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ABSTRACT
In this position paper, we argue for improved fault-tolerance
of an MPI code by introducing lightweight virtualization
into the MPI interface. In particular, we outline key-value
store semantics for MPI send/recv calls, thereby creating
a far more expressive programming model. The general
message passing semantics and imperative style of MPI ap-
plication codes would remain essentially unchanged. How-
ever, the additional expressiblity of the programming model
1) enables the underlying transport layer to handle fault-
tolerance more transparently to the application developer,
and 2) provides an evolutionary code path towards more
declarative asynchronous programming models. The core
contribution of this paper is an initial implementation of the
DHARMA transport layer that provides the new, required
functionality to support the MPI key-value store model.

1. INTRODUCTION
In high performance computing applications, message pass-
ing (MPI) has long been the predominant communication
model, and checkpoint/restart has been the primary resilience
strategy. However, as we look ahead to extreme-scale sys-
tem architectures, traditional checkpoint/restart is no longer
a viable solution due to the projected increase in system
faults combined with limitations in I/O capabilities. As
a result, a number of more transparent, on-line recovery
mechanisms are being developed including uncoordinated
checkpoint/restart techniques such as LFLR [17], Fenix [7],
SCR [13], and FMI [16].

While these strategies strive towards improved resilience,
key features of the current MPI model can make both trans-
parent and user-level fault-tolerance difficult [11]:

1. Any MPI call can fail. The application must determine
each time if a failure occurred and how to address it.

2. MPI matching is based on tags and message order.
While tags can define unique sends, MPI is not very
expressive about the logical meaning of a send.

3. MPI enforces ordered message arrival. Recovering a
send/recv requires that the spare node agrees on the
message order when it swaps in, likely requiring mes-
sage logging for correctness.

4. Even if only a few communications are with a failed
process, the live process must still roll back to ensure
the messages replay.

5. Uncoordinated checkpoint restart, despite its concep-
tual appeal to avoid expensive global checkpoints, can
create a rollback cascade [9]. This is fundamentally
due to the rollback problem mentioned above cascad-
ing to other nodes and multiple checkpoint intervals.

Consequently, a controversial topic is the future of MPI in
light of resilience concerns at exascale. The question is two-
fold. First, is the MPI model fundamentally flawed for fault-
tolerance? Would alternative programming models, such as
Legion [1] or Charm++ [8], provide a path forward for ad-
dressing the fundamental fault-tolerance challenges in MPI
(in addition to performance improvements via greater over-
decomposition/task parallelism)? Second, if MPI remains
the dominant model, what extensions are necessary for fault-
tolerance both in the API and on the backend?

A pleasant simplification for MPI is maintaining a constant
number of workers despite failures. Since great care is of-
ten taken to partition the problem assuming a fixed num-
ber of workers, adapting to a decreasing node count can be
challenging. Both LFLR (local failure, local recovery) [17]
and FMI (fault-tolerance interface) [16] have shown promise
by checkpointing process state and migrating processes to
spare nodes upon failure. Because of the problems out-
lined above, implementing fault-tolerant codes in the non-
shrinking model has proven difficult [11].

In this paper, we propose key value-store semantics as a sim-
ple extension to message passing in order to facilitate fault-
tolerance in the non-shrinking model employed by LFLR. To
illustrate how these semantics address the underlying chal-
lenges outlined above, let us consider exactly what an MPI
send/recv is meant to accomplish in most scientific codes.
The data being sent/received usually have a unique physical
meaning (e.g. mesh block 0,1,5). The same is true even of
collectives, e.g., where you gather a resource “subset” into
a resource “whole” or reduce a resource “contribution” into
an aggregated “global sum.” Rather than simply an integer
tag and a pointer, much more can be expressed about what
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the send/recv or collective is doing with a single additional
parameter to existing function calls. For some operation, a
vector A might need to be exchanged:

Node 0:
double* vecA = ....
MPI_Send(vecA , count ,

MPI_DOUBLE , node1 ,
tag , MPI_COMM_WORLD );

Node 1:
double* vecA = ...
MPI_Recv(vecA , count ,

MPI_DOUBLE , node0 ,
tag , MPI_COMM_WORLD );

Consider, instead, an altered version:

Node 0:
double* vecA = ...
MPI_Publish(vecA , "vector A");
MPI_Barrier ();

Node 1:
double* vecA ...
MPI_Fetch(node0 , "vector A", vecA);
MPI_Barrier ();

Now, Node 0 publishes a named array instead of sending,
thus making the MPI_Fetch transaction uniquely defined. If
Node 0 fails before Node 1 has fetched, the transport layer
for Node 1 can automatically migrate the request to the
spare node. As soon as the resource is created on either
Node 0 or its replacement, it is returned to Node 1 without
any user-level intervention. Because transactions are given
a unique logical identifier, such MPI functions never fail -
they simply get re-issued or delayed, drastically simplifying
user-level code. The most logical data structure to manage
fetches is a key-value store that maps strings to buffers.

Simply by having more expressive function calls, we largely
avoid issues 1-3 above. Publish/fetch resembles partitioned
global address space (PGAS) models [20]; however, MPI
one-sided and PGAS only reference physical pointers instead
of logical identifiers. If transactions directly express the
physical operation to perform, they lack the logical context
or virtualization to automatically migrate to backup nodes
(and do so without rolling back non-failed processes). The
approach is neither user-proof nor a black box, as indicated
by the barrier; synchronization is still required to ensure
proper versions are returned and resources are not prema-
turely garbage collected. We, therefore, do not eliminate
fault-tolerance problems 4 and 5 above, but instead change
them into application-level synchronization problems.

These modest modifications of the existing API require new
functionality from the underlying transport layer:

1. Fault-tolerant collectives (global agreement)
2. Flexible active messages via C++ object migration
3. Well-defined reliability semantics for send/recv
4. Asynchronous progress threads

While GASNet [3] supports one-sided gets and remote pro-
cedure calls and ULFM [2] contains fault-tolerant collectives,
to our knowledge no packages provide both the asynchronous
and fault-tolerance support needed.

In this work we 1) introduce the DHARMA transport layer

with initial Cray uGNI implementation, and 2) explore the
overheads associated with a key-value store message pro-
tocol, arguing it introduces no extra network traffic. Initial
results suggest transfers might be more efficient through bet-
ter pinned memory registration. The present work does not
implement or rigorously define a new API. Instead, we ar-
gue for and implement a new transport layer, outlining the
API features it enables. We thereby hope to facilitate ex-
perimentation and prototyping of API extensions.

2. RELATED WORK
Recent fault-tolerance extensions to MPI have been added
in the user-level fault mitigation (ULFM) library [2] to de-
termine failed processes and subsequently validate or revoke
MPI communicators. LFLR [17] and FMI [16] provide a
well-defined recovery procedure for MPI by migrating pro-
cesses from failed nodes to a pool of spares. Fault-tolerant
collectives have been explored in detail elsewhere, both for
collectives such as all-reduce [19] that exists in the MPI stan-
dard as well as new agreement collectives for determining
which processes have failed [10].

Key-value (KV) stores are similar to coordination languages
like Linda [6] and recent tuple-space programming mod-
els like concurrent collections [5]. NSSI provides flexible
RDMA for KV-like data management [14]. The more declar-
ative programming model Legion [1] uses logical identifiers
to describe programs decoupled from their physical layout in
memory. Charm++ operates by passing messages between
distributed objects called chares [8] that also define a logical
data dependency whose physical location can migrate.

Message logging has been studied in detail for fault-tolerant
MPI [4], particularly for uncoordinated checkpoint/restart [9].
More general studies of uncoordinated checkpoint/restart
have also been performed, analyzing the performance trade-
offs and optimal checkpoint intervals.

3. TRANSPORT LAYER
Here we outline the DHARMA transport layer (Distributed
asyncHronous Adaptive Resilient Management of Applica-
tions), a name accompanying a group of related program-
ming models and fault-tolerance work. The acronym Dis-
tributed Hash Arrays for Remote Memory Access has been
used equivalently, emphasizing distributed key-value stores
as fundamental to the programming model.

In the DHARMA transport layer, there are no global or
extern functions. Instead, an object of type transport is
created and member functions are called. The exact imple-
mentation for different platforms is encapsulated in virtual
functions. The transport uses a message class that holds
some basic, universal information:

• The sender and receiver ranks
• The message type (e.g. header, RDMA get, ACK)
• The message class (point-to-point or part of collective)
• What sort of ACK should be generated

More specific classes can inherit from message in general use.
An internal serialization library (sprockit, Sandia Productiv-
ity C++ Toolkit) transmits C++ objects between nodes.



An asynchronous progress thread is the recommended usage
for the DHARMA transport. With many-core architectures
becoming the norm, MPI everywhere may no longer be an
optimal model. With an excess of CPU cores, there should
generally be enough CPU resources to support such a thread.
The transport layer provides a basic function for querying
incoming messages, which runs the internal progress engine
for the transport layer until a message is received:

message ::ptr blocking_poll ();

3.1 Point-to-point Primitives
3.1.1 Eager Sends

Point-to-point exchanges send C++ objects inheriting from
the message class. For small messages, the transport pro-
vides two functions that explicitly distinguish between mes-
sages sent with actual data (eager payloads) and with head-
ers that coordinate RDMA transactions.

void send_smsg_payload(int dst ,
message ::ptr msg , bool ack);

void send_rdma_header(int dst ,
message ::ptr msg , bool ack);

Here message::ptr is a reference counted pointer typedef
and dst is the rank of the destination (receiver) of the mes-
sage. Importantly, the functions allow optional send ACKs
to be generated upon delivery to the destination endpoint.
Consider the following application code snippets:

Node 0:
send_smsg_payload(node1 , msg , true/*ack*/);
message ::ptr ack = blocking_poll ();

Node 1:
message ::ptr payload = blocking_poll ();

Here, Node 0 sends a message with ACK request. After
delivering the message, it receives the ACK notification. The
exact type returned by blocking_poll can be queried:

switch(msg ->type ()) {
case smsg_ack: /* ACK for a smsg send */
case rdma_get_ack:
case rdma_get_payload:

Node 0 receives an exact replica of the message object sent
(no large buffers are copied), but the content type is changed
to smsg_ack. All the metadata contained in the original
message is, therefore, available in the send ACK and, in
most usages, the original message is reused as the ACK,
requiring no extra copies. Similar to Node 0, Node 1 starts
polling and receives a message when the payload arrives, but
now with content type eager_payload.

3.1.2 RDMA Sends
RDMA operations are part of the transport layer API and
can have both send and receive ACKs:

void rdma_put(int dst , message ::ptr msg ,
bool needs_send_ack , bool needs_recv_ack );

void rdma_get(int src , message ::ptr msg ,
bool needs_send_ack , bool needs_recv_ack );

For short messages, needs_recv_ack must always be true to
alert the receiver of an incoming message. For most RDMA
operations, notifications should occur on both the receive
and send side. However, certain cases may have relaxed re-
liability requirements. For an RDMA put, e.g., once the
data arrives at its destination, an rdma_put_ack message is
delivered to the sender and an rdma_put_payload message is

delivered to the receiver, which will reside in a queue until re-
trieved by blocking_poll. The send ACK and receive ACK
are exact replicas of the message object originally passed to
the rdma_put function, aside from buffer copies.

The message object offers virtual functions for retrieving
opaque public_buffer handles encapsulating both a void*

and metadata for pinned memory needed for RDMA:

virtual public_buffer& local_buffer ();
virtual public_buffer& remote_buffer ();

While a default rdma_message exists, arbitrary message types
are possible. The transport provides implementation-dependent
functions for allocating or using existing allocations:

virtual public_buffer
allocate_public_buffer(size_t size);

virtual public_buffer
make_public_buffer(void* buffer , size_t size);

Equivalent functions exist for deallocation. Explicit casting
can convert a public_buffer to its underlying void*.

3.2 Collectives
3.2.1 Global agreement

The main collective underlying fault tolerance is a global
agreement algorithm wherein each process votes on which
processes are alive [10, 19]. For recovery mechanisms such
as the LFLR model, it is very important that all nodes agree
exactly on who has failed. In this way, all nodes can exe-
cute process migration coherently and consistently. If nodes
began the recovery process with different global views, they
might assign different virtual ranks to the spare nodes.

The global collective algorithm essentially matches that pub-
lished by Naughton [10]. A binary tree is constructed from
the processes (Figure 1), which first vote up to their parent.
Once the parent has received votes from all its children, it
votes to its parent. Votes are eventually merged at the root.
Once the root decides on a final outcome, the result is sent
back down the tree. Even if new failures are detected during
the down vote, they are temporarily ignored. The merged
vote must be declared final so that all live processes exit the
collective agreeing on the exact failure set.

To detect failures, the transport layer implements

bool ping(int dst , timeout_function* func);

The function immediately returns a boolean if a failure is
already known; otherwise, an arbitrary timeout function is
registered and the node is monitored. If the collective com-
pletes and no failure is detected, a cancel_ping function
unregisters the timeout. If, however, a failure is detected
the timeout function is invoked. In the global agreement
algorithm, the timeout function reconnects the binary tree
(Figure 1), re-establishing parent-child connections around
the failure. This means a parent may now connect to its
grandchildren, resulting in more than two connections.

The global agreement actually suffers from the Byzantine
generals problem [12]. Once votes are passed down the tree,
a parent node has no way of ever guaranteeing that the
vote reaches the leaf nodes at the bottom. Every global
agreement collective that runs is therefore given an epoch
or tag. The result of the collective must be stored until the
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Figure 1: Demonstration of binary tree voting collective. Here Node 1 fails, forcing the tree to reconnect
and reissue votes.

next collective epoch since, due to failures, grandchildren or
great-grandchildren may eventually connect to the parent
and require the down-vote be re-sent.

An added benefit of the DHARMA transport is a mechanism
for simulating and detecting faults on current platforms that
may not permit failed nodes within a job. An efficient mech-
anism for error detection is an RDMA get operation from
a dummy array [18]. Through timeouts or RDMA NACKs,
the RDMA get fails when the node fails and can no longer
be reached. The DHARMA transport can emulate failures
(even when systems software does not support it) by pro-
viding a die() member function. After calling die(), the
transport drops all incoming messages. Even though RDMA
get pings will successfully return without timing out, the
value in the dummy array can indicate an emulated failure.
Higher level application runtimes can therefore easily de-
velop and test fault mitigation/recovery strategies by using
the DHARMA transport layer regardless of systems soft-
ware support. Large scale collective benchmarks have been
run on the Cray XC30 with emulated failures, but we delay
discussing them here given space constraints.

3.3 Standard collectives
Even for asynchronous execution or over-decomposed prob-
lems, optimized collective communication remains impor-
tant in many algorithms. DHARMA provides collectives,
but they are fundamentally non-blocking. Just as message

notifications are delivered via blocking_poll for point-to-
point, collectives generate a collective_done_message. We
delay a detailed discussion of collectives. We remark, how-
ever, that MPI collectives could also be given string labels
to give them a logical context.

4. IMPLEMENTING MPI EXTENSIONS VIA
THE DHARMA TRANSPORT LAYER

4.1 Basic Protocol
Here we outline the code necessary to execute the MPI_Publish
and MPI_Fetch functions demonstrated in the introduction.
We create a new message class, mpi_kv_message, inherit-
ing from message and implementing the RDMA interface.
We demonstrate code for C++, but these could easily be
extended for C bindings.

map <string , public_buffer > resource_map;
multimap <string , mpi_fetch_t*> fetches;

void
MPI_Publish(transport* tp, int dst ,

string name , void* buf , int size){
public_buffer pbuf = tp->make_public_buffer (...);
resource_map[name] = pbuf;

}

void
MPI_Fetch_resource(transport* tp, int dst ,
string name , void* buf , int size){
mpi_fetch_t* fetch = allocate_fetch_request ();
fetches[name] = fetch;
mpi_kv_message ::ptr header = allocate_kv_header ();
public_buffer pbuf = tp->make_public_buffer (...);
header ->remote_buffer () = pbuf;
header ->name = name;
tp->send_rdma_header(header );
wait_fetch_request(fetch);

}

The initial MPI_Publish call does no communication - only
a local KV-store operation. To complete a send, the asyn-
chronous progress thread on the publisher requires:

void process_kv_req(transport* tp ,
mpi_kv_message ::ptr rdma_header ){

string name = rdma_header ->name;
public_buffer pbuf = resource_map[name];
rdma_header ->local_buffer () = pbuf;
int src = rdma_header ->sender ();
tp->rdma_put(src , rdma_header , true , true);

}

void progress(transport* tp){
message ::ptr next = tp->blocking_poll ();
/** cast or switch to determine type */
process_kv_req(rdma_header );

}

The publisher receives an RDMA header requesting the re-
source, which is looked up and returned via a direct RDMA
put into the receive buffer. For simplicity, we assume the
publish happens before any requests arrive. Handling re-
quests for data not yet published requires straightforward
use of callbacks with more complicated data structures.

The progress thread on the fetching node runs:

void process_kv_payload(transport* tp,
mpi_kv_message ::ptr rdma_payload ){

for (fetch in fetches[rdma_payload ->name ]){
fetch ->complete ();

}
}

void progress(transport* tp){
message ::ptr next = tp->blocking_poll ();
/** cast or switch to determine type */
process_kv_payload(rdma_payload );

}



Here, a receive ack with information for the RDMA payload
is delivered. The progress thread determines any waiting
fetch objects and notifies them of completion.

4.2 Transparent Fault-Tolerance
Because the RDMA request is routed through a special func-
tion, send_rdma_header, the DHARMA transport layer can
track any pending RDMA transactions associated with a
message, allowing it to reissue RDMA headers to the spare
node. This is fundamentally different from standard mes-
sage logging because only outstanding RDMA transactions
remain logged. Completed transactions can be erased since
recovery does not require message replay.

We do not get these fault-tolerance advantages for free, how-
ever. We have pushed the difficulty into an application-
level synchronization problem. The application must ensure
that MPI_Fetch is never called for resources that have been
deleted or cannot be recovered from checkpoints. The prob-
lem has shifted to garbage collection, which we suggest is
more intrinsically application-specific and therefore more ap-
propriate for the user level, maintaining a clean abstraction
of a fault-free transport layer. The proposed model’s feasi-
bility will depend on how difficult such garbage collection is
to implement in practice for example applications.

4.3 Flexible Data Requests
In many cases, an MPI_Send/Recv pair fetches a data sub-
set such as ghost cells or specific vector elements for sparse
matrix-vector multiplication. An entire vector or mesh re-
gion may be passed to MPI_Publish when only a small region
is actually needed by MPI_Fetch. Because arbitrary C++
objects can be sent as RDMA requests, we can create ar-
bitrary subset_kv_req_message classes. The prototype for
MPI_Fetch could be extended with subset definitions, similar
to an MPI_Type. The same RDMA protocol described in 4.1
can be used, but instead return only a subset. This again in-
creases the expressiveness of the programming model, giving
sends and receives deeper logical meaning.

4.4 Declarative and Task-DAG Models
The MPI extensions do not change the imperative, sequen-
tial nature of message passing code. There is still no explicit
dependency graph - the DAG is implicit in the MPI calls.
However, the DHARMA transport layer offers a gateway for
evolving codes towards task-DAG models. The code is more
expressive, creating named dependencies. Once the code is
expressed via logical rather than physical dependencies, the
transition from imperative to declarative is far easier.

5. RESULTS
We demonstrate basic performance results on a Cray XC30
dragonfly testbed (Volta) using a uGNI-based version of the
DHARMA transport layer [15]. We compare to the default
MPICH implementation for uGNI. We do not consider this a
rigorous performance comparison - only an indication of per-
formance trends. In Figure 2 we examine the performance
of a simple point-to-point exchange.

The point-to-point sends use a put protocol:

1. Destination sends RDMA header to source

2. Source receives header and issues RDMA put
3. Source sends ACK to destination when put completes

The timings have both sender and receiver waiting on a com-
pletion ACK. MPICH2 on Cray platforms employs a similar
protocol, but with the receiver issuing an RDMA get.

Figure 2 demonstrates the effects of pinned memory. The
DHARMA put protocol re-registers memory buffers for each
send, resulting in drastically reduced throughput relative to
the pre-registered put that pins all buffers beforehand. If
buffers are re-used in the benchmark, MPI can cache RDMA
memory registrations. Buffer re-use is staggered such that
L1/L2 caches are cold, but MPI still hides pinned memory
latency with a“hot cache”of RDMA buffers. Without buffer
re-use, a performance drop-off is seen in Figure 2 with a
“cold” RDMA registration cache. For small messages, even
without caching, MPI achieves low latency. MPICH2 uses
a hybrid RDMA-eager protocol. The sender copies eagerly
into a pre-registered buffer, allowing the send to complete
early and avoid registration overheads.

Because RDMA sends coordinate via send_rdma_header,
DHARMA can leverage uGNI hardware ACKs instead of
explicit software ACKs. Figure 2 shows a significantly de-
creased latency with hardware ACKs.

6. CONCLUSIONS
In this work, we suggest how minor modifications to the
MPI API could make recovery mechanisms such as LFLR
even more transparent to the application developer. While
the current MPI standard use pointers and tags, we argue
that key-value semantics create a far more expressive pro-
gramming model. The additional expressiveness not only en-
ables the transport layer to handle fault-tolerance in a man-
ner that is more transparent to the application developer, it
also provides a natural evolutionary code path towards more
declarative alternative programming models. We present
the portable DHARMA transport layer API based on flexi-
ble C++ objects along with an initial uGNI implementation
to support these extensions. Competitive performance with
Cray MPICH2 for point-to-point sends is observed, showing
that the MPI_Fetch and MPI_Publish semantics still allow
high performance. Lastly, the DHARMA transport layer
will be made publicly available upon passing open-source
review.
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