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Synthetic aperture radar (SAR) is a remote sensing 

technology that can truly operate 24/7. It’s an all-weather 

system that can operate at any time except in the most 

extreme conditions. By making multiple passes over a 

wide area, a SAR can provide surveillance over a long 

time period. For high level processing it is convenient to 

segment and classify the SAR images into objects that 

identify various terrains and man-made structures that we 

call “static features.” In this paper we concentrate on 

automatic road segmentation. This not only serves as a 

surrogate for finding other static features, but  road 

detection in of itself is important for aligning SAR images 

with other data sources. In this paper we introduce a 

novel SAR image product that captures how different 

regions decorrelate at different rates. We also show how a 

modified Kolmogorov-Smirnov test can be used to model 

the static features even when the independent observation 

assumption is violated.  

 

1. Introduction and problem 

Synthetic aperture radar (SAR) [23] is a remote sensing 

technology that can truly operate 24/7. It’s an all-weather 

system that can image at any time except in the most 

extreme conditions. It can operate either day or night and 

has a long standoff. SAR combines multiple results from 

different viewing angles to create a high resolution image 

of an area. For the area it is illuminating, SAR is a 

coherent imager that measures both phase and magnitude 

of the return. Using two registered images taken at 

different times, one can use coherent change detection 

(CCD) [23] to detect minute changes from one collection 
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to the next. 

By making multiple passes over a wide area, a SAR can 

provide surveillance for long time periods. One research 

area of interest is exploiting this large amount of imagery 

to learn about activities in the surveillance area. One 

approach uses a geospatial-temporal semantic graph [4]. 

Here nodes of the graph represent fundamental objects in 

the image data such as buildings, road, water, etc., and the 

edges represent their spatial and temporal relationships. 

Image searches such as “find all the buildings >200m from 

a paved road,” can then be accomplished using the graph 

framework.  

Before a geospatial-temporal semantic graph can ingest 

this large amount of data, it is necessary to segment and 

classify the SAR images into objects that identify various 

terrains and man-made structures. Here, we refer to these 

objects as static-features.  

In this paper we concentrate on the detection and 

classification of roads in SAR images. Road detection not 

only serves as a surrogate for finding other static features, 

but it is in of itself important for aligning SAR images with 

other data sources such as maps, light detection and 

ranging (LIDAR) images, or optical imagery. 

In this paper we also concentrate on single-pol SAR 

imagery. While fully-polarimetric SAR can be 

decomposed into scattering mechanisms [7][8][11][32] 

[33][49][57] and is very helpful in static feature extraction, 

many current SAR systems in use only have a single 

polarization. If multiple polarizations are available, our 

approach can be extended to incorporate the additional 

polarimetric information. 

2. Previous work on road finding in SAR 

Road detection in SAR imagery has applications in route 

mapping for emergency vehicles and alignment of spatial 

datasets. In recent years, approaches to both semi-

automated and automated SAR road detection have been 

considered. Semi-automatic approaches [5][6][25][28] 

[29][58][60] for high-resolution images gained traction for 

the following reasons: complexity and variability of road 

characteristics, road discontinuities caused by shadows, 

layover [23], and isolated bright areas, and ambiguity in 
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terrain with similar characteristics to roads. These semi-

automatic approaches generally assume or explicitly model 

certain road characteristics such as low intensity, elongated 

shape, low curvature, constant width. Most methods follow 

a two-step process: a local detection step to identify likely 

road segments in an image followed by a global 

optimization step to join candidate segments while 

suppressing false alarms. The detector parameters are 

derived from a user-defined road center-point or road 

segment in the image. Cheng et al. [6] proposes local road 

segment detection using a double-window template 

followed by a global particle filtering step. This method 

requires a user-input road center-point for the template, 

and additional seed points in the event of tracker failure. 

Zhou [60] proposes a human-computer interaction system 

for road tracking in which a user sets an initial state for a 

Bayesian filter, as well as providing seed points in the 

event of tracker failure. An earlier work by Kim et al. [25] 

detects road segments based on least-squares correlation 

matching, thereby avoiding a global tracking step, and also 

requires a user-given road center-point for the matching 

step. In these approaches, tracking is typically interrupted 

by shadows, layover, isolated bright points, or abrupt 

changes in intensity along roads. Resolution of 1m is 

considered high, and road detection is based on a single 

SAR image of a scene.                   

Many automated methods [1][19][20][21][24][30][36] 

[39][41][42][54] also take a local detection-global 

optimization approach, often including a speckle reduction 

step.  Detection is generally performed using single SAR 

images, although occasionally multi-aspect data is used.  

Many of these methods perform the detection-optimization 

based on a priori knowledge of road geometries or context 

objects, in addition to road intensity characteristics.  

Amberg et. al [1] and Wessel [54] take a context-based 

approach to automatic local detection and global 

optimization.  Context based approaches weight detected 

road segments according to the existence of nearby context 

objects, such as vehicles or building layover, that likely 

indicate roads. These weights can be incorporated into the 

cost function for optimization or as a post-processing step 

to optimally join disjoint road segments and reject false 

alarms.    Jeon et. al [24] models roads as curvilinear, 

finite-width structures. After speckle reduction and 

applying a threshold, they extract curve segments and 

optimally group the segments using perceptual grouping 

factors.  Noisy curve segments are removed prior to the 

grouping procedure. Negri et. al [39] recovers road 

networks using junction-preserving segment detection 

followed by a Markov random field network optimization 

step, where the likelihood term is based on a priori 

knowledge that roads must pass through junctions. This 

work was tested on both 5m and .5m resolution full-

polarization images.  On the .5m resolution test image, 

64% correctness and 77% completeness were reported. In 

a related work, Lisini et. al [30] proposes a fusion of road 

networks recovered at multiple resolutions from a local 

detection-global optimization procedure.  Both segment 

detection and network optimization are based on the fusion 

of a curvilinear detector and intensity classification map.  

Network optimization is performed via Markov random 

fields with likelihood term based on the detector-

classification fusion output.  This method was tested on 

1.25m and sub-meter resolution images.  The sub-meter 

resolution image demonstrated 78% correctness and 46% 

completeness. More recently, other multi-resolution 

approaches have been considered for the candidate 

segment grouping/network optimization step.  He et. al 

[19] uses multiscale geometric analysis to perform the 

candidate segment grouping step after a local detection 

process, and Perciano et. al [41] uses a hierarchical 

Markov random field for network optimization, following 

detection via fusion of ratio- and correlation-based line 

detectors.  Finally, Hedman and Hinz [20] adapted the 

local detection-network optimization approach to multi-

aspect SAR data via Bayesian network fusion.   

Other recent road detection approaches have included 

scene classification based on spatial context [42] and 

adaptive region growing [36]. Popescu et. al [42] classify 

scenes, such as those containing roads, using a set of 

spectral features derived from large image patches that 

provide spatial context.  These features can discriminate 

between approximately 30 scene classes with a recognition 

rate of at least 50% for 1m resolution imagery.  In Lu et. al 

[36], adaptive region growing in the global optimization 

step achieved a reported 86% correctness and 56% 

completeness in road detection in a .5m resolution image. 

In contrast to the above automatic methods, our 

approach uses statistics of multi-pass, high resolution SAR 

products taken over a long time period. A novel SAR 

product is developed called a long-term CCD (LCCD) 

image which indicates that man-made objects decorrelate 

slowly over time in comparison to natural features.  

Combining the LCCD with a time-averaged backscatter 

product provides high-confidence road detection.  

Following an offline training phase, our approach is fully-

automated with high probability of correct detection.   

Our approach is unique in that it not only makes use of 

higher-resolution and multiple SAR products, but takes 

advantage of the fact that paved roads tend to decorrelate 

slowly over time. The classification algorithm is based on 

probabilistic fusion that produces a goodness-of-fit test 

statistic, which creates closed decision boundaries that 

surround classes-off-interest represented by the training 

set. It also excludes samples dissimilar to anything in the 

training set by declaring them as an “unknown” class. The 

input to the fusion algorithm is based on the Kolmogorov-

Smirnov (KS) test. Unfortunately, the SAR products 



 

violate the independence assumption required for the KS 

test. We also introduce a novel way for handling this by 

using training data to modify the null distribution for the 

KS test. We reserve enforcing contextual and shape 

constraint for higher levels of processing. 

3. Overall approach 

Figure 1 shows a block diagram for our approach. The 

input is based on what we call SAR image products. These 

products result from combining SAR images from multiple 

passes. Here we assume the images have been calibrated 

and are collected at approximately the same aspect and 

grazing angles. For example by registering multiple SAR 

images of the same area collected at different times, one 

can reduce speckle (described in section 4) and Doppler 

streaks by using the median value of each pixel across the 

time dimension. This produces cleaner images while 

maintaining spatial resolution. 

 
Figure 1: Block diagram of SAR road detection approach. 

 

Next a superpixel segmentation algorithm is used to 

group pixels into homogeneous regions. For each 

superpixel, feature extraction involves identifying 

corresponding pixels in each SAR product. In the 

classification stage statistical models of roads for each 

image product is matched to the corresponding feature 

vector. The feature vectors are then combined using 

probabilistic fusion.  

4. SAR speckle  

SAR speckle is an artifact of coherent imaging. In the 

magnitude domain, speckle for a region with constant 

backscatter is typically modeled with a Rayleigh 

distribution [52]: 

))2/(exp()/()( 222 bxbxxf   (1) 

where x is a random variable that represents the SAR 

return in a pixel in the magnitude domain and b  represents 

the scale parameter. The mean and variance of the Raleigh 

is 2/ b and 22 )2/2( b   respectively.  Here, 

as the mean of backscatter increases so does the variance.  

Lee [33] has shown that histograms of SAR images are 

unimodal even if they contain multiple regions with 

different backscatter means. For example, Figure 2a shows 

a SAR image with both  paved and dirt road regions, high 

desert scrub region, and a building region, but the 

probability density function (Figure 2b) is unimodal. Lee 

[33] has shown that a subaperture multilook approach 

makes it easier to separate regions with different mean 

backscatter. 

Approaches using gradients, which are popular in 

optical image processing, are also problematic in SAR 

because of the speckle. Gradient approaches which assume 

additive Gaussian noise tend to emphasize the SAR 

speckle. Figure 3a shows a 128x128 chip of a 

homogeneous region from the image in Figure 2. The 

coefficient of variation  /  for the chip in the magnitude 

domain is 0.54. For a Rayleigh distribution, this value is 

close to the theoretical value of  14   (~0.52). If one 

applies a Canny edge detector to the entire image and uses 

parameters that would eliminate all but the strongest edges 

in an optical image one can see edges created by the 

speckle. These edges appear in a homogeneous region 

where there should be no edges. This is also apparent in 

CCD images, for example see Figure 4. In summary, 

current optical techniques can’t be arbitrarily applied and 

may not extend well, or may need to be modified for SAR 

imagery. 

 

 

 
 

(a) (b) 

Figure 2: Example SAR image and its corresponding PDF. 

 

To avoid these problems researchers often use speckle 

reduction algorithms. Similar to image morphology, the 

Crimmins algorithm [10] uses an iterative geometric 

approach for reducing clutter. A comparison article [16] 

discusses some of the most popular speckle reduction 

approaches [14][27][31] and compares them to wavelet 

approaches. Like any smoothing approach there is a 

tradeoff in reducing speckle and keeping fine features, but 

it does allow the application of optical type algorithms. 

 

   
(a) (b) (c) 

Figure 3: Edge detection on a SAR image for a homogeneous 

area. (a) SAR homogenous region. (b) Canny edge detector with 

3 . (c) 6 . 

 



 

   
(a) (b) (c) 

Figure 4: Edge detection on a SAR image for a homogeneous 

area. (a) CCD image from a homogeneous region. (b) Canny 

edge detector with 3 . (c) 6 . 

5. Multipass SAR image products 

By exploiting temporal and spatial statistics it is possible 

to derive a number of SAR image products designed to 

reduce speckle without reducing the effective resolution. 

5.1. Subaperture multilook 

As suggested by the work of Lee [33] we create a 

subaperture multilook image [23] which is used by the 

superpixel oversegmentation algorithm. Forming a 

subaperture multilook image requires transforming a 

complex-valued SAR image back to the two-dimensional 

Fourier domain, partitioning the spectrum into non-

overlapping pieces and non-coherently averaging the 

images formed from each piece of the spectrum [15]. The 

subaperture multilook image has coarser spatial resolution 

than an SAR backscatter magnitude image formed from 

the complete phase history, but also has reduced speckle. 

See Figure 5b for a four-look subaperature multilook and 

Figure 5a for the corresponding SAR image. 

  

(a) (b) 

Figure 5: Example SAR and multilook images. (a) Calibrated 

SAR image. (b) Four look subaperature multilook. 

5.2. Median over time radar cross section (RCS) image 

We can use multiple passes of SAR images collected from 

the same scene to compute image statistics for speckle 

reduction. We calibrate each radar cross section (RCS) 

image and, from a stack of co-registered RCS images of 

the same scene, compute a median image to form the 

median-RCS image, which is a temporal multilook 

product. Figure 6a shows an example of an median RCS 

image. 

5.3. Long term CCD image 

We define a long-term CCD (LCCD) image as a CCD 

image where the time elapsed between the first SAR image 

and the second SAR image is greater than a single day.  In 

order to understand the overall decorrelation as time 

increases, LCCDs were generated for increasing time 

delta's from 14  to1t  days.  For each time delta, 

multiple LCCDs are possible.  For example, a t 2 

LCCD can be generated for SAR images collected on 

March 1st and March 3rd.  A t 2 LCCD could also be 

generated for SAR images collected on March 2nd and 

March 4th. 

Once LCCDs are generated for a specific t , the 

resulting LCCDs are co-registered into an image stack.  

The median LCCD is then calculated for a t  by finding 

the median value for each pixel from all corresponding 

pixels in the stack.  The result is a single median-LCCD 

image for the given time delta. The median helps remove 

Doppler streaks that can appear in SAR images because of 

moving vehicles and minor weather disturbances. Figure 

6b shows an example of a median LCCD image from the 

same scene as in Figure 5a. 

 

  
(a) (b) 

Figure 6: Example SAR product images. (a) Median RCS (b) 

Median-LCCD for t =14 days 

 

To analyze the behavior of the LCCD for different static 

features, analysts selected representative superpixels for 

each statistic feature. The plots in Figure 7 show the result 

of taking the mean of the median-LCCD values for these 

superpixels and plotting how the mean changes with t . 

The Figure shows that at t 1, there are basically three 

ranges of LCCD values: high, medium, and low. High 

LCCD is around 0.9 and occurs for paved-roads, gravel, 

and desert static-features. Low LCCD is below 0.5 and 

occurs for shadows and trees. Here the pixels are 

essentially decorrelated. Medium LCCD occurs between 

0.8 and 0.6. The static-features in this range are man-

made, cement, and soil. As t  increases soil and desert 

decorrelate at a high rate whereas paved, man-made, 

gravel and cement decorrelate at a much slower rate. This 

type of feature is very powerful in discriminating paved-

road from hard packed soil. Here both have similar RCS, 

but the soil decorrelates faster. 



 

6. SAR segmentation 

Image segmentation is the process of dividing an image 

into homogeneous regions. Instead of classifying 

individual pixels or using sliding-window-processing of 

pixels, we segment the image into superpixels. A wide 

body of research has been developed for, and have 

applied, superpixel algorithms for optical imagery 

[15][1][44][35]. In our work these superpixels form 

groups of approximately 500 pixels that have similar 

location and intensity. They facilitate statistical 

characterization of classes by providing self-similar 

regions, reducing computation complexity, and following 

natural boundaries instead of introducing artifacts as 

sliding window approaches often do. 

 
Figure 7: Mean LCCD for 14  to1t  days and different types 

of static-features (best viewed in color). 

 

Recent works [51][55][17][59][56][38] have allowed 

application of superpixel segmentation to SAR imagery, as 

well, in spite of SAR speckle. We follow the approach of 

[38] and use the Simple Linear Iterative Clustering (SLIC) 

algorithm. The SLIC algorithm implements a localized k-

means [37][12] algorithm with a Euclidean distance metric 

that depends on both spatial and intensity differences. 

When applying SLIC to an RCS domain such as 

subaperture multilook, we use the log-magnitude domain.  

Here, Euclidean distance in the log-magnitude domain is 

equivalent to a ratio-intensity distance in the magnitude 

domain, as proposed by Xiang et. al [56].  

Achanta, et.al. [1] use the LAB color space channels, 

with equal weights when applying SLIC to optical color 

imagery. We may select one, two or three of the 

coregistered SAR image products as input channels for the 

SLIC segmentation. If we had reason to believe that any 

channel(s) were more important than other(s), we could 

weight the images accordingly.  Figure 8 shows an 

example of a superpixel segmentation using the 

subaperture multilook SAR image in Figure 5b. 

 
Figure 8: Example superpixel image. 

7. Classification 

Figure 9 shows the classification approach in more detail. 

The core of the approach is what we call a match matrix. 

Each row of the match matrix represents a superpixel from 

a SAR image product. Each column represents models for 

a static-feature of interest. In this paper, the columns 

represent different types of pavements in roads. Each entry 

in the match matrix represents the score of matching the 

appropriate model to the superpixel corresponding to the 

correct SAR image product. Sensor fusion then combines 

the scores together and the classification module selects 

the best score from the different fusion algorithms. 

 
Figure 9: Classification approach. 

7.1. Train, test and validation data 

Our approach is a supervised training approach, where for 

each model of interest, we identify approximately 300 

superpixels. One third of the superpixels are used for 

training, one third for test, and one third for validation. 

The superpixels are selected to be roughly homogeneous 

in content with consistent radar parameters: frequency, 

polarization, and grazing angle. 

7.2. Kolmogorov-Smirnov test 

As discussed in Section 4 the Rayleigh distribution is a 

good model for SAR backscatter from homogenous clutter 

regions such as bare ground, dense forest canopies, and 

snow covered ground [52]. For nonhomgenous regions 

other models have been proposed.  For example, the 

lognormal or Weibull distributions have been used for sea 

ice [52]. Salazar proposed using the beta prime 

distribution as a unified model for describing 



 

homogeneous and heterogeneous clutter and extremely 

heterogeneous (man-made) areas [46][47]. The beta prime 

model is completely characterized by two parameters, 

which dictate the shape and scale of the SAR data. 

Unfortunately, estimating shape and scale parameters 

doesn’t have a closed form solution. In [18] Gao gives a 

summary of the 40 year history of SAR modeling and 

gives more than a 100 references on the subject. 

 A parametric test would not only require estimating the 

parameters of the distribution, but to have knowledge of 

the form of the distribution. This can be problematic for 

large numbers of SAR image products and static-features.  

Instead of using a parametric model to describe 

superpixels for different static-features and SAR image 

products, we use the nonparameteric two sample 

Kolmogorov-Smirnov (KS) test [26][50][43].  The training 

process creates a nonparametric cumulative distribution 

function (CDF) for each SAR image product associated 

with each static-feature. The KS test compares the CDF of 

pixels within a test superpixel against each trained CDF 

and produces a match statistic for each. This allows the 

algorithm to adapt to any distribution for a given static-

feature and SAR image-product.  

 Let )(xFn  represent an empirical CDF defined by n 

observations from an independent and identically 

distributed (iid) sample nXX ,1  under a superpixel. Then 
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where the indicator function )( xXI i   is 1 if xX i   and 

0 otherwise. Suppose the empirical CDF from the training 

data is represented by )(xGm  then the two-sample KS test 

for testing the hypotheses 
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Let H  and  2

H  represent the mean and variance of )(tH  

respectively. Then 

)2ln(2/ H  and 22 12/  H . (6) 

The KS test is attractive, because the p-value for the null 

hypothesis can be estimated and used for the probabilistic 

fusion algorithm (Section 7.3). Unfortunately, the 

observations nXX ,1  are not independent for the SAR 

image products. To handle this we take the approach of 

Bayley [3]. Here we estimate how the effective number of 

observations affects the mean and variance of )(tH  using 

the training data and a leave-one-out (LOO) method. Our 

approach is inspired by the work of Zhang and Wu [60] 

who use a beta distribution to approximate the distribution 

of the KS statistic )(tH  for an iid sample. The 

approximation is given by the following equation: 

baBtH qp ,~)(  (7) 

where qpB ,  is the beta distribution with parameters 

0, qp , and the parameters  ba,  scale and shift the beta 

distribution respectively. The four constants qpba ,,,  are 

selected so that the first four moments of )(tH  match 

those of baB qp , . Zhang and Wu show the approximation 

is very simple and accurate. 

 Instead of a beta distribution we use )(tH  itself and the 

parameters ba,  to create a new distribution )(
~

tH  that can 

handle the nonindependence of the superpixel sample. 

This is given by the following equation: 

btHatH )(
~

~)(  (8) 

The parameters ba,  are selected so that the mean and 

variance of )(
~

tH  matches the mean and variance of )(tH  

given by equation (6). Thus 
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tH
  are empirically 

estimated using the superpixel training data and a LOO 

technique.  The superpixels that belong to the class of 

interest can have different sizes and shapes. The key 

assumption, based on Bayley’s work, is that 

nonindependence affects the effective number of 

independent observations and thus only the mean and 

variance of the distribution )(tH .     

Figure 10 shows the result of this approach for the 

paved road static-feature class using the median RCS 

image product. From the N training superpixels N-1 are 

selected to create a model )(xGm  where m is the total 

number of pixels in the N-1 superpixels. Assuming the left-

out superpixel has n pixels then we can compute )(xFn  

and )(xDnm . We can now compute N such scores. In the 

Figure the red curve shows the distribution of these scores 

using a Parzen kernel density estimator [40][12]. Because 

of the violation of the independence assumption, the 

distribution doesn’t match the theoretical )(tH  shown by 

the dotted black curve. Using equation (9) we create a new 

distribution shown by the blue curve that gives a much 

closer approximation to the true distribution. 

7.3. Probabilistic fusion 

From Figure 9 it can be seen that the goal of fusion is to 

combine the match scores for each static feature.  The 



 

important steps in this process are to normalize the scores 

so they can be easily combined and account for any 

dependence between the scores. To accomplish this we use 

probabilistic fusion [48]. 

 
Figure 10: Corrected  )(tH  to account for the nonindependence 

of the sample underneath a superpixel (best viewed in color). 

 

 Let jit , represent a KS test score (4)  in the match matrix 

where i  represents an index into the SAR image product 

and j  represents the static feature. For ease of 

presentation we will drop the j and use it , pi ,,1  to 

represent the scores to fuse. After the nonindependence 

correction (9) and assuming the null hypothesis is true, 

)( itH  is the CDF of it and )(1 itH  is the p-value and is 

uniformly distributed [22]. It follows that  

))(1log( ii tHY   (10) 

is exponentially distributed [13]. It is expected that iY  will 

be large for superpixels that violate the null hypothesis. 

This process normalizes the KS scores so that they can be 

combined for different products by simple addition: 
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where fS  is the fused score. The distribution of fS  is 

approximated as a gamma for the null distribution with 
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where  r̂ and  ̂ are the shape and scale parameters of the 

gamma distribution respectively, 
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1

̂ , and ij̂  

represent the estimated correlation between iY and jY . The 

correlation coefficients ij̂  are estimated from labeled 

training data. See the reference [48] for more details.       

Because each iY  is expected to be large for superpixels 

that violate the null hypothesis, it is sensible to make the 

corresponding static feature identification decisions by 

setting a threshold on the value of fS . Fused scores at or 

below the chosen threshold are classified as the 

corresponding static features, while those with scores 

above the threshold are classified as unknown. 

8. Results 

For training, test, and validation data we select 

approximately 300 superpixels of the following static-

features: paved road, shadow, man-made (dihedral and 

trihedral returns), scrub desert, bare earth, gravel, cement, 

and trees. One third of the data is used for training and 

developing KS models of paved roads, one third for tests 

and parameter selection and one third for validation. 

Probabilistic fusion is a goodness-of-fit approach so we 

only need to develop models of the paved road class. All 

other classes should have large fused scores indicating an 

unknown (nonpaved) class. For paved-road, the 

distribution of fused scores should follow a gamma 

distribution with parameters  r̂ and  ̂ (12). 

  Figure 11 shows the receiver operating characteristic 

(ROC) curves using the test data. Here we plot the 

probability of false alarm (PFA) vs. probability of 

detection (PD). Each point on the ROC is determined by a 

threshold f  on the fused score fS . The decision is given 

by the following:  

Figure 11a shows the ROC curve when using just the 

score from the KS test of the paved road template for the 

median-RCS SAR product. Figure 11b shows the result 

using the median-LCCD with 14t  days and Figure 11c 

shows the result using the median-LCCD 12t days. 

Finally Figure 11d shows the result of using probabilistic 

fusion and it should be readily apparent that probabilistic 

fusion significantly improves the results. 

 

 Figure 12b shows an example of the paved superpixels 

dectected from the SAR image in Figure 12a. Yellow 

indicate superpixels that were labeled as paved and black 

indicates superpixels labeled as unknown. 

Figure 13 shows the road labeled on a larger SAR strip 

of approximately 0.1 km
2
. One can see the road is well 

defined and there are some minor isolated false alarms in 

the scrub desert area. These false alarms are mostly likely 

caused by hard packed soil in the scrub desert area. 

In future work we will use a conditional random field 

with the superpixels as the nodes [15] that will enforce 

spatial consistency constraints to remove these isolated 

superpixels. 



 

  
(a) (b) 

  
(c) (d) 

Figure 11: Performance results on a small set of training data. 

ROC curves plot the PFA vs PD for various decision threshold. 

(a) Median RCS. (b) LCCD with 14t . (c) LCCD with 

12t . (d) Probabilistic fusion using all three SAR products. 

 

 

 

  
(a) (b) 

Figure 12: Example output. (a) SAR image. (b) Superpixels 

identified as paved road. Yellow indicates paved road and black 

indicates the unknown class (best viewed in color). 

 

9. Conclusion 

With the availability of a large amount of high 

resolution surveillance data we have a unique opportunity 

to build on current approaches and find new ways to 

segment SAR images, specifically automatically 

identifying paved-roads in SAR imagery. The phenomenon 

of SAR speckle requires careful consideration on using 

standard optical approaches for image segmentation. With 

the availability of a long time history of SAR imagery for a 

specific area, we have introduced a new SAR product 

based on a long term CCD.  Usually the time separation 

between successive SAR collections for a CCD creation is 

on the order of hours, but we have investigated how 

different regions decorrelate over many days. We have 

found that the type of terrain often determines the rate of 

decorrelation. Here, the paved-road static feature 

maintains a high degree of coherence even after many 

days. Even with LCCD images there is still a large amount 

of confusion between certain high desert areas, man-made 

objects and paved roads. Applying probabilistic fusion to 

combine multiple data sources, LCCD and SAR RCS for 

this case, significantly reduces between-class confusion.  

Because probabilistic fusion models the class of interest 

and tests for fidelity to the model, it allows an unknown 

class, which is difficult with many machine learning 

approaches [53][45][9][43]. Since probabilistic fusion 

requires p-values to normalize the inputs, the KS test is a 

natural fit. Its nonparameteric approach allows it to model 

any distribution from Rayleigh to Weibull to a beta prime 

distribution. All of which (plus many more) have been 

proposed to model different types of terrain in SAR 

images. Unfortunately, the SAR products violate the 

independence assumption required for the KS test.  We 

have introduced a novel method that uses training data to 

modify the null distribution, which corrects for 

dependence between observations in the KS test. This 

allows the correct p-values to be estimated and the 

application of probabilistic fusion. 

10. Future Work 

An obvious extension to this work is to use the same 

approach for identifying other static-features such as 

shadow, man-made objects, trees, scrub desert, etc. The 

probabilistic fusion frame work with the KS test can be 

easily extended to other static-features and incorporate 

different SAR products such as polarmeteric SAR. We 

would also like to apply a conditional random field using 

the superpixels as the nodes [15] of the graph and the 

output of the probabilistic fusion algorithm for the unary 

energy function. This will help improve the segmentation 

by enforcing spatial consistency constraints. 

 

 
Figure 13: Example output for a 0.1 km2 strip of SAR imagery. 

(best viewed in color)). 

 



 

References 

[1] R. Achanta, K. Smith, A. Lucchi, P. Fua,  and S. Susstrunk, 

“SLIC superpixels compared to state-of-the-art superpixel 

methods,” IEEE Trans. Patt. Anal. and Mach. Intell. 34(11), 

2274-2282 (2012). 

[2] V. Amberg, M. Coulon, P. Marthon, and M. Spigai, 

“Improvement of road extraction in high resolution SAR 

data by a context-based approach,” in Proceedings of the 

IEEE International Geoscience and Remote Sensing 

Symposium (IGARSS '05), pp. 490–493, Seoul, Korea, July 

2005. 

[3] G. V. Bayley and J. M. Hammersley, "The Effective 

Number of Independent Observations in an Autocorrelated 

Time Series," Supplement to the Journal of the Royal 

Statistical Society, vol. 8, pp. 184-197, 1946. 

[4] R. C. Brost, W. C. McLendon III, O. Parekh, M. D. Rintoul, 

D. R. Strip, and D. M. Woodbridge, “A computational 

framework for ontologically storing and analyzing very 

large overhead image sets,” 3rd ACM SIGSPATIAL 

International Workshop on Analytics for Big Geospatial 

Data (BigSpatial-2014), November 2014. 

[5] J. Cheng, Y. Guan, X. Ku, and J. Sun, “Semi-automatic 

road centerline extraction in high-resolution SAR images 

based on circular template matching,” in Proceedings of the 

International Conference on Electric Information and 

Control Engineering (ICEICE '11), pp. 1688–1691, Wuhan, 

China, April 2011.  

[6] J. Cheng, W. Ding, X. Ku, and J. Sun, “Road Extraction 

from High-Resolution SAR Images via Automatic Local 

Detecting and Human-Guided Global Tracking,” 

International Journal of Antennas and Propagation, vol. 

2012. 

[7] S.R. Cloude, Polarisation: Applications in Remote Sensing, 

Chapter 2, Oxford University Press, 2010. 

[8] S.R. Cloude and E. Pottier, “An entropy based classification 

scheme for land applications of polarimetric SAR,” 

Geoscience and Remote Sensing, IEEE Transactions on, 

vol. 35, no. 1, pp. 68-78, 1997. 

[9] C. Corte and V. Vapnik, "Support-vector networks,” 

Machine Learning 20 (3): 273, 1995. 

[10] T. R. Crimmins, "Geometric filter for speckle reduction," 

Applied Optics, vol. 24, no. 10, pp. 1438-1443, May 1985. 

[11] Y. Cui, Y. Yamaguchi, J. Yang, H. Kobayashi, S. Park G. 

Singh, “On complete model-based decomposition of 

polarimetric SAR coherency matrix data,” Geoscience and 

Remote Sensing, IEEE Transactions on, vol. 52, no. 4, pp. 

1991-2001, 2014. 

[12] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern 

classification, John Wiley & Sons, New York, NY (2012). 

[13] M. Evans, N. Hastings, and B. Peacock, Statistical 

Distributions, John Wiley & Sons, NY, 1993. 

[14] V. S. Frost, J. A. Stiles, K. S. Shanmungan, and J. C. 

Holtzman, "A Model for Radar Images and its Application 

for Adaptive Digital Filtering of Multiplicative Noise," 

IEEE Transactions on Pattern Analysis and Machine 

Intelligence, vol. 4, no. 2, pp. 157-165, 1982. 

[15] B. Fulkerson, A. Vedaldi, and S. Soatto, “Class 

segmentation and object localization with superpixel 

neighborhoods,” Proc. IEEE Comp. Vis., 670-677 (2009). 

[16] L. Gagnon and A. Jouan, "Speckle filtering of SAR images: 

A comparative study beteen complex-wavelet-based and 

standard filters," SPIE Proc., vol. 3169, pp. 80-91, 1997. 

[17] L. Gan, Y. Wu, M. Liu, P. Zhang, H. Ji, and F. Wang, 

“Triplet Markov fields with edge location for fast 

unsupervised multi-class segmentation of synthetic aperture 

radar images,” IET Image Proc. 6(7), 831-838 (2012). 

[18] G. Gao, "Statistical modeling of SAR images: A survey." 

Sensors 10, no. 1, pp. 775-795, 2010. 

[19] C. He, Z. Liao, F. Yang, X. Deng, and M. Liao, “Road 

extraction from SAR imagery based on multiscale geometric 

analysis of detector responses,” IEEE Journal of Selected 

Topics in Applied Earth Observations and Remote Sensing, 

vol. 5, no. 5, pp.  1373-1382, 2012. 

[20] K. Hedman and S. Hinz, “The application and potential of 

Bayesian network fusion for automatic cartographic 

mapping,” in Proceedings of the IEEE International 

Geoscience and Remote Sensing Symposium (IGARSS '12), 

pp. 6848–6851, Munich, Germany, July 2012. 

[21] K. Hedman, U. Stilla, G. Lisini, and P. Gamba, “Road 

network extraction in VHR SAR images of urban and 

suburban areas by means of class-aided feature-level 

fusion,” IEEE Transactions on Geoscience and Remote 

Sensing, vol. 48, no. 3, pp. 1294–1296, 2009.  

[22] R. Hogg and A. Craig, Introduction to Mathematical 

Statistics, Macmillan, NY, 1978. 

[23] C. V. Jakowatz, Jr., D. E.Wahl, P. E. Eichel, D. C. Ghiglia, 

and P. A.Thompson. Spotlight-mode Synthetic Aperture 

Radar: A Signal Processing Approach. Springer, 1996. 

[24] B. Jeon, J.  Jang,  and K. Hong, “Road detection in 

spaceborne SAR images using a genetic algorithm,” IEEE 

Transactions on Geoscience and Remote Sensing, vol. 40, 

no. 1, pp. 22-29, 2002. 

[25] T. Kim, S. R. Park, M. G. Kim, S. Jeong, and K. O. Kim, 

“Tracking road centerlines from high resolution remote 

sensing images by least squares correlation matching,” 

Photogrammetric Engineering and Remote Sensing, vol. 70, 

no. 12, pp. 1417–1422, 2004.  

[26] A. Kolmogorov, “Sulla determinazione empirica di una 

legge di distribuzione,” G. Ist. Ital. Attuari, 4: 83–91, 1933. 

[27] D. T. Kuan, A. A. Sawchuk, and P. Chavel, "Adaptive 

Restoration of Images with Speckle," IEEE Transactions on 

Acoustics, vol. ASSP-35, pp. 373-383, 1987. 

[28] X. G. Lin, J.X. Zhang, Z.J. Liu, and J. Shen, “Semi-

automatic extraction of ribbon roads from high-resolution 

remotely sensed imagery by cooperation between angular 

texture signature and template matching,” The International  

Archives of the Photogrammetry, Remote  Sensing and 

Spatial Information Sciences, vol. 37, pp. 539-544, 2008. 

[29] X. Lin, Z. Liu, J. Zhang, and J. Shen, “Combining multiple 

algorithms for road network tracking from multiple source 

remotely sensed imagery: a practical system and 

performance evaluation,” Sensors, vol. 9, no. 2, pp. 1237–

1258, 2009.  

[30] G. Lisini, C. Tison, F. Tupin, and P. Gamba, “Feature 

fusion to improve road network extraction in high-

http://en.wikipedia.org/wiki/Machine_Learning_%28journal%29


 

resolution SAR images,” IEEE Geoscience and Remote 

Sensing Letters, vol. 3, no. 2, pp. 217–221, 2006.  

[31] J. S. Lee, "Speckle Analysis and Smoothing of Synthetic 

Aperture Radar Images," Computer Graphics and Image 

Processing, vol. 17, pp. 24-32, 1981. 

[32] J. S. Lee and T. L. Ainsworth, “The effect of orientation 

angle compensation on coherency matrix and polarimetric 

target decompositions,” Geoscience and Remote Sensing, 

IEEE Transactions on, vol. 49, no. 1, pp. 53-64, 2011. 

[33] J. S. Lee and I. Jurkevich, “Segmentation of SAR Images,” 

IEEE Transactions on Geoscience and Remote Sensing,” 

vol. 27, 6, November 1989. 

[34] J. S. Lee and E. Pottier, Polarimetric Radar Imaging: From 

Basics to Applications, Chapter 7, CRC Press, 2002. 

[35] A. Levinshtein, A. Stere, K. N. Kutulakos, D. Fleet, S. J. 

Dickinson,  and K. Siddiqui,  “Turbopixels: Fast 

superpixels using geometric flows,” IEEE Trans. Patt. Anal. 

and Mach. Intell. 31(12), 2290-2297 (2009). 

[36] P. Lu, K. Du, W. Yu, R. Wang, Y. Deng, and T. Balz, “A 

new region growing-based method for road network 

extraction and its application on different resolution SAR 

images,” IEEE Journal of Selected Topics in Applied Earth 

Observations and Remote Sensing, vol. 7, no. 12, pp. 4772-

4783, 2014.  

[37] S. P. Lloyd, "Least squares quantization in PCM". IEEE 

Transactions on Information Theory 28 (2), pp. 129–137, 

1982. 

[38] M. M. Moya, M. W. Koch, D. N. Perkins, R. D. West, 

“Superpixel segmentation using multiple SAR image 

products,” Radar Sensor Technology XVIII (DS 108), SPIE 

Defense, Security, and Sensing Symposium Baltimore, MD, 

May 6, 2014.  

[39] M. Negri, P. Gamba, G. Lisini, and F. Tupin, “Junction-

aware extraction and regularization of urban road networks 

in high-resolution SAR images,” IEEE Transactions on 

Geoscience and Remote Sensing, vol. 44, no. 10, pp. 217–

221, 2006. 

[40] E. Parzen, “On estimation of probability density function 

and mode,” Annals of Mathematical Statistics, 33:1065-

1076, 1962. 

[41] T. Perciano, F. Tupin, R. Hirata, Jr., and R. Cesar, Jr., “A 

hierarchical Markov random field for road network 

extraction and its application with optical and SAR data,” in 

Proceedings of the IEEE International Geoscience and 

Remote Sensing Symposium (IGARSS '11), pp. 1159–

1162, Vancouver, Canada, July 2011. 

[42] A. A. Popescu, I. Gavat, and M. Datcu, “Contextual 

descriptors for scene classes in very high resolution SAR 

images,” IEEE Geoscience and Remote Sensing Letters, 

vol. 9, no. 1, pp. 80-84, 2012. 

[43] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. 

Flannery, Numerical Recipes 3rd Editions: The Art of 

Scientific Computing, Cambridge University Press, pp. 736-

738, 2007. 

[44] X. Ren and J. Malik, “Learning a classification model for 

segmentation,” Proc. IEEE Comp. Vis. 1, 13-16 (2003). 

[45] D. E. Rumelhart and J. McClelland, Parallel Distributed 

Processing: Explorations in the Microstructure of 

Cognition. Cambridge: MIT Press, 1986. 

[46] J. S. Salazar, Detection Schemes for Synthetic Aperture 

Radar Imagery Based on a Beta Prime Statistical Model, 

PhD Dissertation, New Mexico University, Albuquerque, 

NM, 1999.  

[47] J. S. Salazar, J.S., “Statistical modeling of target and clutter 

in single-look non-polorimetric SAR imagery,” Proceedings 

of International Conference Signal and Image Processing, 

Las Vegas, CA, USA, October 1998.  

[48] K. Simonson, “Probabilistic fusion of ATR results,” Sandia 

Report, SAND98-1699, August 1998. 

[49] G. Singh, Y. Yamaguchi and S.E. Park, “General four-

component scattering power decomposition with unitary 

transformation of coherency matrix,” Geoscience and 

Remote Sensing, IEEE Transactions on, vol. 51, no. 5, pp. 

3014-3022, 2013. 

[50] N. Smirnov, "Table for estimating the goodness of fit of 

empirical distributions,” Annals of Mathematical 

Statistics, 19: 279–281, 1948. 

[51] X. Su, C. He, Q. Feng, X. Deng and H. Sun, “A supervised 

classification method based on conditional random fields 

with multiscale region connection calculus model for SAR 

image,”  IEEE Geosci. and Rem. Sens. Lett. 8(3), 497-501 

(2011). 

[52] F. T. Ulaby and M. C. Dobson, Handbook of Radar 

Scattering Statistics for Terrain, (Norwood, MA: Atrech 

House, 1989). 

[53] P. J. Werbos, Beyond Regression: New Tools for Prediction 

and Analysis in the Behavioral Sciences, 1975. 

[54] B. Wessel, “Road network extraction from SAR imagery 

supported by context information,” The International  

Archives of the Photogrammetry, Remote  Sensing and 

Spatial Information Sciences, vol. 35, pp. 360-366, 2004. 

[55] Y. Wu, X. Wang, P. Xiao, L. Gan, C. Y. Liu, and M. Li, 

“Fast algorithm based on triplet Markov fields for 

unsupervised multi-class segmentation of SAR images,” 

Sci. China Info. Sci. 54(7), 1524-1533 (2011). 

[56] D. Xiang, T. Tao, Z. Lingjun, and S. Yi,, “Superpixel 

generating algorithm based on pixel intensity and location 

similarity for SAR image classification,” IEEE Geosci. and 

Rem. Sens. Lett. 10(6), 1414-1418 (2013). 

[57] Y. Yamaguchi, T. Moriyama, M. Ishido, and H Yamada, 

“Four-component scattering model for polarimetric SAR 

image decomposition,” Geoscience and Remote Sensing, 

IEEE Transactions on, vol. 43, no. 8, pp. 1699-1706, 2005. 

[58] Y. Yang and C. Zhu, “Extracting road centrelines from 

high-resolution satellite images using active window line 

segment matching and improved SSDA,” International 

Journal of Remote Sensing, vol. 31, no. 10, pp. 2457–2469, 

2010. 

[59] H. Yu, X. Zhang, S. Wang, and B. Hou, “Context-Based 

Hierarchical Unequal Merging for SAR Image 

Segmentation,” IEEE Trans. Geosci. and Rem. Sens. 51(2), 

995-1009 (2013). 

[60] J. Zhang and Y. Wu, “Beta approximation to the 

distribution of the Kolmogorov-Smirnov statistic,” Ann. 

Inst. Statist. Math., Vol. 54, No. 3, 577-584, 2002.  

J. Zhou, W. F. Bischof, and T. Caelli, “Road tracking in aerial 

images based on human-computer interaction and Bayesian 

filtering,” ISPRS Journal of Photogrammetry and Remote Se 

http://www.cs.toronto.edu/~roweis/csc2515-2006/readings/lloyd57.pdf
http://en.wikipedia.org/wiki/IEEE_Transactions_on_Information_Theory
http://en.wikipedia.org/wiki/IEEE_Transactions_on_Information_Theory

