
Performance Analysis of a Program Understanding
Static Analysis Signature Search Algorithm
Aditya M. Deshpande and Jeffrey T. Draper

Information Sciences Institute
University of Southern California,

Los Angeles, CA USA
amdeshpa@usc.edu, draper@isi.edu

J. Brian Rigdon and Richard F. Barrett
Sandia National Laboratories

Albuquerque, NM, USA
rfbarre, jbrigdo@sandia.gov

Abstract—Graph processing is widely used in data analytics
applications in a variety of fields, and is rapidly gaining attention
in the computational scientific and engineering (CSE) application
community. These applications typically exhibit runtime profiles
distinct from those of CSE applications. PathFinder, a proxy for
real-world graph analytics applications, searches directed graphs
to find characteristic signatures, which are specified sequences
of labels that are associated with nodes in the graph.

In this work, we describe PathFinder and its general perfor-
mance traits, including its cache behavior, scaling properties, and
the impact of increase in graph size density. We highlight some
important differences between PathFinder and traditional CSE
applications.

Index Terms—data analytics, computational science and en-
gineering applications; high performance computing; program-
ming models.

I. INTRODUCTION

In the computer science field of program understanding,
static analysis is used to determine the control and data flow
of a compiled binary without executing that binary. Data flow
seeks to identify the manner in which data is operated on.
Our focus here is on control flow, which seeks to identify the
possible paths through the program. This can be defined as a
directed graph, where edges show the flow between nodes.

Graphs generated from binaries have several interesting
properties not seen in other sorts of graphs. An application
proxy, named PathFinder, represents these properties, allow-
ing examination of the performance characteristics of the
algorithms used in this work. In particular, our goal is to
find signatures in the control flow, for example: the first, the
shortest, or some statistical measure of the total number of
signatures.

In this paper we examine the performance aspects of
PathFinder, a proxy for full applications. We compare these
with those of some traditional computational science and
engineering (CSE) applications.

A. Related Work

Graphs provide a powerful means for describing relation-
ships within physical systems across a broad set of domains.
CSE application programs organize unstructured grid points
as undirected graphs for spatial decomposition across parallel
processes [5], [7]. Social networks use graphs to determine

relationships between members, where again, the graphs are
undirected since the relationship is presumed to go both ways.
Betweenness centrality measures the number of shortest paths
through a node [6], where a high value conveys something
about the importance of a node. The graph may be directed or
undirected. PathFinder is designed to investigate control flow
using a directed graph. So in addition to node connectivity,
the actual execution path is important. That is, questions
pertain not simply to if nodes are connected, but how they
are connected.

The Graph500 benchmark (www.graph500.org) operates on
graphs such as those defined by social networks. Using a
breadth-first search of large undirected graphs, an ordering of
computer performance is based on the number of edges tra-
versed (TEPS). The Scalable Synthetic Compact Applications
(SSCA) benchmark #2 [2] represents betweenness centrality,
where the graph may be directed or undirected. Although
strong support for work in each of these areas would generally
have a positive impact on the performance of PathFinder,
PathFinder algorithms are sufficiently different to warrant a
separate effort.

The characteristics of the graphs being operated on are
different in ways that impact the runtime characteristics of
the algorithms operating on them. Graphs in these other areas
typically have a small diameter with a large degree, thus
leading to the notion of “six degrees of separation.” PathFinder
graphs are typically long and skinny, “look very directional”,
and thus have large diameters with small degrees.

Pathfinder is similar to dominator analysis [8], [4], but the
underlying goals are different enough to make comparing them
insufficient for our purposes. Dominator analysis simplifies
a call graph by identifying basic blocks that always precede
other blocks when evaluated from a global start node traversed
to a global end node. However, PathFinder’s analysis may
start and terminate anywhere in the graph, with no node a
dominator of any other, and cyclic paths are viewed as normal
and desirable.

PathFinder is a proxy application, maintained as part of
the Mantevo project [3] (www.mantevo.org). Unlike a bench-
mark, where rules constrain experimentation, proxy apps are
designed for modification and experimentation, to any extent
that remains relevant to an application developer. This enables,

SAND2015-1944C

for example, investigation of different programming models,
languages, and mechanisms, existing, emerging, and future
architectures, and even entirely new algorithmic approaches
for achieving effective use of the computing environment
within the context of complex application requirements.

II. PATHFINDER

A graph is defined as

G = {V,E},

for a set of vertices V and set of edges E. For a directed
graph, the edges have a direction, e.g. ei → ej , but ej 9 ei.

PathFinder searches directed graphs to find characteristic
signatures, which is a specific sequence of labels that are
associated with nodes in the graph. A path is a list of nodes
where each node has an edge to the next node in the path.
Paths that match a signature begin with a node labeled with the
first label in the signature, and subsequent nodes in the path
are associated with the remaining signature labels in order.
However, many nodes may lie on the path between labels
that are subsequent in the signature; the portion of a path
between two subsequent labels in a signature is called a leg.
The signature path terminates with a node associated with the
last label in the signature. The set of nodes that make up a path
between two labels is the path for a “leg” of the signature. The
combination of all legs defines the complete signature path.

An example graph, illustrated in Figure 1, contains paths for

Fig. 1. PathFinder graph

the signatures (Red, Blue), (Red, Green, Blue),
(Red, Green, Yellow) and (Red, Red, Blue) but
not (Red, Green, Blue, Yellow).

Not all nodes are labeled, some may have more than one
label, and labels are not unique to any given node. The set of
nodes that make up a path between two labels is the path for
a “leg” of the signature. When all the legs are combined, that
makes up the complete signature path.

Further, the graphs may be
• noisy. They may have missing edges, missing nodes,

or entire sequences of nodes and edges that are con-
structed differently simply because of errors introduced

in translating the binary into a graph. Although the graph
algorithms mentioned above are well understood in the
usual case, they must be modified to accept “fuzzy”
matches to deal with noise in the graphs.

• nested, directed, and potentially cyclic. The exterior graph
is the function call graph: nodes represent functions and
edges represent calls from one function to another func-
tion. The interior graphs are control flow graphs (CFGs):
each function node contains the CFG for that function,
interior nodes represent basic blocks, and edges represent
execution moving from one basic block to another.
– Interior CFGs have edges to the exterior graph. When a

basic block terminates by calling another function, the
basic block has an edge to the destination function.
Additionally, the containing function has an edge to
the destination function (by definition).

– The interior graphs are fairly localized, but the exte-
rior graphs are not. Except for function calls, basic
block nodes should transfer control only to other basic
blocks in the same function. Similarly, function calls
should transfer control to the one entrance basic block
node that represents the beginning of the destination
function.

– The branching factors and structures of the two layers
are very different. The exterior function call graph
branching factor runs the gamut from very high to
very low, and the exterior graph rarely has cycles
of more than one node. (Recursive functions have
one-node cycles.) The interior CFGs tend to have a
branching factor of up to two, although jump tables
cause rare branches of significantly more than two, and
the interior graph frequently has cycles.

• vastly different sizes. Function call graphs may have from
one to thousands of functions, and CFGs may have from
one to thousands of basic blocks.

• not complete, as there are some subgraphs that are not
connected with the remainder of the graph. Not all nodes
are labeled, some may have more than one label, and
labels are not unique to any given node. Any number of
nodes may exist between any two labels in a signature,
however loops are excluded. The set of nodes that make
up a path between two labels is the path for a “leg” of the
signature. When all the legs are combined, that makes up
the complete signature path.

• irregular with regard to metadata and signatures, and
potentially extremely complex. for example, nodes may
have multiple labels1, edges may have labels, labels
may cross or encompass several nodes, and signatures
may include combinations of labels or partially labeled
subgraphs. PathFinder provides a simple example to begin
addressing these types of problems.

PathFinder currently has two modes of operation. Normal
operation searches for signatures as described above. Exhaus-
tive mode determines whether or not a path exists between

1The current implementation of PathFinder only supports a single label.

each pair of labels in the graph. Plans include adding other
modes.

A. Implementation

Because of the object density of the problem (graphs com-
posed of nodes and edges, etc.), PathFinder has a distinct C++
flavor to its coding style. However, for a variety of reasons,
PathFinder is written using the C programming language,
with strong attention paid to clear software quality principles.
There are many structures that have structure-specific func-
tions associated with them, such as a “vector” storage pattern
similar to std::vector<Type>. Without C++ templating,
PathFinder has a lot of closely duplicated code. That said, most
of PathFinder code is infrastructure and support code such as
parsing or storage, but the heart of PathFinder is in its search
algorithms.

B. Algorithm

PathFinder traverses the graph in a modified depth-first re-
cursive search, comparing all adjacent nodes before recursing
down the edges. if a match is found, the algorithm advances to
the next label in the signature and recurses with the matched
node as the new start. if there are no more labels in the
signature the search is deemed a success, and the recursion
is stopped. if no matches are found among the directly-
connected nodes, the algorithm recurses along each edge with
the current label still being the one being compared against.
Once all edges have been checked without finding a match,
then recursion is terminated as a failed search.

PathFinder maintains a list of nodes for each label repre-
sented in the graph. Each signature search begins at a node
labeled with the first label in a signature. PathFinder checks
adjacent nodes for the next label in the signature. if it is not
found, PathFinder then does a recursive depth-first search until
the next label is found. This completes the discovery of a leg
of the signature. Once a leg is found, a new search is started for
the next label in the signature. Loops are not allowed within
a leg, but they may exist within the complete signature path.
PathFinder iterates through all nodes with the first label until
it finds a valid signature path or terminates proving that the
graph does not contain the signature.

The description of the graph is defined in terms of a C struc-
ture, shown in Figure 2. The structs within it (NodeType,
Node, NodeList, interiorNodes, and EdgeList) are
essentially linked lists.

A pseudo-code sketch of the search algorithm is shown in
Figure 3.

III. PERFORMANCE MODELING, RESULTS AND
DISCUSSION

As PathFinder is one of the newest additions to the Mantevo
suite of miniapps, understanding parameters that impact its
performance is important. In this section we present perfor-
mance characterization and cache behavior of the PathFinder
miniapp. We begin by describing the setup environment and
graph problem generation methodology used for this study,

struct NodeStruct
{
char

*label;
int

id, labelIdx, nodeCount,
edgeCount, entranceCount;

NodeType
type;

Node
*container; // If interior node, points to

// outer node containing this one.
NodeList

*interiorNodes; // All nodes contained in
// this node’s subgraph.

EdgeList
*edges; // Nodes that can be accessed from

// this node (includes entrance nodes).
};

Fig. 2. Data structures

followed by performance characterization and impact of vari-
ous parameters of the input graph on application performance.
We conclude the discussion by presenting cache characteristics
of PathFinder miniapp.

A. Experiment Environment

In this section, we describe the environment used for
performing characterization studies for the PathFinder
miniapp.

Machine Description:
We conducted experiments on Edison, a Cray XC30 system

located at National Energy Research Scientific Computing
Center (NERSC). Each compute node consists of dual socket
Intel Xeon E5-2670 “Ivy Bridge” 12-core processors clocked
at 2.4 GHz. Each core has a private 64KB L1 and 256KB
L2 cache. All cores on a socket share a 30MB L3 cache.
Each compute node uses 64GB DDR3 memory operating
at 1600 MHz. The computing environment was set using
module PrgEnv-gnu/5.2.25, which includes the gcc
compiler version 4.9.1, with which we used flags -static
-fopenmp -O3. Runtime profiling data was collected using
the Cray Performance Analysis Tool (CrayPat) found in
module perftool version 6.2.1.

Graph Generation:
The complexity of the graph problems are often determined

by the number of edges and nodes in a graph. Similarly, for
our PathFinder miniapp, the complexity of the signature search
algorithm application is determined by the number of nodes in
the graph, and characteristics of the signature searches, largely
influenced by the number of unique labels in the graph and
aggregated label count across all the nodes in the graph. The
number of nodes determines the size of the graph, whereas
the number of unique-labels and total-labels determine the

boolean FindRemainingSignatureFromCurrentNode (currentNode, signature, result, visited)
{

if currentNode is in visited
return FALSE // Cycle or a subgraph that has already been searched

else
push currentNode onto visited stack

push currentNode onto result stack

for each edge from currentNode
if edge->targetNode->label == signature[0]

if signature[1] != NULL we have more legs in the search
Create nextResult for next leg search
Create nextVisited for next leg search
success = FindRemainingSignatureFromCurrentNode

(edge->targetNode, &signature[1], nextResult, nextVisited)
if success

result += nextResult
delete nextVisited
return TRUE // we’ve found the path

else
continue through edge checking

else signature[1] == NULL
push edge->targetNode onto result
return TRUE // we’ve found the path

else
continue through edge checking

// end of for each edge target compared against signature [0]

If we’ve made it this far, none of the edges is a direct match to the current label; do a deeper search:

for each edge from current node
success = FindRemainingSignatureFromCurrentNode

(edge->targetNode, &signature[0], result, visited)
if success

return TRUE, we’ve found the path
else

continue through edge searching loop

If we’ve made it this far, we have no path:

pop currentNode off of result // but not off of visited
return FALSE;

}

Fig. 3. Search Algorithm pseudo code

signature search time. In order to study the impact of the total-
labels in the graph on performance, we define density as the
average number of labels per node in the graph. Therefore,
the density of a graph problem is given by –

Density =
Total labels in graph

Number of nodes

The PathFinder miniapp can operate in two different modes:
signature-search mode, where a given signature is detected
if present in the graph; or exhaustive-search mode, where
a given path is determined if it exists between any pair of
nodes for every label in the graph. Execution of the PathFinder
miniapp can be divided into two phases: build, during which
the program reads the input and builds a graph, an operation
that is inherently serial in nature; and search, wherein a
signature search is conducted. Signature searches performed
in exhaustive-search mode are embarrassingly parallel, an
individual path/leg of a signature can be treated as individual

search and be distributed among available threads for com-
putation. We use the exhaustive-search mode of operation
for results presented in section III. This mode also mimics
real-world scenarios wherein one is interested in finding the
relationship between graph elements rather than focusing on
a single search.

B. Performance Characterization

We begin by presenting execution time for various graph
sizes. Figure 4 shows the average execution time for 1000-
node, 2000-node and 4000-node graph problems. There are
800, 1600, 3200 unique-labels and 2000, 4000, 8000 total-
labels in the graph for 1000, 2000 and 4000 nodes, respec-
tively. We kept the ratio of unique-labels to number of nodes
in the graph for this experiment constant at 0.8 and density
or average number of labels per node to 2. These values
are representative of real-world problems. However, in later
sections we discuss the impact of change in the ratio of

Fig. 4. Execution time for PathFinder miniapp

unique-labels to number of nodes and density of labels in the
graph. For each problem size, we generate 10 different graph
problems. Each of the 10 problem graphs are then executed
and their performance characteristics captured. To capture
the impact of inherent parallelism in the signature-search
operation in the application, we use various numbers of threads
for application execution. In Figure 4, the X-axis indicates
the number of OpenMP threads used for execution, while the
Y-axis indicates the average execution time in seconds on a
logarithmic scale. Each column indicates the average of the
execution time over the 10 graph problems. The variation bars
on each column indicates the spread of the execution times
for the 10 different problem runs between the min and max
execution times.

From Figure 4, we observe that, with the same input
parameters, execution time varies over 30% depending on the
configuration of the graph. As problem size increases, the
increase in runtime is exponential compared to the increase
in problem size. Similarly, as the number of threads available
for computation increases from 1 to 16, the average execution
time for all problem sizes decrease, indicating that the search
operation benefits from parallelism provided by additional
threads. Even with additional threads, we observe average
speedups of 1.7x, 2.7x, 4.4x and 7.3x for 2, 4, 8, 16 threads,
respectively, indicating that we achieve nearly half the speedup
per additional threads, and also the average speedup decreases
with increase in threads available for computation.

We now look into how various input parameters of the graph
affect the performance of the PathFinder miniapp.

We first discuss the impact of the number of nodes in the
graph on execution time. Figure 5 shows how the execution
time varies with increase in the graph size. The Y-axis shows
the execution time on a log2 scale. We present results for

Fig. 5. Execution time vs. problem size scaling for PathFinder

various number of threads used for application execution.
Again, the density was kept constant at 2 and the ratio of
unique-labels to number of nodes in the graph at 0.8. From the
plot, we observe that for various threads, as the problem size
grows, the increase in execution time is exponential, indicating
that the amount of computation increases exponentially with
problem size.

Fig. 6. Density scaling for PathFinder miniapp

Figure 6 shows the impact of increase in density (average
number of labels per node) of the graph on performance
(execution time). For this experiment, we consider a 1000-
node, 800-unique-labels graph and we vary density from 2 to
16. We plot results for execution time for various numbers of
threads used for computation. From Figure 6 we observe that
in every thread execution scenario, the average execution time
decreases as the density of the graph increases. Considering
that we are running PathFinder in exhaustive-search mode, the
goal is to find a path between a pair of nodes containing the
searched label-pair. Therefore, as density increases, there is
higher probability of finding a node traversal containing the
label early in the graph traversal. This expedites an individual
label-pair search through the graph thereby decreasing execu-
tion time. Also, we observe that the decrease in runtime with
increase in density is highest in 2-thread execution; this can
be attributed to 2-thread execution being a good fit for this
problem size, and we expect that as problem size increases,
higher numbers of threads will be beneficial to execution.

Figure 7 plots the impact of increase in the unique-labels
in the graph on the performance. For this experiment we
consider 1000-node, 4000-total-labels graphs, and we vary
the number of unique-labels between 800-1600. We plot
results for various numbers of threads allowed to be used for
computation. In this experiment with a constant number of
nodes and total-labels in the graph and executing in exhaustive
search mode, the memory footprint of the graph remains
constant; only the search space increases with higher unique-
label count. The total number of label-pair searches increase
from around 8002 to around 16002 for unique-labels increasing

Fig. 7. Unique-label scaling for PathFinder miniapp

from 800 to 1600. We observe that as the number of unique-
labels increase, the runtime increases. Increase in runtime is
higher for runs with lower numbers of available threads for
computation. For 16-thread execution, runtime increased by
4X while it increased by over 5X in single-thread execution.
Increase in the runtime can be directly correlated to the
increased number of searches in the application execution.

The performance characterization results presented previ-
ously were for test-case sized graph problems. For real-
world problems, much larger graph problems are expected.
To that extent, we now examine how the PathFinder miniapp
scales under strong scaling. For this experiment we consider
8000-nodes, 6400 unique-labels and 16000 total-label graph
problems. For strong scaling, we analyzed the application
execution running between 1-16 threads. Figure 8 shows
the strong scaling results for the PathFinder miniapp. In
addition to the actual execution results, we plot an ideal
scaling scenario wherein for each number of threads used for
computation, we estimate ideal execution time by dividing the
single-thread execution-time by the number of threads used
during a particular computation. From the graph, we observe
that the PathFinder miniapp scales well with increases in the
computation resources. As the number of threads used for
execution increases, the execution time decreases and tracks
the ideal-time curve albeit with a fixed offset. The fixed offset
is attributed to the serial nature of the graph build phase as
well as the overhead of parallelization for distributing work
among increasing numbers of threads. This offset decreases
as the number of threads available for computation increases,
indicating good strong scaling characteristics.

Fig. 8. Strong scaling for PathFinder miniapp

With PathFinder being a graph-based miniapp, the com-
plexity of the search operation increases exponentially with
increase in the graph size, and hence it becomes difficult to
perform weak-scaling experiments, wherein one increases the
problem size with increase in the resources. At this point we
are working on correlating problem size with the complexity
of the graph and analyzing its impact on performance. We
leave this task of characterizing weak scaling for PathFinder
as future work.

C. Cache Characteristics

The behavior and utilization of the memory hierarchy,
especially the cache hierarchy, have a strong impact on the
performance of any application. Understanding these char-
acteristics is important to application developers, as it often
indicates where improvements can be made to maximize
performance of applications. It becomes especially imperative
that one understands this behavior for new graph processing
applications, as their cache utilization behavior is significantly
different from other CSE (Computational Scientific and Engi-
neering) applications. Figure 9 presents L1 cache behavior of
the PathFinder miniapp. The Y-axis in Figure 9 indicates the
percentage of L1 cache accesses which hit in the L1 cache,
while the X-axis represents various numbers of threads used
for computation. We consider three different problem sizes
consisting of 1000-node, 2000-node and 4000-node graph
problems with 0.8*nodes unique-labels and 2*nodes total-
labels in the problem graph. For each problem size we generate
10 random graph problems, and the average cache hit rate
across all graph problems is presented here. For all three

Fig. 9. L1 cache Hit Rate for PathFinder miniapp

problem sizes, we observe a L1 cache hit ratio between 89-
92%. The majority of execution runs across various numbers
of threads have L1 cache hit rates in excess of 90%. Although
this indicates significant L1 cache locality, these hit rates are
lower than those observed in other CSE applications where
L1 cache hit rates are observed to be ≥ 95%. As the number
of threads used for computation increases, for every problem
size, we see a decrease (albeit minor) in L1 cache hit rates.
However L1 cache hit rate remains nearly constant irrespective
of problem size.

In Figure 10 we present the L2 cache hit rate for the
PathFinder miniapp. We use the same problem sizes that were
described above for gathering L1 cache statistics. As seen
from the graph, the L2 hit rate is around 60% for 1000-
node, 47% for 2000-node and 40% for 4000-node graph
problems respectively. As problem size increases, the L2 hit
rate decreases. This behavior results because when the problem
size increases, a longer graph traversal is required during
every search operation. With graph traversals in a larger graph
spanning a larger memory footprint, the pointer chasing is
spread out across a larger memory, leading to poor spatial
locality during consecutive memory accesses. Scenarios such
as a miss in the L1 cache causing a miss in the L2 cache
are more likely to occur, leading to node information to be
fetched from L3/ Last Level Cache (LLC) or memory. This
L2 cache behavior is unique to PathFinder and very different
as compared to other CSE applications. With increases in
the number of threads for computation, we observe slight
increases in L2 cache hit rate, which can be attributed to a
larger combined L2 cache available across all the threads to the

Fig. 10. L2 cahe Hit Rate for PathFinder miniapp

program. Even with the increase in number of threads leading
to more L2 cache being available to the program, the inherent
nature of graph search means that no individual L2 cache can
hold the complete problem memory footprint, which also leads
to lower L2 cache hit ratios. Further cache studies are needed
to determine which cache architectures/ organizations would
lead to better L2 cache utilization. The micro-architecture
evaluation of the cache architecture is beyond the scope of
this paper, though we will be addressing this topic in future
work.

In Figure 11 we show the combined hit rate for the private
caches available to each core. The Y-axis of Figure 11 shows
the combined L1 and L2 cache hit rate percentage, while the
X-axis represents the number of threads used for computation.
We observe that the combined hit rate is over 94% for all
problem sizes. The combined hit rate is higher than the
individual hit rates observed for L1 or L2 cache indicating
that the presence of L2 cache improves overall hit rates. Given
that L1 cache accesses dominate aggregated L1 and L2 cache
accesses, we observe that the combined hit-rate tracks L1
cache hit rate more closely. Similar to the L1 cache behavior,
when either the problem size or the available threads for
computation increases, the combined cache hit rate decreases.

We also measured the L3 cache hit ratio and observed
nearly a 100% hit rate for various problem sizes. The L3
cache hit-rate drops to around 98% for all problem sizes when
executing with 16 threads. The L3 cache being the Last Level
Cache (LLC) is shared among all the available threads. As
the number of working threads increases, the average L3 cache
size available to each thread decreases. Even though IvyBridge

Fig. 11. Combined private cache Hit Ratio for PathFinder miniapp

TABLE I
MEMORY FOOTPRINT (MB) FOR PATHFINDER MINIAPP

Number of Threads
Graph problem size (# nodes)

1000 2000 4000

1 23 25 29

2 40 42 45

4 72 74 77

8 136 139 142

16 201 204 207

processors have a large shared L3/LLC cache, with 16 threads
and assuming uniform sharing, each thread is limited to around
2.5MB of the L3 cache on the socket. This leads to an increase
in the number of L3 cache misses, thereby decreasing the
observed hit rate. We also measured the memory footprint
for various problem sizes running with various numbers of
threads for execution. The memory footprint is shown in table
I. From Table I we observe that the memory footprint increases
with the number of threads used for computation. The memory
footprint of the application increases from ≈ 23MB to ≈
201MB for 1000-node graphs. The memory footprint remains
nearly constant with the increase in the graph problem size.

To summarize, in this section we presented performance
characterization of the PathFinder miniapp with different prob-
lem sizes and various numbers of threads. We showed the
impact of increase in the number of nodes, unique-labels and

total-labels in the graph on the performance of the application.
We also demonstrated and characterized scaling properties
of the PathFinder miniapp. With cache characteristics and
behavior having a strong impact on the performance of any
application, we presented the cache characteristics of the
PathFinder miniapp. Both L1 and L3 caches have a cache
hit ratio of over 90% whereas the L2 cache hit ratio is
substantially lower (less than 60%). Also the L2 cache hit
ratio decreases as the problem size increases, suggesting, poor
utilization of L2 cache in this graph-processing miniapp. This
type of behavior merits further attention, as it differs from that
of other CSE applications.

ACKNOWLEDGMENT

This research used resources of the National Energy Re-
search Scientific Computing Center, a DOE Office of Science
User Facility supported by the Office of Science of the
U.S. Department of Energy under Contract No. DE-AC02-
05CH11231.

IV. SUMMARY AND FUTURE WORK

We exercised PathFinder with different problem sizes and
various numbers of threads. We showed the impact of increases
in the number of nodes, unique-labels and total-labels in
the graph on the performance of the application. We also
demonstrated scaling properties of the PathFinder miniapp.
With cache characteristics and behavior having a strong impact
on the performance of any application, we showed the cache
characteristics of the PathFinder miniapp. Both L1 and L3
caches have a cache hit ratio of over 90% whereas the L2
cache hit ratio is substantially lower. Also the L2 cache hit
ratio decreases as the problem size increases, suggesting poor
utilization of L2 cache in this graph-processing miniapp.

This initial implementation of PathFinder serves as a start-
ing point for these sorts of signature searching explorations.
Capabilities are being added that will provide stronger and
deeper means for statically analyzing executables in order to
characterize more complex and potentially nebulous control
flows. Additional capability is being considered for addition
to PathFinder. For example, the current implementation traces
calls but does not analyze the path of returns. This would
provide stronger context for the call trace. We continue to
prepare for significantly larger problem sets, which would
require more complex techniques for internode path finding.

These algorithmic capabilities will require increasingly
more powerful and complex computing capabilities. Therefore,
a major focus of our work is on emerging and expected
future architectures. In particular we are preparing for many
core nodes, with large hierarchical stack memory systems,
perhaps with applicable logic assistance (e.g. forward referenc-
ing), with node interconnects providing significantly increased
injection rates and bandwidth, but with proportionally less
global bandwidth. System software is being developed that

provides strong support for the sort of task parallelism inherent
in PathFinder and other such algorithms, with integrated
internode data movement protocols [9]. In particular, the con-
straints imposed by the traditional bulk synchronous parallel
programming model (BSP [10]) will be significantly relaxed.
A deeper discussion of this and other associated capabilities
are described in [1].

This style of computing system will inspire a re-thinking of
the sorts of problems that could be addressed by this integrated
capability. For example, we envision operating on larger and
multiple binaries simultaneously, requiring distributed memory
computing environments.

ACKNOWLEDGEMENTS

This research used resources of the National Energy Re-
search Scientific Computing Center, a DOE Office of Science
User Facility supported by the Office of Science of the
U.S. Department of Energy under Contract No. DE-AC02-
05CH11231.

Sandia National Laboratories is a multi-program laboratory
managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the U.S. De-
partment of Energys National Nuclear Security Administration
under contract DE-AC04-94AL85000.

REFERENCES

[1] J. Ang et al. Abstract Machine Models and Proxy Architectures for
Exascale Computing. In Proc. of the First International Workshop on
Hardware-Software Co-Design for High Performance Computing (Co-
HPC), 2014.

[2] D.A. Bader and K. Madduri. Design and Implementation of the HPCS
Graph Analysis Benchmark on Symmetric Multiprocessors. In Proc.
12th International Conference on High Performance Computing (HiPC
2005), volume 3769, pages 465–476. Springer-Verlag Berlin Heidelberg,
December 2005.

[3] R.F. Barrett, P.S. Crozier, M.A. Heroux, P.T. Lin, H.K. Thornquist, T.G.
Trucano, and C.T. Vaughan. Assessing the Validity of the Role of Mini-
Applications in Predicting Key Performance Characteristics of Scientific
and Engineering Applications. Jounral of Parallel and Distributed
Computing, 2014. To appear.

[4] Bjorn De Sutter, Ludo Van Put, and Koen De Bosschere. A practical
interprocedural dominance algorithm. ACM Trans. Program. Lang. Syst.,
29(4), August 2007.

[5] K.D. Devine, E.G. Boman, R.T. Heaphy, R.H. Bisseling, and U.V.
Catalyurek. Parallel hypergraph partitioning for scientific computing.
In Proc. of 20th International Parallel and Distributed Processing
Symposium (IPDPS’06). IEEE, 2006.

[6] L.C. Freeman. A set of measures of centrality based on betweenness.
Sociometry, 40(1):35–41, 1977.

[7] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM J. Sci. Comput., 20(1), December
1998.

[8] Reese T. Prosser. Applications of boolean matrices to the analysis of flow
diagrams. In Papers Presented at the December 1-3, 1959, Eastern Joint
IRE-AIEE-ACM Computer Conference, IRE-AIEE-ACM ’59 (Eastern),
New York, NY, USA, 1959. ACM.

[9] D.T. Stark, R.F. Barrett, R.E. Grant, S.L. Olivier, K.T. Pedretti, and
C.T. Vaughan. A Dynamic Runtime with Co-Scheduling of Work and
Communication Tasks for Hybrid MPI+X Applications. In Workshop
on Exascale MPI (ExaMPI), 2014.

[10] L.G. Valiant. A Bridging Model for Parallel Computation. Commun.
ACM, 33:103–111, August 1990.

