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Outline 

Motivations 
To identify and quantify model structural uncertainty in the 
Community Land Model 

Approaches 
Efficient sampling–based sensitivity analysis  
Classification of complex climate system 
Time-frequency analysis of ensemble simulation errors 
Separation of model parametric uncertainty and structural 
uncertainty 

MCMC-Bayesian using numerical forward models and/or surrogates 
Time-frequency analysis of simulation errors from posterior samples  



Motivations 

Climate system: multi-phase, 
multi-component, multiple 
biogeophysical/chemical 
processes 
Numerous model and coupling 
parameters; formidable high-
dimensional parameter spaces 
Uncertain parameter values 
(parametric uncertainty) 
Model structural uncertainty 
(makes parameter inversion 
questionable) 



Assumptions 

Sources of uncertainty 
Model uncertainty 

Simplifications, structural model formulations/structures, extrapolations, resolution, model 
initial/boundary conditions 

Parameter uncertainty 
Non-measurable, measurement errors, non-uniqueness, inaccurate calibration, mis-
classification due to under-sampling… 

Data uncertainty 
Instrumental errors, consistency, gaps, resolution, scaling 

Natural uncertainty/variability/heterogeneity 
Intrinsic quantities vary over time, over space, or across individuals in a population 
Physical processes/mechanisms/features vary over space, time, and individuals 

Assumptions 
No systematic data measurement errors 
Model prediction errors are mainly due to parametric and model structural 
uncertainty 
The complex climate system can be divided into simpler subsets/groups, with each 
has common model structural errors   



Step 1: Entropy concept and efficient sampling 
to fully represent parametric input uncertainty  
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Entropy concept 

Prior pdfs  

Efficient sampling 



Step 2: Classify the complex system into 
subsets/groups 

Parameter identifiability 

Expectation-maximization clustering 

Clusters of US MOPEX basins 



Step 3: Time-frequency decomposition of prior 
ensemble simulation errors 
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d) average variance of yearly component

Model simulation errors 

Wavelet analysis of simulation errors  



Step 3: Time-frequency decomposition of prior 
ensemble simulation errors 
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Step 4: Reduction of parametric uncertainty via 
MCMC-Bayesian inversion 

MCMC-Bayesian inversion 
Surrogate development 
Parameter subspace selection 
Data refinement/classification 

(Ray et al. 2015 and talks in 
sessions MS159/MS162) 



Step 5: Time-frequency decomposition of 
posterior ensemble simulation errors 

Power spectrum of simulation errors 
before parameter inversion 

Power spectrum of simulation errors 
after parameter inversion 
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Summary 

It is possible to identify model structural errors by quantifying 
input parameter uncertainty and fully exploring the input 
parameter space  
(Ensemble) model simulation errors provide information about 
the processes (and/or parameters) with major contributions to 
the errors 
Assuming no systematic errors in the conceptual models and 
observational data, the model structural errors can possibly be 
separated after parametric uncertainty is reduced. 
The remaining errors would provide guidance on further model 
improvement, e.g., by modifying the physical models or 
parameterizations that numerically affect the errors at the major 
spatial-temporal scales.    
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