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ABSTRACT

We present an improved deterministic method for analyzing transport problems in random
media. In the original method realizations were generated by means of a product quadrature rule;
transport calculations were performed on each realization and the results combined to produce
ensemble averages. In the present work we recognize that many of these realizations yield
identical transport problems. We describe a method to generate only unique transport problems
with the proper weighting to produce identical ensemble-averaged results at reduced
computational cost. We also describe a method to ignore relatively unimportant realizations in
order to obtain nearly identical results with further reduction in costs. Our results demonstrate that
these changes allow for the analysis of problems of greater complexity than was practical for the
original algorithm.

Key Words: radiation transport, stochastic media
1 INTRODUCTION

Various transport problems of practical interest involve background media consisting of a
mixture of two or more well-characterized materials whose spatial distribution is known only in
a statistical sense. Examples of such problems include the transport of solar radiation through
cloudy atmosphere and the neutron distribution in pebble bed reactors. Given knowledge of the
statistical distribution of the materials in relevant physical realizations, the problem of transport
through such stochastic media consists of determining the statistical distribution of angular
fluxes and derived quantities such as dose in these realizations. For example, one may wish to
determine the mean, variance, and maximum reactivity of a pebble bed reactor in order to ensure
criticality safety during operation regardless of the physical arrangement of the pebbles.

In previous work [1] we demonstrated that one can approximately calculate ensemble-
averaged transport quantities for stochastic media problems by means of deterministically-
generated realizations (as opposed to Monte Carlo sampling of realizations). Such realizations
are characterized by the number and location of “pseudointerfaces” they contain and by the
material assignments between pseudointerfaces. Appropriate weighting of such realizations
yields an ensemble average whose accuracy is governed by the maximum number of
pseudointerfaces, the quadrature order for spatial distribution of the pseudointerfaces, and the
underlying material statistics. The expense of this method grows rapidly according to both the
number of pseudointerfaces and by the quadrature order, thus limiting the effectiveness of the
method.

* To whom correspondence should be addressed
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In the present work we greatly improve the efficiency of the above-mentioned method. This
is accomplished by two changes. First, we recognize that the original method frequently
repeated the same transport calculation; we show how to combine equivalent realizations in
order to perform each unique transport calculation only once. This yields identical results in a
much more efficient manner. Secondly, we recognize that many of the transport problems
generated have very low weight (probability). We introduce a filtering technique to eliminate
many low-weight transport problems to obtain nearly identical results at reduced cost. The
combination of these two techniques allows the improved algorithm to treat problems of greater
complexity than before for the same computational cost.

The rest of the paper is organized as follows. In Section 2 we briefly describe the original
algorithm and then define our improvements to it. In Section 3 we present results for the
improved algorithm for a set of benchmark problems. In Section 4 we present conclusions and
ideas for future work.

2 ALGORITHMS

In this section we describe the original method first reported in [1]. We present both the
properties of the method and its procedure. Then we define how we transform that method into a
more efficient one.

2.1 Original Method

In [1] we showed that a Markovian binary stochastic medium in one-dimensional slab
geometry has the following properties:

1. It may be described by regions separated by “pseudointerfaces” with an effective
combined average chord length A, = A;4,/(4; + 4,), where 4, and A, are the
average chord lengths of materials 1 and 2, respectively.

2. The frequency with which P pseudointerfaces occur is governed by the Poisson
distribution f(P; A.) = e %A /P!

3. The location of pseudointerfaces is uniformly distributed, and thus independent of
the location of other pseudointerfaces.

The above properties allow us to decompose the problem into a set of stratified subproblems
characterized by the number of pseudointerfaces. For a given number of pseudointerfaces we
distribute each pseudointerface by means of a spatial quadrature rule. For each set of
pseudointerface distributions we permute the materials in each spatial region to define different
transport problems. The weighted sum of the transport results yields the (discretized) ensemble
average.

This process is depicted for one example problem in Table I. This example corresponds to
Tables 4-6 in [2] for a problem thickness of s=0.1; the material chord lengths are 1,=9.9 and
A,=1.1. In the first two columns we list the number of pseudointerfaces and the corresponding
Poisson probability; in this case we truncate after two pseudointerfaces. For a given number of
pseudointerfaces we examine each possible location of them; these locations and the
corresponding probabilities are depicted in columns 3 and 4, respectively. For example, for two
pseudointerfaces and a two-point quadrature there are four possible pseudointerface distributions
with equal probability of 0.25. For each geometric realization depicted in column 3 there are
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various material permutations (column 5) with associated probabilities (column 6). Transport
calculations are performed for each problem depicted in column 5. These results are weighted
by the product of the probabilities in columns 2, 4, and 6 (adjusted for the truncation of the
Poisson distribution) and summed to produce an ensemble average.

Table 1. Decomposition of example stochastic problem into subproblems
by means of pseudointerfaces

Pseudointerfaces Pseudointerface distribution Material distribution Problem
Number Probability Configuration Probability | Configuration | Probability
1 0.9 1
0 0.903924 1 2 0.1 2
- 1,1 0.81 1
@ 1,2 0.09 3
1 0.5 20 0.09 4
2.2 0.01 2
| 0.091305 - 1,1 0.81 1
) 1,2 0.09 5
1 0.5 2,1 0.09 6
2.2 0.01 2
- 1,1 0.81 1
© 1,2 0.09 3
1,2 0.25 2,1 0.09 4
2.2 0.01 2
1,1,1 0.729 1
1,1,2 0.081 5
1,2,1 0.081 7
1,2,2 0.009 3
1 2 0.25 201 0.081 4
2,12 0.009 8
2,2,1 0.009 6
2,22 0.001 2
2 0.004611 11,1 0.0729 1
1,1,2 0.081 5
1,2,1 0.081 7
1,2,2 0.009 3
2 1 0.25 211 0.081 4
2,12 0.009 8
2,2,1 0.009 6
2,22 0.001 2
i 1,1 0.81 1
- 1,2 0.09 5
1,2 0.25 2,1 0.09 6
2.2 0.01 2
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2.2 Proposed Improvements
2.2.1 Focus on interfaces

The first of our efficiency improvements comes from recognizing that many of the transport
problems generated by the above procedure are not unique. For example, in the last column of
Table I we list a unique identifier for each unique transport problem; there are only 8 unique
problems, whereas the original procedure would perform 34 calculations. By merging these
duplicated problems together we reduce the computational burden.

Figure 1. Example problem with fifteen-point quadrature for interface locations.

Figure 2. Example realization with interface locations and material regions.

Procedurally this occurs as follows. We begin by choosing a numerical quadrature to define
possible interface locations; this is graphically depicted in Figure 1. Then we loop over the
possible number of interfaces, chosen based on accuracy and expense. For a given number of
interfaces we examine each possible set of locations and starting material; one example is given
in Figure 2. This defines a unique transport problem. To determine the weighting we loop over
the possible number of pseudointerfaces (at least one per interface will be needed) to determine
the Poisson weight. We implicitly loop over the various distributions of pseudointerface
locations that can yield the selected distribution of interfaces, accumulating the probabilities of
each permutation. As in the original method we compute the weighted sum of the transport
results to obtain the ensemble average. If the quadrature weights are equal it may be shown that
the probability pr of a given transport problem 7 is given by

n
N.! N,! - i\ n!
— P, 11 tN21, N2+Ngp 1 2 z - ]< ——> YY)
wr = (wn)Pp; |2 1 (N, — ) 1yl (N, — 1y)! 2 0( 1)7{1 n/ jl(n—j)! (D
]=

Prax p min(Ny,p—i) min(Nz,p—i-ny)
Pr = Pm, z pPoissonz z z wr ()
p=0 =0 n,=0 n,=0

where p,, is the probability of material m occurring at the left boundary of the problem, P, is
the maximum number of pseudointerfaces to be modeled, ppyisson 1S the Poisson probability of
p pseudointerfaces, i is the number of interfaces in a given problem, n; and n, are the number of
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quadrature points within materials 1 and 2 to which at least one pseudointerface is assigned, N,
and N, are the number of quadrature points within materials 1 and 2, N;, and N,; are the number
of interfaces with materials 1 or 2 on the left side, # is the total number of quadrature points to
which at least one pseudointerface is assigned, w is the quadrature weight, and p; and p, are the
probabilities of materials 1 and 2 occurring at any location.

In [1] we showed that the algorithmic complexity of the original algorithm is
0(2N+1NPmax) where N is the number of quadrature points. It is easily shown that the modified
algorithm has complexity O(2V¥*1). The number of unique transport problems to be solved is
depicted in Table II for a select number of quadrature points and pseudointerfaces; this does not
depend on any other parameters (e.g. material statistics).

Table II. Number of unique transport problems required
for given number of quadrature points and pseudointerfaces

Pmax
N 1 2 3 7 11 15
3 8 14 16 16 16 16
16 58 128 256 256 256
11 24 134 464 3632 4096 4096
15 32 242 1152 32768 | 64384 | 65536

Table III. Number of unique transport problems required after filtering
(Pmax = N, benchmark problems 4-6 from [2], x=10).

N Cumulative weight

0.9 0.95 0.99 0.995 0.999
3 5 7 11 14 16
7 22 42 115 135 200
11 106 250 809 1200 2092
15 333 1010 5063 7764 15871
19 883 2412 19146 | 34873 | 99275
23 2152 5884 65126 | 115662 | 477477

2.2.2 Filtering

Our second proposed change to the algorithm is to allow for problem filtering. The
preceding procedure for generating realizations creates a transport problem for every possible
material distribution between pseudointerfaces, even when such realizations may be quite rare.
By ignoring the lowest-weight realizations we can substantially reduce the number of transport
calculations without significantly degrading the quality of solution. For the purposes of this
study we do this by including only the highest-weighted problems whose cumulative weight just
equals or exceeds a requested threshold; all others are ignored. The remaining weights are
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adjusted so that they sum to unity. The number of realizations included by this procedure
depends on both the material statistics and the spatial domain size. We give an example of this
reduction for a particular stochastic problem for select parameters in Table III. Comparison with
Table II shows a great reduction in the number of transport problems required, even for
cumulative weights approaching unity.

3 NUMERICAL RESULTS

In order to test our modified algorithm we reexamine the benchmark problems first reported
in [2]. These problems consist of nine different combinations of binary media and mixing
statistics for three different slab widths. The problems are monoenergetic in one-dimensional
slab geometry. We restrict our attention to the “rod” problems, which use an S2 Gauss-Lobatto
quadrature (u = *1). The problems are driven by an isotropic flux on the left boundary. All
scattering is isotropic. The reflected and transmitted currents are the transport quantities
examined.

We generate the results for individual realizations with the Sceptre deterministic code [3]
using its discretization of the first-order form of the linear monoenergetic Boltzmann equation,
controlling the iterative errors to be less than 107 and spatial errors to be less than 10° [4]. The
spatial quadrature for the interface locations is a simple bisection rule with uniform weights to
create equal-sized regions. We have generated results for all cases and slab widths. This is too
much data to report here, but we note that the observed errors are related to the material
statistics, which are identical for cases 1-3, 4-6, and 7-9, respectively (only the cross sections
differ within each of the three sets). Thus we will present results only for the first member of
each set, which consists of small amounts of a strong pure scatterer mixed with a larger quantity
of'a weak pure absorber. We also note that the errors for all thin problems (x=0.1) were less than
1% in all but a few very coarse calculations, so will not explicitly show them either. In all cases
the errors are measured with respect to the benchmarks generated by Monte Carlo sampling
reported in [2], which are accurate to 0.1-1% error [2,4]. We show these results in Tables [V-XV
as a function of the number of quadrature points and the maximum number of pseudointerfaces,
where we also note the average number of pseudointerfaces in the undiscretized stochastic
problem.

Table IV. Relative error in reflection, case 1, x=1 (P,,,=10.1).

N Pmax
1 2 3 7 11 15

3 -0.423 | -0.325 | -0.266 | -0.182 | -0.171 | -0.170
-0.437 | -0.325 | -0.247 | -0.090 | -0.046 | -0.039
11 -0.443 | -0.330 | -0.248 | -0.075 | -0.021 | -0.011
15 -0.445 | -0.333 | -0.251 | -0.071 | -0.013 | -0.003
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Table V. Relative error in transmission, case 1, x=1 (P,,,=10.1).

Pmax
N 1 2 3 7 11 15
3 0.128 0.098 0.081 0.055 0.052 0.051
7 0.133 0.099 0.075 0.027 0.014 0.012
11 0.134 0.100 0.075 0.023 0.006 0.003
15 0.135 0.101 0.076 0.022 0.004 0.001

Table VI. Relative error in reflection, case 4, x=1 (P,,,=1.01).

Pmax
N 1 2 3 7 11 15
3 -0.03 0.02 0.02 0.03 0.03 0.03
7 -0.05 0.01 0.02 0.02 0.02 0.02
11 -0.06 <0.01 0.01 0.01 0.01 0.01
15 -0.06 <0.01 0.01 0.01 0.01 0.01

Table VII. Relative error in transmission, case 4, x=1 (P,,,=1.01).

Pmax
N 1 2 3 7 11 15
3 0.005 -0.002 | -0.003 | -0.004 | -0.004 | -0.004
7 0.007 -0.001 | -0.002 | -0.003 | -0.003 | -0.003
11 0.008 | <0.001 | -0.002 | -0.002 | -0.002 | -0.002
15 0.009 0.001 -0.001 | -0.002 | -0.002 | -0.002

Table VIII. Relative error in reflection, case 7, x=1 (P;,,=0.396).

Pm X
N 1 2 3 7 11 15
3 0.01 0.01 0.01 0.01 0.01 0.01
7 <0.01 | <0.01 0.01 0.01 0.01 0.01
11 <0.01 | <0.01 |<0.01 |<0.01 |<0.01 |<0.01
15 <0.01 | <0.01 [<0.01 |<0.01 |<0.01 |<0.01
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Pmax
N 1 2 3 7 11 15
3 -0.002 | -0.003 | -0.003 | -0.003 | -0.003 | -0.003
7 -0.001 | -0.002 | -0.002 | -0.002 | -0.002 | -0.002
11 <0.001 | -0.001 | -0.001 | -0.001 | -0.001 | -0.001
15 <0.001 | -0.001 | -0.001 | -0.001 | -0.001 | -0.001

Table X. Relative error in reflection, case 1, x=

10 (P,,,=101).

Pmax
N 1 2 3 7 11 15
3 -0.735 | -0.696 | -0.671 | -0.632 | -0.624 | -0.623
7 -0.734 | -0.683 | -0.643 | -0.544 | -0.497 | -0.473
11 -0.734 | -0.681 | -0.636 | -0.516 | -0.448 | -0.406
15 -0.734 | -0.680 | -0.634 | -0.504 | -0.425 | -0.374

Table XI. Relative error in transmission, case 1, x=10 (P,,,~=101).

Pmax
N 1 2 3 7 11 15
3 4.7 4.4 4.2 3.8 3.8 3.8
7 4.7 4.3 4.0 3.2 2.9 2.7
11 4.7 4.3 3.9 3.0 2.5 23
15 4.7 4.3 3.9 3.0 2.4 2.0

Table XII. Relative error in reflection, case 4, x=10 (P,,,=10.1).

Pm X
N 1 2 3 7 11 15
3 -0.54 -0.48 -0.43 -0.37 -0.36 -0.36
7 -0.54 -0.46 -0.39 -0.22 -0.17 -0.16
11 -0.54 -0.45 -0.37 -0.18 -0.10 -0.09
15 -0.54 -0.45 -0.37 -0.16 -0.07 -0.05
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Table XIII. Relative error in transmission, case 4, x=10 (P,,,=10.1).

Pmax
1 2 3 7 11 15
0.69 0.59 0.53 0.44 0.43 0.43
0.70 0.57 0.48 0.26 0.20 0.19
0.70 0.57 0.47 0.21 0.12 0.10
0.70 0.57 0.46 0.19 0.08 0.06

Table XIV. Relative error in reflection, case 7, x=10 (P,,;=3.96).

Pmax
1 2 3 7 11 15
-0.127 | -0.062 | -0.033 | -0.014 | -0.014 | -0.014
-0.138 | -0.059 | -0.023 | 0.004 0.005 0.005
-0.143 | -0.061 | -0.023 | 0.006 0.006 0.006
-0.146 | -0.063 | -0.024 | 0.005 0.006 0.006

Table XV. Relative error in transmission, case 7, x=10 (P,,;=3.96).

Pmax
1 2 3 7 11 15
0.37 0.18 0.09 0.04 0.04 0.04
0.40 0.17 0.06 -0.01 -0.02 -0.02
0.42 0.18 0.07 -0.02 -0.02 -0.02
0.43 0.18 0.07 -0.02 -0.02 -0.02

We observe several trends in the above data:

The errors are not monotonic in either N or Py, separately, but they do appear to be
monotonic as both parameters increase (e.g. when N= Pp,y).

The accuracy is inversely related to P,ye, degrading as the average number of
pseudointerfaces increases. This is to be expected, since our discretization truncates
the Poisson distribution of pseudointerfaces.

For some of the problems (e.g. Table XV) there appears to be some error still
remaining. This could be the result of statistical and/or spatial errors in the
benchmarks.

In comparing the computational cost required for 1% accuracy, we find that our
method requires fewer realizations than Monte Carlo sampling [4] for x=0.1 and x=1
for the above cases, and for x=10 for case 7.
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Next we examine the results of filtering. In Tables XVI and XVII we show the relative
difference (not the relative error) between the results with or without filtering for case 4 and
x=10. As N increases we observe that the discrepancy is approximately equal to the weight of
the realizations that were filtered out, which can be a useful guide for choosing filtering
parameters. Comparison of these tables with Tables I1I, XII, and XIII shows that we can obtain
equivalent accuracy for a fraction of the cost with this technique. Alternatively, we can obtain
greater accuracy for a fixed cost, as shown in Tables XVIII and XIX, where we examine greater
values for N and Py« than we did without filtering.

Table XVI. Relative difference between filtered and unfiltered reflection, case 4, x=10

(Pmax = N).
N Cumulative weight
0.9 0.95 0.99 0.995 0.999
3 -0.361 | -0.180 | -0.044 | -0.013 0
7 -0.193 | -0.110 | -0.023 | -0.013 | -0.002
11 -0.154 | -0.083 -0.018 | -0.010 | -0.002
15 -0.149 | -0.069 | -0.015 | -0.008 | -0.002

(Pmax = N)‘

N Cumulative weight

0.9 0.95 0.99 0.995 0.999
3 0.101 0.047 0.010 0.003 0
7 0.084 0.048 0.008 0.004 | <0.001
11 0.094 0.045 0.009 0.005 | <0.001
15 0.100 0.040 0.008 0.004 | <0.001

Table XVIII. Relative error in reflection, x=10, P,,,,, = N = 19.
Cumulative weight
case

0.9 0.95 0.99 0.995 0.999
1 -0.382 | -0.350 -0.323 -0.319 | -0.316
4 -0.17 -0.11 -0.05 -0.04 -0.04
7 -0.006 0.002 0.004 0.005 0.005

Table XVII. Relative difference between filtered and unfiltered transmission, case 4, x=10
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Table XIX. Relative error in transmission, x=10, P,,,,, = N = 19.

Cumulative weight
AT 0.9 0.95 099 | 0995 | 0.999
1 1.9 1.8 1.7 1.7 1.7
4 0.14 0.09 0.05 0.04 | 004
7 002 | <001 | -001 | -002 | -0.02

4 CONCLUSIONS

Previously we constructed a method for approximately solving stochastic media transport
problems by creating realizations through a deterministic process rather than by Monte Carlo
sampling. This method focused on pseudointerfaces within the realizations and could be quite
expensive due to duplicated work. In the present research we have modified the algorithm to
focus on interfaces, which yields only unique transport problems. We also introduced a method
to filter out low-weight realizations in order to obtain nearly the same accuracy at reduced cost.
Our numerical results demonstrate that these changes make the algorithm competitive with
Monte Carlo sampling for many benchmark problems. The expense of the method is governed
by the average number of pseudointerfaces present in the original stochastic problem.

For future work we would like to examine more than just the rod problem. In addition to the
S16 problems examined in [2], we would like to explore its application to multidimensional
problems. Furthermore, we are interested in using it to construct improved local models, such as
generalizations to the Levermore-Pomraning closure [2], in which the statistical error of Monte
Carlo sampling may prove problematic. Work in this area is presented in a companion paper [5].
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