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What’s a probabilistic complex analysis

Qd Every probabilistic complex analysis starts with the same
4 questions:

TR A
S—— |

Q3: What are the consequences if it does happen?

l

Given that: We don’t know exactly how a

component behaves and we don’t know ‘ Can we determine if: The component will
exactly what the environment (normal, survive and by how much

abnormal, hostile) is;
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How do we quantify uncertainty?

Q Through data from experiments on multiple pieces of hardware

» Pros: Best way to quantify unit-to-unit variability
» Cons: SS

A Through historical data from legacy system
» Warning: Knowledge from the past might not be relevant to the future

Q Through the use of models representing the system behavior
(PFM software)

» Pros: In principle, model can be run many times in a stochastic way to quantify
uncertainty

» Cons: Not always an accurate representation of the real system behavior

Q A combination of both experiments and models
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Quantification of margins and uncertainty

d Quantifies the performance threshold and associated margins for

the system made under conditions of uncertainty

Margin: Difference between
system nominal response vs. a
do-not-exceed threshold

Margin, M
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Quantification of margins and uncertainty

#1 #2
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*CF, > CF, *Conversely, for Case #2, due to

*For Case #1, due to large margin, a the small margin, the uncertainty
large uncertainty in the model estimated by the model becomes
response can be tolerated. very important and thus needs to

be reduced as much as possible.

*How do we assure that the accuracy and the

amount of uncertainty in Response R is adequate
given these different scenarios?

*Can above question be related to validation?
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Why do we perform a probabilistic analysis?

d To better understand performance margins and uncertainties

0 Most applications have statistics-based performance requirements:
» Probability of an undesirable event happening < 10™

d To provide a consistent set of criteria on systems so that resources
can be focused where needed most

Q Qualification support
» Level of confidence in design
» Body of evidence that the system meets its design requirements
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PFM code architecture




PFM software development process

Understand the
application and
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PFM software development process
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Physics and Material Model
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PFM code architecture

Probability Density (%) Probability Density (%)

Probability Density (%)

Materials properties

= L . -

robability Density (%)

Crack behavior

Other data inputs

L . -

V4
€

=

Probabilistic
structure

Loads

A

Probability Density (%)

Inspection/ leak rate

Slide 10

1.£+00
1.£-01 4
o
51002 4
-
e
3 1.0.03
@
.
0 1.604 4
F 4
= 1.E05 4
g 1.£.06
& 1607 4
E 1.£.08 9
z 1.£.09 4
1.£10 4

' - v v -
10 20 30 40 50 60
Time (years)

Leak/Rupture

Probability Density (%)

PWSCC Weld Overlay
_' Baseline =
.4_‘.3 nu. Results

Cha n\; inrisk | Change in risk
ceptable! acceptable

1 1

Failure Frequency (Year ') or CDF




Example of PFM code architecture

Qd Probabilistic simulation engine:
» Integrate various modules composing the overall model under one umbrella.

Qd Input interface structure:
» Interface between user and global structure.
» Uncertainty distribution associated with each input.

d Deterministic model:
» Linking sub-models to the probabilistic simulation engine.

a Sampling structure:

» Defines the number and order of realization and appropriate values to be
sampled.

» Defines different sampling schemes available.

A Landing platform structure:
» Tie up the interface, sampling structure and deterministic model.

» List all inputs and user selected options required by the model.
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Categorization and
propagation of uncertainties



Objectives of uncertainty characterization in PFM
Q Capture uncertainty in model predictions

d Reduce uncertainty in predicted pipe failure frequency

d Determine how likely certain outcomes are if some aspects of the
system are not exactly known

Q Uncertainty propagation: “Mapping” uncertainty from inputs to
outputs
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Difference between epistemic and aleatory
uncertainty and spatial variability

O Aleatory uncertainty: (Perceived) randomness in the occurrence of future events.

Q Epistemic uncertainty: Lack of knowledge w.r.t. the appropriate value to use for a
guantity that has a fixed, but poorly known, value in the context of a specific analysis.

O Treat questionable uncertainties as epistemic, and then determines the ones that
dominate the epistemic output uncertainty. Only for those that are dominant,
additional evaluation becomes necessary to justify their treatment as epistemic. All
other uncertainties can then be allocated to the aleatory category.

O Spatial variability: inherent variability over space of a quantity, that usually cannot be
measured precisely or at the expected scale. Spatial variability is NOT aleatory or
epistemic uncertainty. Variability is linked to uncertainty.

O Probability usually used to characterize both aleatory and epistemic uncertainties and
spatial variability.

O Alternatives to probability to the representation of epistemic exist, such as evidence
theory, possibility theory, interval analysis and others.
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Representation and interpretation of results

O Parameters selected either as aleatory or epistemic: Guidance needed

QA Inner aleatory loop vs. outer epistemic loop

epistemic

sampling
S
I aleatory

E 6 sampling

1

' simulation
1

1

-d 1.0 ) SR L aduni B 1 o R i N
e | 0.9
o 0,8 £ os
()] a8
2 A 8 0.7
- - E 0.6 g 0.6
= 9 @ 05
€04 5,
1 -
S 20
0R 302
1 y
| 0 0 0.1 —
: ' Performance Characteristic y Performance Characteristic y
1

Q Interpretation of the results:
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Characterization of uncertainty

d Uncertainty (both aleatory and epistemic) is usually characterized
using probability distributions

Q Distribution may depend on the type of uncertainty selected
(aleatory or epistemic) which in turn depends on the problem
considered (study of one weld vs. collection of welds)

Q In order to insure that the combination of inputs leads to
physically acceptable set, relationships may be required amongst
some parameters. When traditional MC used, it is common to
represent these dependencies with correlations

A Traditional techniques to generate distribution include:
» Expert review: used when no data is available.
» Bayesian updating: used when data becomes available, to update expert elicitation
» Maximum entropy: used when enough data is available to fit distribution
» Bootstrap: used when some data is available
> Otr]lcer techniques include for example evidence theory, special objective response
surface
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Epistemic uncertainty characterization can be an
iterative process

O Possible strategy:

» Perform initial exploratory analysis with “crud: characterization of the
distributions characterizing epistemic uncertainty

» Use sensitivity analysis to determine the elements that dominate the
uncertainty in analysis outcomes of interest

» Perform detailed uncertainty assessments for the important variables identified
in the sensitivity analysis

» Carry out final decision-supporting analysis with new distribution

Qd Desiderata in epistemic uncertainty assessment:

» Avoid being either deliberately optimistic (i.e. non-conservative) or deliberately
pessimistic (i.e. conservative) in uncertainty assessments

» Be honest w.r.t. the uncertainty that is present

Slide 17



Source of uncertainty

Q The model structure, i.e., how accurately a mathematical model
describes the true system for a real-life situation, may only be
known approximately

d The numerical approximation, i.e., how appropriately a numerical
method is used in approximating the operation of the system

Q Input and/or model parameters
» may only be known approximately.

» may vary between different instances of the same object for which predictions
are sought.

Input / Environment Output /
System Response

Y S X
Given representations for uncertainty in Y and/or S, how do we
propagate this information to X ?
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Advanced algorithms




Sampling techniques

d Random sampling (Monte Carlo sampling)

A Latin Hypercube Sampling (LHS)

A Discrete Probability Distribution (DPD)

Q Importance sampling

Q Adaptive sampling

d Other methods exist (quasi-MC, etc).

Qd Alternative to sampling-based methods: FORM, SORM, AMV

Inputs

Computational

~ Simulation

0 Model
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From mathematical characterization to
implementation: Sampling approach

1.
2. Generation of sample from those distributions

3.

4. Presentation of uncertainty analysis results in the form of
distributions of the outputs

. Determination of sensitivity analysis results

Characterization of distributions on the uncertain input values

Propagation of sample through analysis execution repeatedly

Input
Distributions

N samples of X \

&

Simulation
Model

\

e
e
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LHS vs. Monte Carlo sampling

Fandom Samgle
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Random sampling

Preferred when sufficiently large samples
are possible

Easy to implement

Easy to explain

Unbiased estimates for means, variances
and distribution functions

Sufficiently large samples may not be
possible
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Unbiased estimates for means and
distribution functions

“Force” samples to be spread out across
domain of the input distributions

Dense stratification across range of each
variable

Used when large samples not
computationally practicable and estimation
of high quantiles not required
Uncertainty/sensitivity results robust with
relatively small sample sizes (e.g., nLHS =
50 to 200)



Discrete Probability Distribution (DPD)

0 DPD uses discrete values from probability distributions
» Each value can be equally probable or of different likelihood

ﬁ
T

| >
a Difference with LHS:

> Less dense stratification. Worse than LHS if events of interest occur more for
extreme values of inputs.

» Higher combination (i.e. better multidimensional coverage). Better than LHS if
events of interest occur more for combination of inputs.
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Importance sampling

a Importance sampling is a variance reduction technique that can be
used in the Monte Carlo method

» Certain values of the input random variables in a simulation have more impact on
the parameter being estimated than others. If these "important" values are

emphasized by sampling more frequently, then the estimator variance can be
reduced.

» Cannot be applied to all variables!

d The basic methodology in importance sampling is to choose a
distribution which "encourages” the important values. The outputs
are weighted to correct for the use of the biased distribution, and

this ensures that the new importance sampling estimator is
u n b i a sed . PI’nb rfd:o:igj‘on of interest in the input space (leading to pipe ruptl.:ur:zmsaw

Areas poorly covered by sampling

28%

Regular sampling
More than half of the points sampled outside of the region of interest Most of the points
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Example: DPD using importance sampling

d For example, a Fibonacci series works well for interrogating tails of
distributions

d The strength of the Fibonacci series can be controlled by an
exponent y between 0 and 1 on the F value

A value z, is selected to split

/ The strata into two groups

Zleft zO zright
: : :
\ A J
Y Y
Nbin/2 Nbin/2
F=l Fi=2 F.=5 Fosi Fibonacci series is used to
gt PR I | 20 generate strata of
o unequal size with focus
, " on the tail
Faan SR
Foiz = Fpt Fryg , o —
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Optimization method: Adaptive sampling

a Adaptive sampling promotes importance sampling by using model
results to identify and focus on space of interest

d Adaptive sampling can cover more densely disparate regions in the
input space, and reduces the number of samples needed to
confidently estimate low probability (~10°)
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Sampling correlated inputs

a Correlation can be used to force behavior between two or more

variables in order to remain in a physically acceptable input space
» Individual inputs are not independent

Q Correlation control should be done for a limited selected variables
based on model/input recommendations
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Sampling strategy

epistemic
sampling
Fm e mmmm e mmmmmmmem e
i aleatory .
: sampling @ !
E simulation E

d Two loops can be conS|dered (one can be ignored by setting the
sampling size to 1). For each loop, on can select from the following
options:

» Simple random sampling or Latin Hypercube Sampling (LHS)

» DPD

» Importance sampling applied to selected values

» Use of optimization instead of importance sampling for selected values

= Example: Possibility of creating 12 sampling combination: [LHS vs.
RS]x[DPD vs. no DPD] x[No importance vs. importance vs. adaptive]
for each loop (totaling 12> combinations)
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Other methods: Response surface methods

d The response surface approach consists of constructing a
surrogate to the computational model that is generally simpler in
form and cheaper (very cheep)to access

d The response surface is constructed based on the results from a
set of simulations. Example of surface response include Gaussian

response, Polynomial response

Qd There is no clear “best” method of construction -- a preferred
approach depends on the application, and even then there is
rarely a clear-cut "best" response surface methodology

Inputs

.........

Computation
Simulation

Model

Approximation to
the Model
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Verification, validation and
benchmarking of PFM software



Verification vs. validation
dVerification:

» “Are we solving the equations correctly?”

» Code verification: Correctness of implemented mathematical algorithms (bug-
free?)

» Solution verification: Convergence to the correct answer at the correct rate, as
model is refined.

dValidation:

» “Are we solving the correct equations?”
» Correctness of physical model and sufficiency for the application.

d Uncertainty quantification

» Statistical propagation of uncertainty through a simulation model,
and statistical interpretation of model response.
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Code verification:
Are software errors or algorithms deficiencies
corrupting simulation results?

a Apply SQA processes

» Do we have a mature code development process?

0 Assess SQA processes
» Verify that codes are developed with an appropriate level SQA maturity.

d Provide adequate test coverage

» Can the user be confident that the code is adequately tested for the intended
application?

a Quantify computation errors

» What is the impact of undetected code or algorithm deficiencies on simulation
results?
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Solution verification:
Are procedural errors or numerical solution errors
corrupting simulation results?

0 Quantify numerical solution errors

» What is the impact of numerical solution accuracy on the system response
guantities?

A Verify all simulation inputs and outputs

» Have corrupted simulation results with incorrect inputs or post-processing
errors?

3 Perform technical review

» Verify that the solution verification activities are relevant, adequate and executed
in technically sound manner?
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Uncertainty quantification

d Uncertainty quantification:
» What is the impact of Monte Carlo accuracy on the system response quantities?

3 Source of uncertainty:

» The model structure, i.e., how accurately a mathematical model describes the
true system for a real-life situation, may only be known approximately?

» The numerical approximation, i.e., how appropriately a numerical method is used
in approximating the operation of the systems

» Input and/or model parameters

d Perform technical review

» Verify that the solution verification activities are relevant, adequate and executed
in technically sound manner?
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PFM software validation

a Model validation
» Field data vs. lab data
» Validation criteria to assess agreement between data and model prediction
* Quantitative metrics
e Criteria should be well-defined and reproducible
» Validation with alternative software
» Validation with engineering judgment (lesser prominence)

d Range of applicability
» |Is the validation contingent on some fixed assumption for model parameters?
» Only applies to specific cases?

» Engineering judgment may be use to extend range of applicability to input ranges
that were not explicitly validated with data.
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Summary

QIn this module, discussion was provided on the
representation of uncertainty in PFM

» Parameters may be represented by numerous types of
distributions

» Separation of aleatory vs. epistemic

dMany sampling techniques are available to investigate
the performance requirement of interest

» Sampling strategy developed to reduce the number of realization
needed to quantify performance requirement:
e RSvs. LHS vs. DPD vs. importance sampling vs. adaptive sampling

AV&YV effort crucial to achieve desired confidence in risk-
informed decision making
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