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ABSTRACT

We present an improved deterministic method for analyzing transport problems in random 
media.  In the original method realizations were generated by means of a product quadrature rule; 
transport calculations were performed on each realization and the results combined to produce 
ensemble averages.  In the present work we recognize that many of these realizations yield 
identical transport problems.  We describe a method to generate only unique transport problems 
with the proper weighting to produce identical ensemble-averaged results at reduced 
computational cost.  We also describe a method to ignore relatively unimportant realizations in 
order to obtain nearly identical results with further reduction in costs.  Our results demonstrate that 
these changes allow for the analysis of problems of greater complexity than was practical for the 
original algorithm.
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1 INTRODUCTION

Various transport problems of practical interest involve background media consisting of a 
mixture of two or more well-characterized materials whose spatial distribution is known only in 
a statistical sense.  Examples of such problems include the transport of solar radiation through 
cloudy atmosphere and the neutron distribution in pebble bed reactors.  Given knowledge of the 
statistical distribution of the materials in relevant physical realizations, the problem of transport 
through such stochastic media consists of determining the statistical distribution of angular 
fluxes and derived quantities such as dose in these realizations.  For example, one may wish to 
determine the mean, variance, and maximum reactivity of a pebble bed reactor in order to ensure 
criticality safety during operation regardless of the physical arrangement of the pebbles.

In previous work [1] we demonstrated that one can approximately calculate ensemble-
averaged transport quantities for stochastic media problems by means of deterministically-
generated realizations (as opposed to Monte Carlo sampling of realizations).  Such realizations 
are characterized by the number and location of “pseudointerfaces” they contain and by the 
material assignments between pseudointerfaces.  Appropriate weighting of such realizations 
yields an ensemble average whose accuracy is governed by the maximum number of 
pseudointerfaces, the quadrature order for spatial distribution of the pseudointerfaces, and the 
underlying material statistics.  The expense of this method grows rapidly according to both the 
number of pseudointerfaces and by the quadrature order, thus limiting the effectiveness of the 
method.
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In the present work we greatly improve the efficiency of the above-mentioned method.  This 
is accomplished by two changes.  First, we recognize that the original method frequently 
repeated the same transport calculation; we show how to combine equivalent realizations in 
order to perform each unique transport calculation only once.  This yields identical results in a 
much more efficient manner.  Secondly, we recognize that many of the transport problems
generated have very low weight (probability).  We introduce a filtering technique to eliminate 
many low-weight transport problems to obtain nearly identical results at reduced cost.  The 
combination of these two techniques allows the improved algorithm to treat problems of greater 
complexity than before for the same computational cost.

The rest of the paper is organized as follows.  In Section 2 we briefly describe the original 
algorithm and then define our improvements to it.  In Section 3 we present results for the 
improved algorithm for a set of benchmark problems.  In Section 4 we present conclusions and 
ideas for future work.

2 ALGORITHMS

In this section we describe the original method first reported in [1].  We present both the 
properties of the method and its procedure.  Then we define how we transform that method into a 
more efficient one.

2.1 Original Method

In [1] we showed that a Markovian binary stochastic medium in one-dimensional slab 
geometry has the following properties:

1. It may be described by regions separated by “pseudointerfaces” with an effective 
combined average chord length �� = ���� (�� + ��)⁄ , where �� and �� are the 
average chord lengths of materials 1 and 2, respectively.

2. The frequency with which P pseudointerfaces occur is governed by the Poisson 

distribution �(�; ��) = �
�����

� �!⁄ .

3. The location of pseudointerfaces is uniformly distributed, and thus independent of 
the location of other pseudointerfaces.

The above properties allow us to decompose the problem into a set of stratified subproblems 
characterized by the number of pseudointerfaces.  For a given number of pseudointerfaces we 
distribute each pseudointerface by means of a spatial quadrature rule.  For each set of 
pseudointerface distributions we permute the materials in each spatial region to define different 
transport problems.  The weighted sum of the transport results yields the (discretized) ensemble 
average. 

This process is depicted for one example problem in Table I.  This example corresponds to 
Tables 4-6 in [2] for a problem thickness of s=0.1; the material chord lengths are ��=9.9 and 
��=1.1.  In the first two columns we list the number of pseudointerfaces and the corresponding 
Poisson probability; in this case we truncate after two pseudointerfaces.  For a given number of 
pseudointerfaces we examine each possible location of them; these locations and the 
corresponding probabilities are depicted in columns 3 and 4, respectively.  For example, for two 
pseudointerfaces and a two-point quadrature there are four possible pseudointerface distributions 
with equal probability of 0.25.  For each geometric realization depicted in column 3 there are 
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various material permutations (column 5) with associated probabilities (column 6).  Transport 
calculations are performed for each problem depicted in column 5.  These results are weighted 
by the product of the probabilities in columns 2, 4, and 6 (adjusted for the truncation of the 
Poisson distribution) and summed to produce an ensemble average.

Table I. Decomposition of example stochastic problem into subproblems
by means of pseudointerfaces

Pseudointerfaces Pseudointerface distribution Material distribution
Problem

Number Probability Configuration Probability Configuration Probability

0 0.903924 1
1 0.9 1
2 0.1 2

1 0.091305

0.5

1,1 0.81 1
1,2 0.09 3
2,1 0.09 4
2,2 0.01 2

0.5

1,1 0.81 1
1,2 0.09 5
2,1 0.09 6
2,2 0.01 2

2 0.004611

0.25

1,1 0.81 1
1,2 0.09 3
2,1 0.09 4
2,2 0.01 2

0.25

1,1,1 0.729 1
1,1,2 0.081 5
1,2,1 0.081 7
1,2,2 0.009 3
2,1,1 0.081 4
2,1,2 0.009 8
2,2,1 0.009 6
2,2,2 0.001 2

0.25

1,1,1 0.0729 1
1,1,2 0.081 5
1,2,1 0.081 7
1,2,2 0.009 3
2,1,1 0.081 4
2,1,2 0.009 8
2,2,1 0.009 6
2,2,2 0.001 2

0.25

1,1 0.81 1
1,2 0.09 5
2,1 0.09 6
2,2 0.01 2
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2.2 Proposed Improvements

2.2.1 Focus on interfaces

The first of our efficiency improvements comes from recognizing that many of the transport 
problems generated by the above procedure are not unique.  For example, in the last column of 
Table I we list a unique identifier for each unique transport problem; there are only 8 unique 
problems, whereas the original procedure would perform 34 calculations.  By merging these 
duplicated problems together we reduce the computational burden.

Figure 1.  Example problem with fifteen-point quadrature for interface locations.

Figure 2.  Example realization with interface locations and material regions.

Procedurally this occurs as follows.  We begin by choosing a numerical quadrature to define 
possible interface locations; this is graphically depicted in Figure 1.  Then we loop over the 
possible number of interfaces, chosen based on accuracy and expense.  For a given number of 
interfaces we examine each possible set of locations and starting material; one example is given 
in Figure 2.  This defines a unique transport problem.  To determine the weighting we loop over 
the possible number of pseudointerfaces (at least one per interface will be needed) to determine 
the Poisson weight.  We implicitly loop over the various distributions of pseudointerface 
locations that can yield the selected distribution of interfaces, accumulating the probabilities of 
each permutation.  As in the original method we compute the weighted sum of the transport 
results to obtain the ensemble average.  If the quadrature weights are equal it may be shown that 
the probability �� of a given transport problem T is given by

�� = (��)
���

��������
������

��!

��! (�� − ��)!

��!

��! (�� − ��)!
�(−1)� �1 −

�

�
�
� �!

�! (� − �)!

�

���

(1)

�� = ���
� ��������� � � ��

���	(��,������)

����

���	(�� ,���)

����

�

���

����

���

(2)

where ���
is the probability of material m occurring at the left boundary of the problem, ���� is 

the maximum number of pseudointerfaces to be modeled, 	�������� is the Poisson probability of 
p pseudointerfaces, i is the number of interfaces in a given problem, �� and �� are the number of 
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quadrature points within materials 1 and 2 to which at least one pseudointerface is assigned, ��
and �� are the number of quadrature points within materials 1 and 2, ��� and ��� are the number 
of interfaces with materials 1 or 2 on the left side, n is the total number of quadrature points to 
which at least one pseudointerface is assigned, w is the quadrature weight, and �� and �� are the 
probabilities of materials 1 and 2 occurring at any location.

In [1] we showed that the algorithmic complexity of the original algorithm is 
�(2��������), where N is the number of quadrature points.  It is easily shown that the modified 
algorithm has complexity �(2���).  The number of unique transport problems to be solved is 
depicted in Table II for a select number of quadrature points and pseudointerfaces; this does not 
depend on any other parameters (e.g. material statistics).

Table II. Number of unique transport problems required
for given number of quadrature points and pseudointerfaces

N
����

1 2 3 7 11 15

3 8 14 16 16 16 16
7 16 58 128 256 256 256
11 24 134 464 3632 4096 4096
15 32 242 1152 32768 64384 65536

Table III. Number of unique transport problems required after filtering
(���� = �, benchmark problems 4-6 from [2], x=10).

N
Cumulative weight

0.9 0.95 0.99 0.995 0.999

3 5 7 11 14 16
7 22 42 115 135 200
11 106 250 809 1200 2092
15 333 1010 5063 7764 15871
19 883 2412 19146 34873 99275
23 2152 5884 65126 115662 477477

2.2.2 Filtering

Our second proposed change to the algorithm is to allow for problem filtering.  The 
preceding procedure for generating realizations creates a transport problem for every possible 
material distribution between pseudointerfaces, even when such realizations may be quite rare.  
By ignoring the lowest-weight realizations we can substantially reduce the number of transport 
calculations without significantly degrading the quality of solution.  For the purposes of this 
study we do this by including only the highest-weighted problems whose cumulative weight just 
equals or exceeds a requested threshold; all others are ignored.  The remaining weights are 
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adjusted so that they sum to unity.  The number of realizations included by this procedure 
depends on both the material statistics and the spatial domain size.  We give an example of this 
reduction for a particular stochastic problem for select parameters in Table III.  Comparison with 
Table II shows a great reduction in the number of transport problems required, even for 
cumulative weights approaching unity.

3 NUMERICAL RESULTS

In order to test our modified algorithm we reexamine the benchmark problems first reported 
in [2].  These problems consist of nine different combinations of binary media and mixing 
statistics for three different slab widths.  The problems are monoenergetic in one-dimensional 
slab geometry.  We restrict our attention to the “rod” problems, which use an S2 Gauss-Lobatto
quadrature (� = ±1).  The problems are driven by an isotropic flux on the left boundary.  All 
scattering is isotropic.  The reflected and transmitted currents are the transport quantities 
examined.

We generate the results for individual realizations with the Sceptre deterministic code [3] 
using its discretization of the first-order form of the linear monoenergetic Boltzmann equation, 
controlling the iterative errors to be less than 10-7 and spatial errors to be less than 10-6 [4].  The 
spatial quadrature for the interface locations is a simple bisection rule with uniform weights to 
create equal-sized regions.  We have generated results for all cases and slab widths.  This is too 
much data to report here, but we note that the observed errors are related to the material 
statistics, which are identical for cases 1-3, 4-6, and 7-9, respectively (only the cross sections 
differ within each of the three sets).  Thus we will present results only for the first member of 
each set, which consists of small amounts of a strong pure scatterer mixed with a larger quantity 
of a weak pure absorber.  We also note that the errors for all thin problems (x=0.1) were less than 
1% in all but a few very coarse calculations, so will not explicitly show them either.  In all cases 
the errors are measured with respect to the benchmarks generated by Monte Carlo sampling 
reported in [2], which are accurate to 0.1-1% error [2,4].  We show these results in Tables IV-XV 
as a function of the number of quadrature points and the maximum number of pseudointerfaces, 
where we also note the average number of pseudointerfaces in the undiscretized stochastic 
problem.

Table IV. Relative error in reflection, case 1, x=1 (Pavg=10.1).

N
����

1 2 3 7 11 15

3 -0.423 -0.325 -0.266 -0.182 -0.171 -0.170
7 -0.437 -0.325 -0.247 -0.090 -0.046 -0.039
11 -0.443 -0.330 -0.248 -0.075 -0.021 -0.011
15 -0.445 -0.333 -0.251 -0.071 -0.013 -0.003
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Table V. Relative error in transmission, case 1, x=1 (Pavg=10.1).

N
����

1 2 3 7 11 15

3 0.128 0.098 0.081 0.055 0.052 0.051
7 0.133 0.099 0.075 0.027 0.014 0.012
11 0.134 0.100 0.075 0.023 0.006 0.003
15 0.135 0.101 0.076 0.022 0.004 0.001

Table VI. Relative error in reflection, case 4, x=1 (Pavg=1.01).

N
����

1 2 3 7 11 15

3 -0.03 0.02 0.02 0.03 0.03 0.03
7 -0.05 0.01 0.02 0.02 0.02 0.02
11 -0.06 < 0.01 0.01 0.01 0.01 0.01
15 -0.06 < 0.01 0.01 0.01 0.01 0.01

Table VII. Relative error in transmission, case 4, x=1 (Pavg=1.01).

N
����

1 2 3 7 11 15

3 0.005 -0.002 -0.003 -0.004 -0.004 -0.004
7 0.007 -0.001 -0.002 -0.003 -0.003 -0.003
11 0.008 < 0.001 -0.002 -0.002 -0.002 -0.002
15 0.009 0.001 -0.001 -0.002 -0.002 -0.002

Table VIII. Relative error in reflection, case 7, x=1 (Pavg=0.396).

N
����

1 2 3 7 11 15

3 0.01 0.01 0.01 0.01 0.01 0.01
7 < 0.01 < 0.01 0.01 0.01 0.01 0.01
11 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
15 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
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Table IX. Relative error in transmission, case 7, x=1 (Pavg=0.396).

N
����

1 2 3 7 11 15

3 -0.002 -0.003 -0.003 -0.003 -0.003 -0.003
7 -0.001 -0.002 -0.002 -0.002 -0.002 -0.002
11 < 0.001 -0.001 -0.001 -0.001 -0.001 -0.001
15 < 0.001 -0.001 -0.001 -0.001 -0.001 -0.001

Table X. Relative error in reflection, case 1, x=10 (Pavg=101).

N
����

1 2 3 7 11 15

3 -0.735 -0.696 -0.671 -0.632 -0.624 -0.623
7 -0.734 -0.683 -0.643 -0.544 -0.497 -0.473
11 -0.734 -0.681 -0.636 -0.516 -0.448 -0.406
15 -0.734 -0.680 -0.634 -0.504 -0.425 -0.374

Table XI. Relative error in transmission, case 1, x=10 (Pavg=101).

N
����

1 2 3 7 11 15

3 4.7 4.4 4.2 3.8 3.8 3.8
7 4.7 4.3 4.0 3.2 2.9 2.7
11 4.7 4.3 3.9 3.0 2.5 2.3
15 4.7 4.3 3.9 3.0 2.4 2.0

Table XII. Relative error in reflection, case 4, x=10 (Pavg=10.1).

N
����

1 2 3 7 11 15

3 -0.54 -0.48 -0.43 -0.37 -0.36 -0.36
7 -0.54 -0.46 -0.39 -0.22 -0.17 -0.16
11 -0.54 -0.45 -0.37 -0.18 -0.10 -0.09
15 -0.54 -0.45 -0.37 -0.16 -0.07 -0.05
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Table XIII. Relative error in transmission, case 4, x=10 (Pavg=10.1).

N
����

1 2 3 7 11 15

3 0.69 0.59 0.53 0.44 0.43 0.43
7 0.70 0.57 0.48 0.26 0.20 0.19
11 0.70 0.57 0.47 0.21 0.12 0.10
15 0.70 0.57 0.46 0.19 0.08 0.06

Table XIV. Relative error in reflection, case 7, x=10 (Pavg=3.96).

N
����

1 2 3 7 11 15

3 -0.127 -0.062 -0.033 -0.014 -0.014 -0.014
7 -0.138 -0.059 -0.023 0.004 0.005 0.005
11 -0.143 -0.061 -0.023 0.006 0.006 0.006
15 -0.146 -0.063 -0.024 0.005 0.006 0.006

Table XV. Relative error in transmission, case 7, x=10 (Pavg=3.96).

N
����

1 2 3 7 11 15

3 0.37 0.18 0.09 0.04 0.04 0.04
7 0.40 0.17 0.06 -0.01 -0.02 -0.02
11 0.42 0.18 0.07 -0.02 -0.02 -0.02
15 0.43 0.18 0.07 -0.02 -0.02 -0.02

We observe several trends in the above data:

 The errors are not monotonic in either N or Pmax separately, but they do appear to be 
monotonic as both parameters increase (e.g. when N= Pmax).

 The accuracy is inversely related to Pavg, degrading as the average number of 
pseudointerfaces increases.  This is to be expected, since our discretization truncates 
the Poisson distribution of pseudointerfaces.

 For some of the problems (e.g. Table XV) there appears to be some error still 
remaining.  This could be the result of statistical and/or spatial errors in the 
benchmarks.

 In comparing the computational cost required for 1% accuracy, we find that our 
method requires fewer realizations than Monte Carlo sampling [4] for x=0.1 and x=1 
for the above cases, and for x=10 for case 7.
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Next we examine the results of filtering.  In Tables XVI and XVII we show the relative 
difference (not the relative error) between the results with or without filtering for case 4 and 
x=10.  As N increases we observe that the discrepancy is approximately equal to the weight of 
the realizations that were filtered out, which can be a useful guide for choosing filtering 
parameters.  Comparison of these tables with Tables III, XII, and XIII shows that we can obtain 
equivalent accuracy for a fraction of the cost with this technique.  Alternatively, we can obtain 
greater accuracy for a fixed cost, as shown in Tables XVIII and XIX, where we examine greater 
values for N and Pmax than we did without filtering.

Table XVI. Relative difference between filtered and unfiltered reflection, case 4, x=10
(���� = �).

N
Cumulative weight

0.9 0.95 0.99 0.995 0.999

3 -0.361 -0.180 -0.044 -0.013 0
7 -0.193 -0.110 -0.023 -0.013 -0.002
11 -0.154 -0.083 -0.018 -0.010 -0.002
15 -0.149 -0.069 -0.015 -0.008 -0.002

Table XVII. Relative difference between filtered and unfiltered transmission, case 4, x=10
(���� = �).

N
Cumulative weight

0.9 0.95 0.99 0.995 0.999

3 0.101 0.047 0.010 0.003 0
7 0.084 0.048 0.008 0.004 < 0.001
11 0.094 0.045 0.009 0.005 < 0.001
15 0.100 0.040 0.008 0.004 < 0.001

Table XVIII. Relative error in reflection, x=10, ���� = � = ��.

case
Cumulative weight

0.9 0.95 0.99 0.995 0.999

1 -0.382 -0.350 -0.323 -0.319 -0.316
4 -0.17 -0.11 -0.05 -0.04 -0.04
7 -0.006 0.002 0.004 0.005 0.005
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Table XIX. Relative error in transmission, x=10, ���� = � = ��.

case
Cumulative weight

0.9 0.95 0.99 0.995 0.999

1 1.9 1.8 1.7 1.7 1.7
4 0.14 0.09 0.05 0.04 0.04
7 0.02 < 0.01 -0.01 -0.02 -0.02

4 CONCLUSIONS 

Previously we constructed a method for approximately solving stochastic media transport 
problems by creating realizations through a deterministic process rather than by Monte Carlo 
sampling.  This method focused on pseudointerfaces within the realizations and could be quite 
expensive due to duplicated work.  In the present research we have modified the algorithm to 
focus on interfaces, which yields only unique transport problems.  We also introduced a method 
to filter out low-weight realizations in order to obtain nearly the same accuracy at reduced cost.  
Our numerical results demonstrate that these changes make the algorithm competitive with 
Monte Carlo sampling for many benchmark problems.  The expense of the method is governed 
by the average number of pseudointerfaces present in the original stochastic problem.

For future work we would like to examine more than just the rod problem.  In addition to the 
S16 problems examined in [2], we would like to explore its application to multidimensional 
problems.  Furthermore, we are interested in using it to construct improved local models, such as 
generalizations to the Levermore-Pomraning closure [2], in which the statistical error of Monte 
Carlo sampling may prove problematic.  Work in this area is presented in a companion paper [5].
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