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Abstract

Synthetic aperture radar (SAR) is a remote sensing
technology that can truly operate 24/7. It’s an all-weather
system that can operate at any time except in the most
extreme conditions. By making multiple passes over a
wide area, a SAR can provide surveillance over a long
time period. For high level processing it is convenient to
segment and classify the SAR images into objects that
identify various terrains and man-made structures that we
call “static features.” In this paper we concentrate on
automatic road segmentation. This not only serves as a
surrogate for finding other static features, but road
detection in of itself is important for aligning SAR images
with other data sources. In this paper we introduce a
novel SAR image product that captures how different
regions decorrelate at different rates. We also show how a
modified Kolmogorov-Smirnov test can be used to model
the static features even when the independent observation
assumption is violated.

1. Introduction and problem

Synthetic aperture radar (SAR) [23] is a remote sensing
technology that can truly operate 24/7. It’s an all-weather
system that can image at any time except in the most
extreme conditions. It can operate either day or night and
has a long standoff. SAR combines multiple results from
different viewing angles to create a high resolution image
of an area. For the area it is illuminating, SAR is a
coherent imager that measures both phase and magnitude
of the return. Using two registered images taken at
different times, one can use coherent change detection
(CCD) [23] to detect minute changes from one collection
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to the next.

By making multiple passes over a wide area, a SAR can
provide surveillance for long time periods. One research
area of interest is exploiting this large amount of imagery
to learn about activities in the surveillance area. One
approach uses a geospatial-temporal semantic graph [4].
Here nodes of the graph represent fundamental objects in
the image data such as buildings, road, water, etc., and the
edges represent their spatial and temporal relationships.
Image searches such as “find all the buildings >200m from
a paved road,” can then be accomplished using the graph
framework.

Before a geospatial-temporal semantic graph can ingest
this large amount of data, it is necessary to segment and
classify the SAR images into objects that identify various
terrains and man-made structures. Here, we refer to these
objects as static-features.

In this paper we concentrate on the detection and
classification of roads in SAR images. Road detection not
only serves as a surrogate for finding other static features,
but it is in of itself important for aligning SAR images with
other data sources such as maps, light detection and
ranging (LIDAR) images, or optical imagery.

In this paper we also concentrate on single-pol SAR
imagery. While fully-polarimetric SAR can be
decomposed into scattering mechanisms [7][8][11][32]
[33][49][57] and is very helpful in static feature extraction,
many current SAR systems in use only have a single
polarization. If multiple polarizations are available, our
approach can be extended to incorporate the additional
polarimetric information.

2. Previous work on road finding in SAR

Road detection in SAR imagery has applications in route
mapping for emergency vehicles and alignment of spatial
datasets. In recent years, approaches to both semi-
automated and automated SAR road detection have been
considered. Semi-automatic approaches [5][6][25][28]
[29][58][60] for high-resolution images gained traction for
the following reasons: complexity and variability of road
characteristics, road discontinuities caused by shadows,
layover [23], and isolated bright areas, and ambiguity in
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terrain with similar characteristics to roads. These semi-
automatic approaches generally assume or explicitly model
certain road characteristics such as low intensity, elongated
shape, low curvature, constant width. Most methods follow
a two-step process: a local detection step to identify likely
road segments in an image followed by a global
optimization step to join candidate segments while
suppressing false alarms. The detector parameters are
derived from a user-defined road center-point or road
segment in the image. Cheng et al. [6] proposes local road
segment detection using a double-window template
followed by a global particle filtering step. This method
requires a user-input road center-point for the template,
and additional seed points in the event of tracker failure.
Zhou [60] proposes a human-computer interaction system
for road tracking in which a user sets an initial state for a
Bayesian filter, as well as providing seed points in the
event of tracker failure. An earlier work by Kim et al. [25]
detects road segments based on least-squares correlation
matching, thereby avoiding a global tracking step, and also
requires a user-given road center-point for the matching
step. In these approaches, tracking is typically interrupted
by shadows, layover, isolated bright points, or abrupt
changes in intensity along roads. Resolution of 1m is
considered high, and road detection is based on a single
SAR image of a scene.

Many automated methods [1][19][20][21][24][30][36]
[39][41][42][54] also take a local detection-global
optimization approach, often including a speckle reduction
step. Detection is generally performed using single SAR
images, although occasionally multi-aspect data is used.
Many of these methods perform the detection-optimization
based on a priori knowledge of road geometries or context
objects, in addition to road intensity characteristics.
Amberg et. al [1] and Wessel [54] take a context-based
approach to automatic local detection and global
optimization. Context based approaches weight detected
road segments according to the existence of nearby context
objects, such as vehicles or building layover, that likely
indicate roads. These weights can be incorporated into the
cost function for optimization or as a post-processing step
to optimally join disjoint road segments and reject false
alarms. Jeon et. al [24] models roads as curvilinear,
finite-width structures. After speckle reduction and
applying a threshold, they extract curve segments and
optimally group the segments using perceptual grouping
factors. Noisy curve segments are removed prior to the
grouping procedure. Negri et. al [39] recovers road
networks using junction-preserving segment detection
followed by a Markov random field network optimization
step, where the likelihood term is based on a priori
knowledge that roads must pass through junctions. This
work was tested on both 5m and .5m resolution full-
polarization images. On the .5m resolution test image,

64% correctness and 77% completeness were reported. In
a related work, Lisini et. al [30] proposes a fusion of road
networks recovered at multiple resolutions from a local
detection-global optimization procedure. Both segment
detection and network optimization are based on the fusion
of a curvilinear detector and intensity classification map.
Network optimization is performed via Markov random
fields with likelihood term based on the detector-
classification fusion output. This method was tested on
1.25m and sub-meter resolution images. The sub-meter
resolution image demonstrated 78% correctness and 46%
completeness. More recently, other multi-resolution
approaches have been considered for the candidate
segment grouping/network optimization step. He et. al
[19] uses multiscale geometric analysis to perform the
candidate segment grouping step after a local detection
process, and Perciano et. al [41] uses a hierarchical
Markov random field for network optimization, following
detection via fusion of ratio- and correlation-based line
detectors. Finally, Hedman and Hinz [20] adapted the
local detection-network optimization approach to multi-
aspect SAR data via Bayesian network fusion.

Other recent road detection approaches have included
scene classification based on spatial context [42] and
adaptive region growing [36]. Popescu et. al [42] classify
scenes, such as those containing roads, using a set of
spectral features derived from large image patches that
provide spatial context. These features can discriminate
between approximately 30 scene classes with a recognition
rate of at least 50% for 1m resolution imagery. In Lu et. al
[36], adaptive region growing in the global optimization
step achieved a reported 86% correctness and 56%
completeness in road detection in a .5m resolution image.

In contrast to the above automatic methods, our
approach uses statistics of multi-pass, high resolution SAR
products taken over a long time period. A novel SAR
product is developed called a long-term CCD (LCCD)
image which indicates that man-made objects decorrelate
slowly over time in comparison to natural features.
Combining the LCCD with a time-averaged backscatter
product provides high-confidence road detection.
Following an offline training phase, our approach is fully-
automated with high probability of correct detection.

Our approach is unique in that it not only makes use of
higher-resolution and multiple SAR products, but takes
advantage of the fact that paved roads tend to decorrelate
slowly over time. The classification algorithm is based on
probabilistic fusion that produces a goodness-of-fit test
statistic, which creates closed decision boundaries that
surround classes-off-interest represented by the training
set. It also excludes samples dissimilar to anything in the
training set by declaring them as an “unknown” class. The
input to the fusion algorithm is based on the Kolmogorov-
Smirnov (KS) test. Unfortunately, the SAR products



violate the independence assumption required for the KS
test. We also introduce a novel way for handling this by
using training data to modify the null distribution for the
KS test. We reserve enforcing contextual and shape
constraint for higher levels of processing.

3. Overall approach

Figure 1 shows a block diagram for our approach. The
input is based on what we call SAR image products. These
products result from combining SAR images from multiple
passes. Here we assume the images have been calibrated
and are collected at approximately the same aspect and
grazing angles. For example by registering multiple SAR
images of the same area collected at different times, one
can reduce speckle (described in section 4) and Doppler
streaks by using the median value of each pixel across the
time dimension. This produces cleaner images while
maintaining spatial resolution.
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Figure 1: Block diagram of SAR road detection approach.

Next a superpixel segmentation algorithm is used to
group pixels into homogeneous regions. For each
superpixel, feature extraction involves identifying
corresponding pixels in each SAR product. In the
classification stage statistical models of roads for each
image product is matched to the corresponding feature
vector. The feature vectors are then combined using
probabilistic fusion.

4. SAR speckle

SAR speckle is an artifact of coherent imaging. In the
magnitude domain, speckle for a region with constant
backscatter is typically modeled with a Rayleigh
distribution [52]:

f(X) = (x/b?)exp(—x*/(2b?)) 1)
where xis a random variable that represents the SAR
return in a pixel in the magnitude domain and b represents
the scale parameter. The mean and variance of the Raleigh
is u=bJri2and o®=(2—x/2)b? respectively. Here,
as the mean of backscatter increases so does the variance.

Lee [33] has shown that histograms of SAR images are
unimodal even if they contain multiple regions with
different backscatter means. For example, Figure 2a shows
a SAR image with both paved and dirt road regions, high
desert scrub region, and a building region, but the

probability density function (Figure 2b) is unimodal. Lee
[33] has shown that a subaperture multilook approach
makes it easier to separate regions with different mean
backscatter.

Approaches using gradients, which are popular in
optical image processing, are also problematic in SAR
because of the speckle. Gradient approaches which assume
additive Gaussian noise tend to emphasize the SAR
speckle. Figure 3a shows a 128x128 chip of a
homogeneous region from the image in Figure 2. The
coefficient of variation o/ for the chip in the magnitude

domain is 0.54. For a Rayleigh distribution, this value is

close to the theoretical value of /47 -1 (~0.52). If one
applies a Canny edge detector to the entire image and uses
parameters that would eliminate all but the strongest edges
in an optical image one can see edges created by the
speckle. These edges appear in a homogeneous region
where there should be no edges. This is also apparent in
CCD images, for example see Figure 4. In summary,
current optical techniques can’t be arbitrarily applied and
may not extend well, or may need to be modified for SAR
imagery.
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Figure 2: Example SAR image and its corresponding PDF.

To avoid these problems researchers often use speckle
reduction algorithms. Similar to image morphology, the
Crimmins algorithm [10] uses an iterative geometric
approach for reducing clutter. A comparison article [16]
discusses some of the most popular speckle reduction
approaches [14][27][31] and compares them to wavelet
approaches. Like any smoothing approach there is a
tradeoff in reducing speckle and keeping fine features, but
it does allow the application of optical type algorithms.

(@) (b) (©
Figure 3: Edge detection on a SAR image for a homogeneous
area. (a) SAR homogenous region. (b) Canny edge detector with

5=3.(c) c=6.
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Figure 4: Edge detection on a SAR image for a homogeneous
area. (a) CCD image from a homogeneous region. (b) Canny

edge detector with 0 =3. (C) 0 =6.

5. Multipass SAR image products

By exploiting temporal and spatial statistics it is possible
to derive a number of SAR image products designed to
reduce speckle without reducing the effective resolution.

5.1. Subaperture multilook

As suggested by the work of Lee [33] we create a
subaperture multilook image [23] which is used by the
superpixel oversegmentation algorithm. Forming a
subaperture multilook image requires transforming a
complex-valued SAR image back to the two-dimensional
Fourier domain, partitioning the spectrum into non-
overlapping pieces and non-coherently averaging the
images formed from each piece of the spectrum [15]. The
subaperture multilook image has coarser spatial resolution
than an SAR backscatter magnitude image formed from
the complete phase history, but also has reduced speckle.
See Figure 5b for a four-look subaperature multilook and
Figure 5a for the corresponding SAR image.

(b)

Figure 5: Example SAR and multilook images. (a) Calibrated
SAR image. (b) Four look subaperature multilook.

5.2. Median over time radar cross section (RCS) image

We can use multiple passes of SAR images collected from
the same scene to compute image statistics for speckle
reduction. We calibrate each radar cross section (RCS)
image and, from a stack of co-registered RCS images of
the same scene, compute a median image to form the
median-RCS image, which is a temporal multilook
product. Figure 6a shows an example of an median RCS
image.

5.3. Long term CCD image

We define a long-term CCD (LCCD) image as a CCD
image where the time elapsed between the first SAR image
and the second SAR image is greater than a single day. In
order to understand the overall decorrelation as time
increases, LCCDs were generated for increasing time
delta’s from At=1tol4 days. For each time delta,
multiple LCCDs are possible. For example, a At=2
LCCD can be generated for SAR images collected on
March 1st and March 3rd. A At=2 LCCD could also be
generated for SAR images collected on March 2nd and
March 4th.

Once LCCDs are generated for a specific At, the
resulting LCCDs are co-registered into an image stack.
The median LCCD is then calculated for a At by finding
the median value for each pixel from all corresponding
pixels in the stack. The result is a single median-LCCD
image for the given time delta. The median helps remove
Doppler streaks that can appear in SAR images because of
moving vehicles and minor weather disturbances. Figure
6b shows an example of a median LCCD image from the
same scene as in Figure 5a.

(b)
Figure 6: Example SAR product images. (a) Median RCS (b)
Median-LCCD for At =14 days

To analyze the behavior of the LCCD for different static
features, analysts selected representative superpixels for
each statistic feature. The plots in Figure 7 show the result
of taking the mean of the median-LCCD values for these
superpixels and plotting how the mean changes with At.
The Figure shows that at At=1, there are basically three
ranges of LCCD values: high, medium, and low. High
LCCD is around 0.9 and occurs for paved-roads, gravel,
and desert static-features. Low LCCD is below 0.5 and
occurs for shadows and trees. Here the pixels are
essentially decorrelated. Medium LCCD occurs between
0.8 and 0.6. The static-features in this range are man-
made, cement, and soil. As At increases soil and desert
decorrelate at a high rate whereas paved, man-made,
gravel and cement decorrelate at a much slower rate. This
type of feature is very powerful in discriminating paved-
road from hard packed soil. Here both have similar RCS,
but the soil decorrelates faster.



6. SAR segmentation

Image segmentation is the process of dividing an image
into homogeneous regions. Instead of classifying
individual pixels or using sliding-window-processing of
pixels, we segment the image into superpixels. A wide
body of research has been developed for, and have
applied, superpixel algorithms for optical imagery
[15][1][44][35]. In our work these superpixels form
groups of approximately 500 pixels that have similar
location and intensity. They facilitate statistical
characterization of classes by providing self-similar
regions, reducing computation complexity, and following
natural boundaries instead of introducing artifacts as
sliding window approaches often do.
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Figure 7: Mean LCCD for At =1t014 days and different types
of static-features (best viewed in color).

Recent works [51][55][17][59][56][38] have allowed
application of superpixel segmentation to SAR imagery, as
well, in spite of SAR speckle. We follow the approach of
[38] and use the Simple Linear Iterative Clustering (SLIC)
algorithm. The SLIC algorithm implements a localized k-
means [37][12] algorithm with a Euclidean distance metric
that depends on both spatial and intensity differences.
When applying SLIC to an RCS domain such as
subaperture multilook, we use the log-magnitude domain.
Here, Euclidean distance in the log-magnitude domain is
equivalent to a ratio-intensity distance in the magnitude
domain, as proposed by Xiang et. al [56].

Achanta, et.al. [1] use the LAB color space channels,
with equal weights when applying SLIC to optical color
imagery. We may select one, two or three of the
coregistered SAR image products as input channels for the
SLIC segmentation. If we had reason to believe that any
channel(s) were more important than other(s), we could
weight the images accordingly. Figure 8 shows an
example of a superpixel segmentation using the
subaperture multilook SAR image in Figure 5b.

Figure 8: Example superpixel image.

7. Classification

Figure 9 shows the classification approach in more detail.
The core of the approach is what we call a match matrix.
Each row of the match matrix represents a superpixel from
a SAR image product. Each column represents models for
a static-feature of interest. In this paper, the columns
represent different types of pavements in roads. Each entry
in the match matrix represents the score of matching the
appropriate model to the superpixel corresponding to the
correct SAR image product. Sensor fusion then combines
the scores together and the classification module selects
the best score from the different fusion algorithms.
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Figure 9: Classification approach.

7.1. Train, test and validation data

Our approach is a supervised training approach, where for
each model of interest, we identify approximately 300
superpixels. One third of the superpixels are used for
training, one third for test, and one third for validation.
The superpixels are selected to be roughly homogeneous
in content with consistent radar parameters: frequency,
polarization, and grazing angle.

7.2. Kolmogorov-Smirnov test

As discussed in Section 4 the Rayleigh distribution is a
good model for SAR backscatter from homogenous clutter
regions such as bare ground, dense forest canopies, and
snow covered ground [52]. For nonhomgenous regions
other models have been proposed. For example, the
lognormal or Weibull distributions have been used for sea
ice [52]. Salazar proposed using the beta prime
distribution as a unified model for describing



homogeneous and heterogeneous clutter and extremely
heterogeneous (man-made) areas [46][47]. The beta prime
model is completely characterized by two parameters,
which dictate the shape and scale of the SAR data.
Unfortunately, estimating shape and scale parameters
doesn’t have a closed form solution. In [18] Gao gives a
summary of the 40 year history of SAR modeling and
gives more than a 100 references on the subject.

A parametric test would not only require estimating the
parameters of the distribution, but to have knowledge of
the form of the distribution. This can be problematic for
large numbers of SAR image products and static-features.

Instead of using a parametric model to describe
superpixels for different static-features and SAR image
products, we use the nonparameteric two sample
Kolmogorov-Smirnov (KS) test [26][50][43]. The training
process creates a nonparametric cumulative distribution
function (CDF) for each SAR image product associated
with each static-feature. The KS test compares the CDF of
pixels within a test superpixel against each trained CDF
and produces a match statistic for each. This allows the
algorithm to adapt to any distribution for a given static-
feature and SAR image-product.

Let F (x) represent an empirical CDF defined by n

observations from an independent and identically
distributed (iid) sample X,,...X, under a superpixel. Then

Fn(X)Z%iNXa <X) (2)

where the indicator function 1(X; <x) is 1if X, <x and
0 otherwise. Suppose the empirical CDF from the training
data is represented by G, (x) then the two-sample KS test
for testing the hypotheses
H,:F=G vs. HF #G (3)
is
D, (X) = VK sup| F, (x) - G,, (%) @)
where K =mn/(n+m). For the null hypothesisH,:
PH(Dyy (X) <t) > H(t) =1-2 (1) 2e 2" (5)
i=1
Let x, and o represent the mean and variance of H(t)
respectively. Then
Uy =~N7121In(2) and o2 =112 1°. (6)
The KS test is attractive, because the p-value for the null
hypothesis can be estimated and used for the probabilistic

fusion algorithm (Section 7.3). Unfortunately, the
observations X,,...X, are not independent for the SAR

image products. To handle this we take the approach of
Bayley [3]. Here we estimate how the effective number of
observations affects the mean and variance of H(t) using

the training data and a leave-one-out (LOO) method. Our

approach is inspired by the work of Zhang and Wu [60]
who use a beta distribution to approximate the distribution
of the KS statistic H(t) for an iid sample. The
approximation is given by the following equation:
H(t)~aB,,+b )
where B,  is the beta distribution with parameters
p,q>0, and the parameters a,b scale and shift the beta
distribution respectively. The four constants a,b, p,q are
selected so that the first four moments of H(t) match
those of aB, , +b. Zhang and Wu show the approximation

is very simple and accurate.
Instead of a beta distribution we use H(t) itself and the

parameters a,b to create a new distribution I:i(t) that can

handle the nonindependence of the superpixel sample.
This is given by the following equation:

H(t) ~aH(t)+b (8)
The parameters a,b are selected so that the mean and
variance of H~(t) matches the mean and variance of H(t)
given by equation (6). Thus

a:O-H(t)/o.ﬁ(t) and b:uHm —aug, (9)

where Mo and Of?(t) represent the mean and variance of

s(t)
estimated using the superpixel training data and a LOO
technique. The superpixels that belong to the class of
interest can have different sizes and shapes. The key
assumption, based on Bayley’s work, is that
nonindependence affects the effective number of
independent observations and thus only the mean and
variance of the distribution H(t).

Figure 10 shows the result of this approach for the
paved road static-feature class using the median RCS
image product. From the N training superpixels N-1 are
selected to create a model G, (x) where m is the total

number of pixels in the N-1 superpixels. Assuming the left-
out superpixel has n pixels then we can compute F,(X)

and D,,(x). We can now compute N such scores. In the

Figure the red curve shows the distribution of these scores
using a Parzen kernel density estimator [40][12]. Because
of the violation of the independence assumption, the
distribution doesn’t match the theoretical H(t) shown by

the dotted black curve. Using equation (9) we create a new
distribution shown by the blue curve that gives a much
closer approximation to the true distribution.

H~(t), respectively. Here Hii and o . are empirically

7.3. Probabilistic fusion

From Figure 9 it can be seen that the goal of fusion is to
combine the match scores for each static feature. The



important steps in this process are to normalize the scores
so they can be easily combined and account for any
dependence between the scores. To accomplish this we use
probabilistic fusion [48].
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Figure 10: Corrected H(t) to account for the nonindependence
of the sample underneath a superpixel (best viewed in color).

Let t; ; represent a KS test score (4) in the match matrix

where i represents an index into the SAR image product
and ] represents the static feature. For ease of
presentation we will drop the jand use t,, i=1...,p to
represent the scores to fuse. After the nonindependence
correction (9) and assuming the null hypothesis is true,
H(t,) is the CDF of t;and 1-H(t;) is the p-value and is
uniformly distributed [22]. It follows that

Y, =—log(1-H(t;)) (10)
is exponentially distributed [13]. It is expected that Y, will
be large for superpixels that violate the null hypothesis.

This process normalizes the KS scores so that they can be
combined for different products by simple addition:

S, = Zp:Yi (11)

where S, is the fused score. The distribution of S, is

approximated as a gamma for the null distribution with

parameters
2

p

S i=-P (12)

f: =
p+C

where 7 and A are the shape and scale parameters of the
N

gamma distribution respectively, C = » > 5, and p,
i=1 j=i

represent the estimated correlation between Y;and Y, . The

correlation coefficients p; are estimated from labeled

training data. See the reference [48] for more details.
Because each Y, is expected to be large for superpixels

that violate the null hypothesis, it is sensible to make the

corresponding static feature identification decisions by
setting a threshold on the value of S, . Fused scores at or

below the chosen threshold are classified as the
corresponding static features, while those with scores
above the threshold are classified as unknown.

8. Results

For training, test, and validation data we select
approximately 300 superpixels of the following static-
features: paved road, shadow, man-made (dihedral and
trihedral returns), scrub desert, bare earth, gravel, cement,
and trees. One third of the data is used for training and
developing KS models of paved roads, one third for tests
and parameter selection and one third for validation.
Probabilistic fusion is a goodness-of-fit approach so we
only need to develop models of the paved road class. All
other classes should have large fused scores indicating an
unknown (nonpaved) class. For paved-road, the
distribution of fused scores should follow a gamma

distribution with parameters ¢ and A (12).

Figure 11 shows the receiver operating characteristic
(ROC) curves using the test data. Here we plot the
probability of false alarm (PFA) vs. probability of
detection (PD). Each point on the ROC is determined by a
threshold 7, on the fused score S, . The decision is given

by the following:

Figure 11a shows the ROC curve when using just the
score from the KS test of the paved road template for the
median-RCS SAR product. Figure 11b shows the result
using the median-LCCD with At =14 days and Figure 11c
shows the result using the median-LCCD At =21days.
Finally Figure 11d shows the result of using probabilistic
fusion and it should be readily apparent that probabilistic
fusion significantly improves the results.

Figure 12b shows an example of the paved superpixels
dectected from the SAR image in Figure 12a. Yellow
indicate superpixels that were labeled as paved and black
indicates superpixels labeled as unknown.

Figure 13 shows the road labeled on a larger SAR strip
of approximately 0.1 km? One can see the road is well
defined and there are some minor isolated false alarms in
the scrub desert area. These false alarms are mostly likely
caused by hard packed soil in the scrub desert area.

In future work we will use a conditional random field
with the superpixels as the nodes [15] that will enforce
spatial consistency constraints to remove these isolated
superpixels.
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Figure 11: Performance results on a small set of training data.
ROC curves plot the PFA vs PD for various decision threshold.
(@) Median RCS. (b) LCCD with At=14. (c) LCCD with
At =21. (d) Probabilistic fusion using all three SAR products.
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Figure 12: Example output. (a) SAR image. (b) Superpixels
identified as paved road. Yellow indicates paved road and black
indicates the unknown class (best viewed in color).

9. Conclusion

With the availability of a large amount of high
resolution surveillance data we have a unique opportunity
to build on current approaches and find new ways to
segment SAR images, specifically automatically
identifying paved-roads in SAR imagery. The phenomenon
of SAR speckle requires careful consideration on using
standard optical approaches for image segmentation. With
the availability of a long time history of SAR imagery for a
specific area, we have introduced a new SAR product
based on a long term CCD. Usually the time separation
between successive SAR collections for a CCD creation is
on the order of hours, but we have investigated how
different regions decorrelate over many days. We have
found that the type of terrain often determines the rate of
decorrelation. Here, the paved-road static feature
maintains a high degree of coherence even after many
days. Even with LCCD images there is still a large amount
of confusion between certain high desert areas, man-made
objects and paved roads. Applying probabilistic fusion to

combine multiple data sources, LCCD and SAR RCS for
this case, significantly reduces between-class confusion.
Because probabilistic fusion models the class of interest
and tests for fidelity to the model, it allows an unknown
class, which is difficult with many machine learning
approaches [53][45][9][43]. Since probabilistic fusion
requires p-values to normalize the inputs, the KS test is a
natural fit. Its nonparameteric approach allows it to model
any distribution from Rayleigh to Weibull to a beta prime
distribution. All of which (plus many more) have been
proposed to model different types of terrain in SAR
images. Unfortunately, the SAR products violate the
independence assumption required for the KS test. We
have introduced a novel method that uses training data to
modify the null distribution, which corrects for
dependence between observations in the KS test. This
allows the correct p-values to be estimated and the
application of probabilistic fusion.

10. Future Work

An obvious extension to this work is to use the same
approach for identifying other static-features such as
shadow, man-made objects, trees, scrub desert, etc. The
probabilistic fusion frame work with the KS test can be
easily extended to other static-features and incorporate
different SAR products such as polarmeteric SAR. We
would also like to apply a conditional random field using
the superpixels as the nodes [15] of the graph and the
output of the probabilistic fusion algorithm for the unary
energy function. This will help improve the segmentation
by enforcing spatial consistency constraints.

Figure 13: Example output for a 0.1 km? strip of SAR imagery.
(best viewed in color)).



References

[1] R. Achanta, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk,
“SLIC superpixels compared to state-of-the-art superpixel
methods,” IEEE Trans. Patt. Anal. and Mach. Intell. 34(11),
2274-2282 (2012).

[2] V. Amberg, M. Coulon, P. Marthon, and M. Spigai,
“Improvement of road extraction in high resolution SAR
data by a context-based approach,” in Proceedings of the
IEEE International Geoscience and Remote Sensing
Symposium (IGARSS '05), pp. 490-493, Seoul, Korea, July
2005.

[3] G. V. Bayley and J. M. Hammersley, "The Effective
Number of Independent Observations in an Autocorrelated
Time Series," Supplement to the Journal of the Royal
Statistical Society, vol. 8, pp. 184-197, 1946.

[4] R.C.Brost, W. C. McLendon Ill, O. Parekh, M. D. Rintoul,
D. R. Strip, and D. M. Woodbridge, “A computational
framework for ontologically storing and analyzing very
large overhead image sets,” 3rd ACM SIGSPATIAL
International Workshop on Analytics for Big Geospatial
Data (BigSpatial-2014), November 2014.

[5] J. Cheng, Y. Guan, X. Ku, and J. Sun, “Semi-automatic
road centerline extraction in high-resolution SAR images
based on circular template matching,” in Proceedings of the
International Conference on Electric Information and
Control Engineering (ICEICE '11), pp. 1688-1691, Wuhan,
China, April 2011.

[6] J. Cheng, W. Ding, X. Ku, and J. Sun, “Road Extraction
from High-Resolution SAR Images via Automatic Local
Detecting and Human-Guided Global Tracking,”
International Journal of Antennas and Propagation, vol.
2012.

[71 S.R. Cloude, Polarisation: Applications in Remote Sensing,
Chapter 2, Oxford University Press, 2010.

[8] S.R. Cloude and E. Pottier, “An entropy based classification
scheme for land applications of polarimetric SAR,”
Geoscience and Remote Sensing, IEEE Transactions on,
vol. 35, no. 1, pp. 68-78, 1997.

[91 C. Corte and V. Vapnik, "Support-vector networks,”
Machine Learning 20 (3): 273, 1995.

[10] T. R. Crimmins, "Geometric filter for speckle reduction,”
Applied Optics, vol. 24, no. 10, pp. 1438-1443, May 1985.

[11] Y. Cui, Y. Yamaguchi, J. Yang, H. Kobayashi, S. Park G.
Singh, “On complete model-based decomposition of
polarimetric SAR coherency matrix data,” Geoscience and
Remote Sensing, IEEE Transactions on, vol. 52, no. 4, pp.
1991-2001, 2014.

[12] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern
classification, John Wiley & Sons, New York, NY (2012).

[13] M. Evans, N. Hastings, and B. Peacock, Statistical
Distributions, John Wiley & Sons, NY, 1993.

[14] V. S. Frost, J. A. Stiles, K. S. Shanmungan, and J. C.
Holtzman, "A Model for Radar Images and its Application
for Adaptive Digital Filtering of Multiplicative Noise,"
IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 4, no. 2, pp. 157-165, 1982.

[15] B. Fulkerson, A. Vedaldi, and S. Soatto, “Class
segmentation and object localization with superpixel
neighborhoods,” Proc. IEEE Comp. Vis., 670-677 (2009).

[16] L. Gagnon and A. Jouan, "Speckle filtering of SAR images:
A comparative study beteen complex-wavelet-based and
standard filters," SPIE Proc., vol. 3169, pp. 80-91, 1997.

[17] L. Gan, Y. Wu, M. Liu, P. Zhang, H. Ji, and F. Wang,
“Triplet Markov fields with edge location for fast
unsupervised multi-class segmentation of synthetic aperture
radar images,” IET Image Proc. 6(7), 831-838 (2012).

[18] G. Gao, "Statistical modeling of SAR images: A survey."
Sensors 10, no. 1, pp. 775-795, 2010.

[19] C. He, Z. Liao, F. Yang, X. Deng, and M. Liao, “Road
extraction from SAR imagery based on multiscale geometric
analysis of detector responses,” IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing,
vol. 5, no. 5, pp. 1373-1382, 2012.

[20] K. Hedman and S. Hinz, “The application and potential of
Bayesian network fusion for automatic cartographic
mapping,” in Proceedings of the IEEE International
Geoscience and Remote Sensing Symposium (IGARSS '12),
pp. 6848-6851, Munich, Germany, July 2012.

[21] K. Hedman, U. Stilla, G. Lisini, and P. Gamba, “Road
network extraction in VHR SAR images of urban and
suburban areas by means of class-aided feature-level
fusion,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 48, no. 3, pp. 1294-1296, 2009.

[22] R. Hogg and A. Craig, Introduction to Mathematical
Statistics, Macmillan, NY, 1978.

[23] C. V. Jakowatz, Jr., D. E.Wahl, P. E. Eichel, D. C. Ghiglia,
and P. A.Thompson. Spotlight-mode Synthetic Aperture
Radar: A Signal Processing Approach. Springer, 1996.

[24] B. Jeon, J. Jang, and K. Hong, “Road detection in
spaceborne SAR images using a genetic algorithm,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 40,
no. 1, pp. 22-29, 2002.

[25] T. Kim, S. R. Park, M. G. Kim, S. Jeong, and K. O. Kim,
“Tracking road centerlines from high resolution remote
sensing images by least squares correlation matching,”
Photogrammetric Engineering and Remote Sensing, vol. 70,
no. 12, pp. 1417-1422, 2004.

[26] A. Kolmogorov, “Sulla determinazione empirica di una
legge di distribuzione,” G. Ist. Ital. Attuari, 4: 83-91, 1933.

[27] D. T. Kuan, A. A. Sawchuk, and P. Chavel, "Adaptive
Restoration of Images with Speckle," IEEE Transactions on
Acoustics, vol. ASSP-35, pp. 373-383, 1987.

[28] X. G. Lin, J.X. Zhang, Z.J. Liu, and J. Shen, “Semi-
automatic extraction of ribbon roads from high-resolution
remotely sensed imagery by cooperation between angular
texture signature and template matching,” The International
Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, vol. 37, pp. 539-544, 2008.

[29] X. Lin, Z. Liu, J. Zhang, and J. Shen, “Combining multiple
algorithms for road network tracking from multiple source
remotely sensed imagery: a practical system and
performance evaluation,” Sensors, vol. 9, no. 2, pp. 1237—
1258, 2009.

[30] G. Lisini, C. Tison, F. Tupin, and P. Gamba, “Feature
fusion to improve road network extraction in high-


http://en.wikipedia.org/wiki/Machine_Learning_%28journal%29

resolution SAR images,” IEEE Geoscience and Remote
Sensing Letters, vol. 3, no. 2, pp. 217-221, 2006.

[31] J. S. Lee, "Speckle Analysis and Smoothing of Synthetic
Aperture Radar Images," Computer Graphics and Image
Processing, vol. 17, pp. 24-32, 1981.

[32] J. S. Lee and T. L. Ainsworth, “The effect of orientation
angle compensation on coherency matrix and polarimetric
target decompositions,” Geoscience and Remote Sensing,
IEEE Transactions on, vol. 49, no. 1, pp. 53-64, 2011.

[33] J. S. Lee and I. Jurkevich, “Segmentation of SAR Images,”
IEEE Transactions on Geoscience and Remote Sensing,”
vol. 27, 6, November 1989.

[34] J. S. Lee and E. Pottier, Polarimetric Radar Imaging: From
Basics to Applications, Chapter 7, CRC Press, 2002.

[35] A. Levinshtein, A. Stere, K. N. Kutulakos, D. Fleet, S. J.
Dickinson, and K. Siddiqui, “Turbopixels: Fast
superpixels using geometric flows,” IEEE Trans. Patt. Anal.
and Mach. Intell. 31(12), 2290-2297 (2009).

[36] P. Lu, K. Du, W. Yu, R. Wang, Y. Deng, and T. Balz, “A
new region growing-based method for road network
extraction and its application on different resolution SAR
images,” IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, vol. 7, no. 12, pp. 4772-
4783, 2014.

[37] S. P. Lloyd, "Least squares quantization in PCM". IEEE
Transactions on Information Theory 28 (2), pp. 129-137,
1982.

[38] M. M. Moya, M. W. Koch, D. N. Perkins, R. D. West,
“Superpixel segmentation using multiple SAR image
products,” Radar Sensor Technology XVIII (DS 108), SPIE
Defense, Security, and Sensing Symposium Baltimore, MD,
May 6, 2014.

[39] M. Negri, P. Gamba, G. Lisini, and F. Tupin, “Junction-
aware extraction and regularization of urban road networks
in high-resolution SAR images,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 44, no. 10, pp. 217-
221, 2006.

[40] E. Parzen, “On estimation of probability density function
and mode,” Annals of Mathematical Statistics, 33:1065-
1076, 1962.

[41] T. Perciano, F. Tupin, R. Hirata, Jr., and R. Cesar, Jr., “A
hierarchical Markov random field for road network
extraction and its application with optical and SAR data,” in
Proceedings of the IEEE International Geoscience and
Remote Sensing Symposium (IGARSS '11), pp. 1159-
1162, Vancouver, Canada, July 2011.

[42] A. A. Popescu, 1. Gavat, and M. Datcu, “Contextual
descriptors for scene classes in very high resolution SAR
images,” IEEE Geoscience and Remote Sensing Letters,
vol. 9, no. 1, pp. 80-84, 2012.

[43] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery, Numerical Recipes 3™ Editions: The Art of
Scientific Computing, Cambridge University Press, pp. 736-
738, 2007.

[44] X. Ren and J. Malik, “Learning a classification model for
segmentation,” Proc. [IEEE Comp. Vis. 1, 13-16 (2003).

[45] D. E. Rumelhart and J. McClelland, Parallel Distributed
Processing: Explorations in the Microstructure of
Cognition. Cambridge: MIT Press, 1986.

[46] J. S. Salazar, Detection Schemes for Synthetic Aperture
Radar Imagery Based on a Beta Prime Statistical Model,
PhD Dissertation, New Mexico University, Albuquerque,
NM, 1999.

[47] J. S. Salazar, J.S., “Statistical modeling of target and clutter
in single-look non-polorimetric SAR imagery,” Proceedings
of International Conference Signal and Image Processing,
Las Vegas, CA, USA, October 1998.

[48] K. Simonson, “Probabilistic fusion of ATR results,” Sandia
Report, SAND98-1699, August 1998.

[49] G. Singh, Y. Yamaguchi and S.E. Park, “General four-
component scattering power decomposition with unitary
transformation of coherency matrix,” Geoscience and
Remote Sensing, IEEE Transactions on, vol. 51, no. 5, pp.
3014-3022, 2013.

[50] N. Smirnov, "Table for estimating the goodness of fit of
empirical  distributions,”  Annals of Mathematical
Statistics, 19: 279-281, 1948.

[51] X. Su, C. He, Q. Feng, X. Deng and H. Sun, “A supervised
classification method based on conditional random fields
with multiscale region connection calculus model for SAR
image,” IEEE Geosci. and Rem. Sens. Lett. 8(3), 497-501
(2011).

[52] F. T. Ulaby and M. C. Dobson, Handbook of Radar
Scattering Statistics for Terrain, (Norwood, MA: Atrech
House, 1989).

[53] P. J. Werbos, Beyond Regression: New Tools for Prediction
and Analysis in the Behavioral Sciences, 1975.

[54] B. Wessel, “Road network extraction from SAR imagery
supported by context information,” The International
Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, vol. 35, pp. 360-366, 2004.

[55] Y. Wu, X. Wang, P. Xiao, L. Gan, C. Y. Liu, and M. Li,
“Fast algorithm based on triplet Markov fields for
unsupervised multi-class segmentation of SAR images,”
Sci. China Info. Sci. 54(7), 1524-1533 (2011).

[56] D. Xiang, T. Tao, Z. Lingjun, and S. Yi,, “Superpixel
generating algorithm based on pixel intensity and location
similarity for SAR image classification,” IEEE Geosci. and
Rem. Sens. Lett. 10(6), 1414-1418 (2013).

[57] Y. Yamaguchi, T. Moriyama, M. Ishido, and H Yamada,
“Four-component scattering model for polarimetric SAR
image decomposition,” Geoscience and Remote Sensing,
IEEE Transactions on, vol. 43, no. 8, pp. 1699-1706, 2005.

[58] Y. Yang and C. Zhu, “Extracting road centrelines from
high-resolution satellite images using active window line
segment matching and improved SSDA,” International
Journal of Remote Sensing, vol. 31, no. 10, pp. 2457-2469,
2010.

[59] H. Yu, X. Zhang, S. Wang, and B. Hou, “Context-Based
Hierarchical Unequal Merging for SAR  Image
Segmentation,” IEEE Trans. Geosci. and Rem. Sens. 51(2),
995-1009 (2013).

[60]J. Zhang and Y. Wu, “Beta approximation to the
distribution of the Kolmogorov-Smirnov statistic,” Ann.
Inst. Statist. Math., Vol. 54, No. 3, 577-584, 2002.

J. Zhou, W. F. Bischof, and T. Caelli, “Road tracking in aerial

images based on human-computer interaction and Bayesian

filtering,” ISPRS Journal of Photogrammetry and Remote Se


http://www.cs.toronto.edu/~roweis/csc2515-2006/readings/lloyd57.pdf
http://en.wikipedia.org/wiki/IEEE_Transactions_on_Information_Theory
http://en.wikipedia.org/wiki/IEEE_Transactions_on_Information_Theory

