	
  use	
  to	
  extend	
  range	
  of	
  applicability	
  to	
  input	
  ranges	
  

that	
  were	
  not	
  explicitly	
  validated	
  with	
  data.	
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Summary	
  
q In	
  this	
  module,	
  discussion	
  was	
  provided	
  on	
  the	
  
representa0on	
  of	
  uncertainty	
  in	
  PFM	
  
Ø Parameters	
  may	
  be	
  represented	
  by	
  numerous	
  types	
  of	
  
distribu(ons	
  

Ø Separa(on	
  of	
  aleatory	
  vs.	
  epistemic	
  

q Many	
  sampling	
  techniques	
  are	
  available	
  to	
  inves0gate	
  
the	
  performance	
  requirement	
  of	
  interest	
  
Ø Sampling	
  strategy	
  developed	
  to	
  reduce	
  the	
  number	
  of	
  realiza(on	
  
needed	
  to	
  quan(fy	
  performance	
  requirement:	
  

•  RS	
  vs.	
  LHS	
  vs.	
  DPD	
  vs.	
  importance	
  sampling	
  vs.	
  adap(ve	
  sampling	
  

q V&V	
  effort	
  crucial	
  to	
  achieve	
  desired	
  confidence	
  in	
  risk-­‐
informed	
  decision	
  making	
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