Sandia
National
Laboratories

Proudly Operated by Battelle Since 1965

Quantification of structural
uncertainty in a land surface model

Z HOU, M HUANG, PNNL; J RAY, L SWILER, SNL

Pacific Northwest National LaboratorySandia National Laboratory
Mar 18 2015



7

O U tI | n e Pacific Northwest

NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

» Motivations
M To identify and quantify model structural uncertainty in the
Community Land Model
» Approaches
M Efficient sampling—based sensitivity analysis
M Classification of complex climate system
B Time-frequency analysis of ensemble simulation errors

B Separation of model parametric uncertainty and structural
uncertainty
® MCMC-Bayesian using numerical forward models and/or surrogates
® Time-frequency analysis of simulation errors from posterior samples



Motivations

» Climate system: multi-phase,
multi-component, multiple
biogeophysical/chemical
processes

» Numerous model and coupling
parameters; formidable high-
dimensional parameter spaces

» Uncertain parameter values
(parametric uncertainty)

» Model structural uncertainty
(makes parameter inversion
guestionable)
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» Sources of uncertainty

B Model uncertainty

@ Simplifications, structural model formulations/structures, extrapolations, resolution, model
initial/boundary conditions

B Parameter uncertainty

® Non-measurable, measurement errors, non-uniqueness, inaccurate calibration, mis-
classification due to under-sampling...

B Data uncertainty
® Instrumental errors, consistency, gaps, resolution, scaling
B Natural uncertainty/variability/heterogeneity
@ Intrinsic quantities vary over time, over space, or across individuals in a population
® Physical processes/mechanisms/features vary over space, time, and individuals
» Assumptions
B No systematic data measurement errors

B Model prediction errors are mainly due to parametric and model structural
uncertainty

B The complex climate system can be divided into simpler subsets/groups, with each
has common model structural errors



Step 1: Entropy concept and efficient sampling
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to fully represent parametric input uncertainty

Prior information
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Step 2: Classify the complex system into 7

subsets/groups
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Clusters of US MOPEX basins



Step 3: Time-frequency decomposition of prior

ensemble simulation errors

runoff simulation errors (mm/month)

Model simulation errors
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Wavelet analysis of simulation errors

a) simulation errors
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Step 3: Time-frequency decomposition of prior
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ensemble simulation errors
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wavelet power

wavelet power
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Step 4: Reduction of parametric uncertainty via 7
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MCMC-Bayesian inversion

» MCMC-Bayesian inversion
» Surrogate development

» Parameter subspace selection E:. 8 S===
» Data refinement/classification R S

(Ray et al. 2015 and talks in
sessions MS159/MS162)
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Step 5: Time-frequency decomposition of 7
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posterior ensemble simulation errors
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» |t is possible to identify model structural errors by quantifying
input parameter uncertainty and fully exploring the input
parameter space

» (Ensemble) model simulation errors provide information about
the processes (and/or parameters) with major contributions to
the errors

» Assuming no systematic errors in the conceptual models and
observational data, the model structural errors can possibly be
separated after parametric uncertainty is reduced.

» The remaining errors would provide guidance on further model
Improvement, e.g., by modifying the physical models or
parameterizations that numerically affect the errors at the major
spatial-temporal scales.
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