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. INTRODUCTION II. THE PROPAGATION OF WAVES IN A SUBSTANCE

rHE dielectric constant € and the magnetic permea-
bility u are the fundamental characteristic quantities
bhich determine the propagation of electromagnetic
aves in matter. This is due to the fact that they are
he only parameters of the substance that appear in
he dispersion equation

i t:).; iy — K kiky| =0, (1)

vhich gives the connecction between the frequency
bf a monochromatic wave and its wave vector k. In
he case of an isotropic substance, Eq. (1} takes a
kimpler form:

o

k=" n2, (2)

2

Iere n’ is the square of the index of refraction of
the substance, and is given by

nt = gp., (3)
[f we do not take losses into account and regard n, €,
L.wa i an wmanl namhane it aan ha caon fram (2) and

WITH € < 0 AND p < 0. “RIGHT-HANDED”’ AND
“LEFT-HANDED’’ SUBSTANCES

To ascertain the electromagnetic laws essentially
connected with the sign of € and u, we must turn to
those relations in which ¢ and p appear separately,
and not in the form of their product, as in (1)—(3).
These relations are primarily the Maxwell equations
and the constitutive relations

rot E s — — .

(4)*

<
bt
=
i
|

B y.". (41)
D - eE.

For a plane monochromatic wave, in which all
quantities are proportional to el(kz-wt), the expres-
sions (4) and (4) reduce to

(kE]- 2 pH,
’ (5)t
[kH] — —=¢E.
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Materials with Negative Permittivity and Permeability

Viktor G. Veselago

http://www.tkk.fi/Yksikot/Sahkomagnetiikka/kuvia/Veselago2.jpg
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Negative Refraction

I Viktor G. Veselago, Usp. Fiz. Nauk (1967)

n,sn0O, =n sino,



Negative Refraction

'
74
14

positive index of refraction negative index of
refraction

http://www.imagico.de/pov/imetamaterials.php
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(¢)

from: Pendry, Contemporary Physics,
45:3, 191 - 202

da

+
b2

LC “Resonators” to control magnetic permeability (u)

eability

A H

perim
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Gap nter-element
capac itance capacnance
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from; S. McMeekin, Proc. Of SPIE, Vol. 6581

http://www.multitel.be/newsletter/mn7 4
2005/images/nl3_Metamaterials_type
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Other devices:

o Perfectly matched absorber

CIoa kS e Beam splitters
e Negative index lens
e Sub-wavelength imaging
. IIIII
Pendryet al., Science (2006) Schurig,et al., Science 314, 977 (2006)
cloak design RF experimental
validation (2D)
» b . a i b <
; \\\\§ \\&‘\‘\\\
Optics : ., o . .

Kundtz and Smith, Nature Materials (2009)

flattened Luneberg RF experimental
lens design validation (2D)

Optical transparency is a key requirement for many devices




Optical Metamaterials
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C. M. Soukoulis, M. Wegener, Nature Photonics (2011)

Burckel et al, Advanced Materials 2010
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End of
“magnetism” ] A
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VLSI, National Semiconductors

%

L=

I e ] o

6 Engineers, a few 10K transistors

Intel's 15-core Xeon lvyBridge-EX,
4.3 billion transistors!

10
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Tellium (2000-2002)

-All-Optical MEMS cross-connect

Praelux/Amersham/GE (2002-2004)

-Single molecule DNA sequencing
-High throughput microscopy

12
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At Sandia: Other Activities in

Nanophotonics

Solid State Lighting “Energy

Frontier Research Center” (<2014)
* Enhanced Spontaneous Emission
* Nanowire Lasers (I1I-N)

Without Antibody-Antigen With Antibody-Antigen
Bindings Bindings

Plasmonics
* Sensors (gas)
* Biosensing

Transmitted Power

w/NMSU

Nanophotonics, etc “ ?‘%é
& = R
* Energy transfer in QDs 5= E 3 %j%“*""}
* QD “solids” T
0—+13—>0GPa ‘%&W@am&ét

13



Outline

Metallic Metasurfaces

— Tuning

— Strong Coupling

— Nonlinearities

All Dielectric Metasurfaces
— Fundamentals

— Optical Magnetism

— Directional Emission, Fano Resonances, and
third-harmonic Generation

14



Why Tunable Metasurfaces?

Potential for planar optical devices: modulators, tunable filters, etc.

R >

A

Examples: hyperspectral imaging
(NASA

(JPL)

(Cedip)

Mechanical filters! &

15
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an) Examples of Tunable Metamaterials

N
(Metasurfaces)
Mechanical movement or Re-orientation of liquid crystals
stretching
H ¥ o
< 0N
.;‘-«.#.t‘*w{:‘f"' g H&".fh
e e et
< L o e
- >4
Au he
Glass
I. M. Pryce, Nano Lett (2010) A. Minovich, APL (2012)
Phase transitions in VO, Optical free carrier generation

Ag 25 nm E
a-Si | | 80nm "

Ag 25nm r

l A
4

*"‘“‘-—u-\_h\_ kX
40pm R——
T. Driscoll, Science (2009) D.J. Cho, Opt. Express (2009)

« Electrical tuning based on semiconductor device structures is

more technologically appealing for practical, chip-scale

applications 6
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Electrically Switchable THz Metamaterials:
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Controlling Interaction With Electrons
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0.5 1.0 1.5 2.0
Frequency (THz)
Chen, Nature 444, 597 (2006).

However: it doesn’t scale well
to shorter wavelengths

Split gap

I = |
| Sl-GaAs

This works by increasing the
damping (e,). Plasma frequency of
doped layer needs to match the MM
resonance frequency

0.36 THz,4x4 SLM

(With Rice Univ.)

Appl. Phys. Lett. 94, 213511
(2009)

17 16 mm



Coupling

Transmission
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Planar Metamaterials Resonators: Strong
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2D resonators (or

| metasurfaces):

*subwavelength

* large cross section

* Spectral response is extremely
sensitive to local changes in ¢

* Field decays from the metal
surface exponentially into the
substrate
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Oxide is
only 10nm!

50— = FTIR Measurement
R < ' FEM Simulation
. —_ > =
w0 ::::::::,’i Z\"; & 20 Coupled Oscillator :
3 i *?'2 """ > §
= 20} Y v S
S | Lo 2
8 10} " Uncoupled =
§ ol . metamaterial >
e L :I I L . 1 . 1 . 1 . 1 . 1 . 1 M
- 40 ks i 80 100 120 140 160 180 200 220
30l | SRR o__(meV)
20; ':/ . V= (a)MM _a)_inMa))(a)ph _a)_iypha))
ol '2Q-"’ Coupled Linewidth of phonon is comparable to MM
! <--r---> modes >
ol QJ4V (-

100 120 140 160 180 200
Energy (meV) 19 Nano Letters 11, 2104 (2011)



Alex Benz
*Scalable (far IR to near

IR), Mature, Versatile

Opt. Express 20, 6584 (2012),
APL 98, 203103 (2011)

TN Strong Coupling to Inter-subband Transitions
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in Quantum Waells
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Transmission

28 32
Bare cavity resonance (THz)

200 300 400 500
Frequency (THz)

0.95

Plasma frequency

Rabi frequency depends on Q'R = @i@ 2

simple parameters

0.67¢

Frequency (THz)

0.4

Geometry factor o 26 32 36

Nature Communications 4, (2013) Bare cavity resonance (THz)

Phys. Rev. B 89, 165133 21
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This is a “Single Resonator” Behavior

BN
o

Transm'\ss'\o\‘\

Same Rabi splitting remains
down to a single resonator!

Trar\sm\ss\O\‘\

Nature communications 4, (2013)

Area of a resonator * carrier density ~1000-3000 electrons!
22
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From Mid-IR to Near IR

GaN QWs (near IR)

InGaAs QWs (mid IR)
PAAR i T T T T T T T | (1]"
Alex Ben 400 W 2,=8um - 4 S
& . L
350 | T - - > -1
mE= el . )
300 |- T - Lﬁ
G 2l
250 -
200 | - 6 8 I 10
1 " 1 L 1 M 1 " |
I ! I ! I ! I ' I . .
w0l A a=toum ol Growth direction (nm)
E ] 2 8 T T T T T T T T
": 35.0 |- % A - ’
2 o
3] * L
= 300 |- A A ~ 24l 5\
g » A A A A . c
c 250 | & . g
S : A o
= A c 20 A O .-
S 200 | | 0ElE
o ] ] 1 \ ] ] 9 2
1 I I L 1 1 m ;
400 @® i,=12pm . R @
o
@ € 16F o
350 |- _ 7] bt
c @©
@] 0 28] : :
300 | ® d ; = '
| P ] 1.2+ -
..
50 o@ ® L -
o ® ... o ®] O O
200 |- -
.I 1 1 1 1 L | L |
20.0 25.0 30.0 35.0 400

Cavity resonance (THz)

ACS Photonics (2014) 1.0 12 14 16 18 20
Nature Communications 4, (2013) 23 Wavelength (um)



Frequency (THz)
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2.625 pm

Sandia
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Electrically Tunable Strong Coupling
— \ \ \ 0.90
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Appl. Phys. Lett. 103, 263116 (2013)

Upper polariton shifted by 2.5 THz (~8% of center frequency)

24



Dogbone
2 [Te]y]
capacitance

Jerusalem Cross
Low damping & high-
Q i “ .

’..- RN

Dumbbell
g [Te] ] i,
capacitanc’e

|~

oy
it Y

y Circular SRR

High _
induct@nb'e .

™,

)

Q./2n (THz)

2.5

Rabi Frequency vs. Geometry

Dogbone

Dumbbell D: ; ]
Jerusalem C.

Circular SRR

Capacitance (aF)

Physical Review B89, 165133 (2014)
NanoLetters (2015)

e Larger capacitance leads to larger Rabi splitting

25
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&) SHG From Strongly Coupled MMs and V.
Intersubband Transitions

Resonators are designed to have
Omriwolf @  #a s s g
- -

— ’ ’ resonances at 30 & 60 THz
Fa My My My My 0 05 1
- w w
E
[J >
(b)
= 0.4/ )5 100 qovelepghlml o oy
% J ) O 1.5 —~+ Experiment _
N — = —P_ =4510" p? £
L:.]E 0.2¢ NB 2 E | SH FF E_
§ ma 0.5
0 "PS b GO 20 40
0 5 10 15 20 IS . Pump power [mW]
Growth Direction [nm] 2
=
3 levels are designed to create 3 °° O CW pump
(2) O Pulsed pump
ax 0
1 15 120 125

Pump Photon Energy [meV]

High Efficiency with ~700nm thickness!

APL 104,131104 (2014)

26 Also, see work by Belkin&Alu



é@ Spatial Coherence: each resonator acts as
a point source of SHG

. We simulate the radiation pattern of two cases:

Omri Wolf .. o
. the nanocavities emit incoherently

. the nanocavities are coherent and the relative phase of the
emitted radiation is determined by the FF pump

Incoherent emnitters Coherent array
75 - 0

/60

Expeaiment

Simulation

Sandia
National
Laboratories

All the resonators act as a collection of
phase coherent sources of SH radiation



Sandia
m National
Laboratories

Beam Manipulation With Metasurfaces

Phase gradient to achieve anomalous

Phase gradient to achieve anomalous reflection

. refraction

0 /8 r'4  3r/8 12 sr/8  3rl4  r/8 i 1
:

Yu et al. Science 334, 333 (2011)

gle (8,) [deg]

[
(=]

reflection an

Phase gradient to achieve lensing

I U L}
w NN —
w0 O o

-30
1000 1100 1200 1300 1400 1500 1600 1700 1800 1900

wavelength (A) [nm]
I Ni et al. Science 335, 427 (2012)

We can do this at the SH wavelength:
non-degenerate

Lin et al. Science 345, 298 (2014)
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<00 ,
b Outline

e All Dielectric Metasurfaces
— Fundamentals
— Optical Magnetism

— Directional Emission, Fano Resonances, and third-
harmonic Generation

What’s wrong with metals? LOSS!!

(at higher frequencies (shorter wavelengths)

29
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End of
“magnetism” ] A
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A Non-Metallic Path to Low Loss
Metamaterials: Dielectric Resonators

Electric Magnetic

Intensity (a?:;u.)
3

Images: A. Miroshnichenko

First (Primary) resonance is

magnetic dipole for most

materials; Second is electric

6000 8000 10000 12000 dipole
Wavelength (nm)

THE ELECTRICAL CONSTANTS OF A MATERIAL LOAD
SPHERICAL PARTICLES*

By L. LEWIN.}
(The paper was first received 4th March, and in revised form 27th September, 1946.)

by = 2
H2

2 (sin
vy @) = (02 —1)sin® +
F(0)+2bm
F((O))—bm — Uy
vy 0 = koay/ € a1t0
F(6)+2be

F(0)—b.  Yf

31
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Full Wave Simulation of Propagation
Through Split Cube Array

=32, edge = 1.53 um, gap = 100 nm H, at top of unit cell (z=1.3 um)
Incident waves

: 2.6 um

Lumerical FDTD

Periodic BC in x & z, 15 cubes thick iny

3 A=15pum



Refractive Index

5.20

Dielectric Resonator IR Metamasurface: )&=

—=— Refractive Index o
—a— Absorption Coefficient &*

Wavelength (um)

Magnetic

Te/BaF,

a0 uondiosqy

Electric
1.0
0.5
1.53x1.53x1.7mm3
- 10 deg wall slope

33 Phys. Rev. Lett. 108, 097402 (2012)



1.0

0.8

0.6

0.4

0.2

Reflection Transmission

0.0
90

60
30

Impedance phase (deg.)
o

National

Dielectric Resonator IR Metasurface: ™ &=

Theory
Magnetic
Electric 0
O 0,

L

Permittivity

65 7.0

75 80 85 9.0 95
Wavelength (um)

Phys. Rev. Lett. 108, 097402 (2012)

Te/BaF,

34

Experiments

Te on BaF2: Full Reflection/Transmission

Magnetic

Wavelength [um]

10

——Transmission
—Reflection

Absorption

N

11 12

Includes substrate losses
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Proving Optical Magnetism:
Measure Absolute Phase of Reflected Wave

\Sheng Liu}

Phase-locked Time Domain Spectroscopy

1350 nm 1550 nm

~

L

v
V GaSe
250 fs,
mid-IR
M

Appl. Phys. Lett. 103, 181111 (2013) 35 Optica 2014

T GaSe
3 -~
g -
= £
(=]
g 0s g DM
= [-%
E >
= [~
= ) ‘
= € £ L L
) < w0 £
0.0 . ; ’ : : : \ T €
68 72 76 80 84 88 92 96 gs
. T O
Wavelength (pm) (O==
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Experimental Demonstration of “Optical
Magnetism”

, 1 S

- - ! i Reflection on gold mirror
i nw N Reflection on OMM
E | - n F n \\\

MMWMM i WW; ){WMW

—— Reflection on gold mirror
M M \ Reflection on OMM

"

Electric field (Simulation)
<

L r |

f @

Electric field (Experiment)

o : A S SR S S 1,
300 450 600 750 500 1050 1200 1350 1500 300 450 600 750 900 1050 1200 1350 1500
Delay (fs) Delay (fs)

Reflection on gold mirror 360 ' : ! ' ; ' : ' BRI
Reflection on OMM ’\ ]
320 - " | |

. = \ ]
280 | -.

on,

.....

240

T

......
o
.,
e,

200

@ Experimental Center @ 8.1um
@ Experimental Center @ 8.8um

300 450 600 750 900 1050 1200 1350 1500  120l——_ipfDsmuation . | e
65 2 e w0 ma om0
Delay (fs)

Electric field (Simulation)
(=)
Phase Difference (Degree)

160 H

Wavelength (Lm)
36 Optica 2014
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) Radiative Decay Rate of a Transverse Electric
Dipole Near Au and OMM Surfaces

=) 50

= 405 —=&— On Top of Gold

= —e— On top of OMM 3
é 20 % 40 Radiative decay rate peaks
é :_/ - = ! -~ = ;; . :;):::nz?gnetlc dipole

g 4 W SR

) - > =

® It <

- =

k=

"g 0 P22223099990000009%00020:

~ 1

Distance (um) Wavelength (um)

* Oscillatory dependence on distance is shifted by about half a period
* Dipole emission near the magnetic mirror is enhanced even for very small
distances

37 Optica 2014
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O Scaling Dielectric Resonators to the Near IR:
Silicon Nanostructures

Tellurium: n~5, Size™~1.5um Silicon: n~3.5, Size<200-500nm
A>5um A>1um

38
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Scaling Dielectric Resonators to the Near IR.@ s
Silicon Cylinders (with I. Staude & Y. Kivshar, ANU)

Transmittance (Experiment)

d=650 nm 16 . N K .
/-""\\/,..--'— d=625 nm E:;
4 d=600nm =
o
c
d=575nm 9
[il]
= d=550 nm %
=
d=525 nm
7 d=500 nm
=~ d=475nm _—
&
= d=450 nm =
' &
M d=425nm 2
o
" = d=400 nm %
1.3
- =~ d=375nm =
( (c)
La) U I I 1 1 1‘2 L ' N L . D
1.2 1.3 1.4 1.5 1.6 1.7 450 500 550 600 650
Wavelength (pm) Si disk diameter (nm)

Changing the aspect ratio of the nanocylinder, changes relative position
of E & H resonances

ACS Nano 2013 7 (9), 7824-7832 39
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Integration with Quantum Dots

With J. Hollingsworth
and F. Darwood, LANL

Dip-pen nanolithography

http://str.linl.gov

QDs in protective polymer
coating selectively deposited
onto the tops of Si
nanoresonators

Many QDs

Towards Single QDs (near-IR g-NQDs)

SEM: C. Sheehan, LANL

40



Near Field Imaging of Localized Modes

Measurements

g

Amplitude

Phase

Mostly electric quadrupole

(L

With Prof. Habteyes, UNM

nanodisk diameter 412 nm,
nanodisk height 140 nm
A=633nm

Calculated near-field amplitudes

o
S

Amplitude

- ‘ l -
v |k

ACS Photonics 2014

Phase

41
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d,=400nm d,=380nm

Experiment
B b 2 ’

o
N

1-Transmittance
© o o o
w N [§,] (o)}

o
)
T

o
i

1.2 1.4 1.6

Wavelength (um)

Small, 2013

0 Fano Resonances in All-Dielectric

Nanoparticle Oligomers

Extinction (um?)

(53]

N

W
T

N

=

d,=350nm d,=320nm
o%e | 0%
OOG OOG
Theory
2 1 i4 1 6

=O

Wavelength (um)

42

Sandia
m National
Laboratories

(with I. Staude & Y. Kivshar, ANU)

6 ; Jom g,

5 a e eic | =15} b -, l'+ LAl L
= — magnetic c
= =
24 | S0
S 3} 1 © '}
= a 5F
i E

T ] <

0 4 0 .

14 1.6 1.4 1.6
Wavelength (um) Wavelength (um)

Dipole moment
magnitude (arb.un.)
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All-Dielectric Fano-Resonant 2D Chiral Metasurfaces:

Order of Magnitude Higher Q Than Similar Metallic
Metasurfaces (with G. Shvets, UT Austin)

Cross-polarized transmission T,,

Ty Silicon pi L20

== Silicon pi L18 ags
20" |===High Q metallic pi SI|ICO"\

mem Low Q) metallic pi

Percentage

%00 1800 2000 2200 2400 2600
Wavenumber 1/cm

Nature Communications (2014)
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iﬁll : . . .
NI Third Harmonic Generation

Third harmonic wavelength (nm)
350 400 450
150 T v T T T

=
¥}
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=
o
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Normalized THG signal
S
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i
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=
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1.0 11 1.2 1.3
Fundamental wavelength (um)
' T ’ T ¥ T ¥ 6
L —— Electric dipole (b)
- —— Magnetic dipole -

()]

B

T T T
1
=N

(With ANU & Moscow State)

—In (Normalized transmission)
N
~
(‘un "qJe) Juswow a|jodiq

o

1 1 0
1.1 1.2 1.3 1.4

Nano Letters 2015. Wavelength (um)
44

=
o



Sandia
m National
Laboratories

k I k
Sheng Liu

Oxidized

45
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N So What’s the Future of Metamaterials?

Peak of Inflated Expectations

Plateau of Productivity

Slope of Enlightenment

Trough of Disillusionment

Gartner Hype Cycle Time

Metamaterials “inspired” new directions. My own example:

3D Metamaterials >> Voltage tuning >> Planar MM resonators >> Strong coupling
50
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B Pl
Al, ;Ga, ;As
(30 nm) n+ GaAs Depletion
(N, =5x1078 cm?3) region
_________________________ »
Increased reverse
bias
Large changes in € happen
near the plasma frequency. @Op X x
Therefore increase N m

1/2
2E,. &
Depletion width W, ... ={ @ ° (_‘/’s)}
D

*Large N implies thin W, ->> Interaction {,
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=~ Coupling Between Metamaterial Resonators

and “Epsilon Near Zero” Waves

Transmission vs angle (p-pol):
P-pol A sharp dip is observed in
Thin (<<A) Drude —— transmission, where €~0
layer —(1)5
T T T T T T T 30 N
1.0 F —— 451
——60]
— 751
10— . _ 0.9} -
\ S - ’ﬂ_\
- 7
E Q=== 4 = 0.8 F
£ ‘ % | 1
-10'  12.8 um = 07F .
% (=781 cm - :
20+ 1
3 ) 0.6 /\/\—
a —Real
30! Imaginary i /\
‘ . . ‘ ‘ 05 ! | ! | ! | ! 1
5 10 15 20 25 0 5 10 15 20 25

Wavelength (um) Wavelength (um)

(“Berreman” dip)
Berreman, Physical Review 130 (6), 2193 (1963).

McAlister and Stern, Physical Review 132, 1599 (1963). 52
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Berreman mode vs ENZ mode in n+ InAs

Berreman
IIENle

n+|m‘3\s,ND=1e19|cm‘3

1005 —
n+ InAs (Drude)

7‘ 1000 /. :

t=30 nm

995+~

990! t=60 nm i

® [cm'1]

985+

980+

975 .

7% 0.5 1 15 2 2.5 3

K, [em™] x 10°

e Berreman mode is very flat for a thin doped layer and leaky into air
e ENZ mode does not couple to free space

53 Greffet et al, PRL 109, 237401 (2012)



What Happens when MMs Resonate

with €~0 Layer?

Al; ;GaAs 30nm

30 nm n+ GaAs (5e18)

Transmission

2

Strong coupling between the MM
resonance and ENZ waves!
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FTIR transmission

1.3

1.2

600 800 1000
Wavenumber [cm'1l
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ENZ Strong Coupling (N, = 2e18 cm™3)

FTIR Transmission spectra

1.8—

' ' Scale 3.0
VB582

Scale 2.6

Transmittance

Scale 2.2

0.6F

400 500 600 700

Wavenumber (cm-1)
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Electrical Tuning the Coupling to the ENZ
Mode

VB581, Scale 2.4

VB581, Scale 2.2

0.65¢

0.65! Np =2e18 cm?3
0.6
S 06 5
L
£ £ 0.55f
G 0.55| G
< &
= = 05

0.5 oV
2V 0.45!
045! —35V|]
400 500 600 700 400 500 600 700
Wavenumber (cm'1) Wavenumber (cm'1)

Fundamentally different than tuning just by changing a local permittivity!
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> sroted Mo

) Te Resonators: Electric and Magnetic Mode ) 5.
Overlap

1.00 . - .
measured response
0.75F
C
o
2 0.50
=
-
ju Magnetic resonance of
0.25} smaller resonator
overlaps electric
resonance of larger cube
000 N 1 N 1 N 1 N
6 7 8 9 10

wavelength (um)

Magnetic and Electric resonances can overlap: different size cubes, or

cubes with “cuts”
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Te Resonators: Overlapping Electric and
Magnetic Resonances

1.0

—a— | O um
—e—2 3 um
——7 7 um

Transmission (a.u.)
o
'u.

0.0

6 | 3 | 10 | 12
Wavelength (um)

« Side: 1.7 ym, 2.3 ym and 2.7 pym with 50%

duty cycle (height constant at ~1.8 pm).

Te resonators using a
single multiple
deposition & liftoff

process. :
« Shaded areas are the spectral regions

where magnetic and electric resonances
overlap.

Appl. Phys. Lett. 102, 161905 (2013) 58
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Interactions between MMs and Electrons
in Doped Semiconductors

2
exeg, | 1- 5 p. =&, I'=1/t = 9
@ +iol um *
o? = qu
Drude (ex: n+GaAs, 5x10%¥cm3) TogE,m

Dielectric constant

(a) ° V\}gvelem;tsh (um)20 2
12
10} 1 4
8_ 0.8'
= 6l = 0.6
e —6 pm E —6 um
4t 8 um 0.4f 8 um
—10um —10 pum
2r [—12pm 0.2} |—12pum
—14 um ‘14 pm
10" 10" 10" 10" 10" 10"

Doping level [cm3]

Doping level [cm™3]
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\
Metal Metal

Example, SRRs interact strongly
with thin layers underneath Substrate

Change ¢, (n)

* Nonresonant

50
* Resonant ao -,
(Create a dipolar 30r 5
resonance, example: 20
honon
p ) |

100 120 140 160 180 200 100 120 140 160 180 200
Energy (meV) Energy (meV)
Nano Letters 11, 2104 (2011) 60
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Arrays of High € Resonators: Low Loss
Metamaterials

Works nice in the RF

Magnetic Electric (negative ¢, negative )

Spherical

Cubic

M. B. Sinclair, MRS Fall Meeting, Boston MA, December 2009. 61
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Magnetic Field Movie — 7.5 um

real(u)
real(e)

gap =100 nm 1

8 10 12 14
wavelength (um)
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Incident waves

< 2.6 um S
A
4;
R ———
\4
A=7.5pum

H, at top of unit cell (z=1.3 um)
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Split-ring resonator

LC resonator:®; =

Sk
a

e Variants:

i
15



http://www.google.co.kr/url?sa=i&rct=j&q=split+ring+resonator&source=images&cd=&cad=rja&docid=hBP_dKbhDDbQsM&tbnid=2vhHx59_XDtfeM:&ved=0CAUQjRw&url=http://www.hikari.uni-bonn.de/research/metamaterials&ei=sGFAUa2FM-jsmAXHg4Ew&bvm=bv.43287494,d.dGY&psig=AFQjCNHsmxcdZNsLx2ajnLvGVZpZ2Dl9fA&ust=1363259898713361
http://www.google.co.kr/url?sa=i&rct=j&q=split+ring+resonator&source=images&cd=&cad=rja&docid=gXV3R00UE1upfM&tbnid=XIOs5_xYcTh8BM:&ved=0CAUQjRw&url=http://www.microwavejournal.com/articles/print/8746-filters-metamaterial-based-compact-multilayer-filter-with-skew-symmetric-feeds&ei=aWFAUcP6FZGemQXCqIGQDA&bvm=bv.43287494,d.dGY&psig=AFQjCNHsmxcdZNsLx2ajnLvGVZpZ2Dl9fA&ust=1363259898713361
http://www.google.co.kr/url?sa=i&rct=j&q=split+ring+resonator&source=images&cd=&cad=rja&docid=2cWqz44oK5HXsM&tbnid=oDpAEvczskekXM:&ved=0CAUQjRw&url=http://www.ee.washington.edu/research/ersl/ResearchLinks/MetaMaterial.htm&ei=NGFAUcepLIXNmAWTmIDoBg&bvm=bv.43287494,d.dGY&psig=AFQjCNHsmxcdZNsLx2ajnLvGVZpZ2Dl9fA&ust=1363259898713361
http://www.google.co.kr/url?sa=i&rct=j&q=split+ring+resonator&source=images&cd=&cad=rja&docid=tfpubjbDKEjEHM&tbnid=62yD-cNAK1SBgM:&ved=0CAUQjRw&url=http://www.aph.kit.edu/wegener/english/264.php&ei=6mBAUcrrFaLqmAWau4HABw&bvm=bv.43287494,d.dGY&psig=AFQjCNHsmxcdZNsLx2ajnLvGVZpZ2Dl9fA&ust=1363259898713361
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Importance of the Quadrupole Mode

Silicon nanodisks: highly
directional nanoantennas with
giant front-to-back ratio

Electric quadrupole mode
essential to achieve high
directivity

O
&
-~
Q
©
o
S
T
o
L
10° ' ' : '
1 1.2 14 1.6 1.8 2
Wavelength (um)
I. Staude et al., ACS Nano 7, 7824, 2013.
T 0.3
= 0.25
g
;"} 0.2}
8 0.15
el
% 0.1
o 0.05 ~
oL : == RN P ._-__-;-,_.._'-:-.4:- _",.‘J?—_ﬁ,ﬂ_-!fmg_;:_-gﬁ_g.
1 1.2 1.4 1.6 1.8 2

Wavelength (um)

E. Rusak et al., submitted (2014).
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N o o
hdf What is a “Mirror”’?

“Regular” mirrors invert the phase
of the reflected wave

Incident
Ray

But.... we can make a “magnetic”
mirror

How does it work, what does it do?
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How much do you trust me?

1.0 oo e
0.8 f
06}
0.4}

02 F

Reflection Transmission

0.0

Trust me, this
is a magnetic
mirror
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Proving Optical Magnetism:
Measure Phase of Reflected Wave

Phase-locked Time Domain Spectroscopy
35 f5, 1350 nm

90 /5, 1550 nm
A2

Appl. Phys. Lett. 103, 181111 (2013)
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Experimental Demonstration of “Optical

Magnetism”
| }Mc:g’ric ‘w (a) | Magnehc (©)
|~ WmN\’\WtW*

300 450 600 750 900 1050 1200 1350 1500 300 450 600 750 900 1050 1200 1350 1500

Time (f5) Time (f5)
. ~ 360
| Electric (b) 3 (d)
Q L
= | J [ o 280 )
= S ot Ry Magnetic
= aatARNARLUI I HEHHTUHUHIAR AR A A A A Semnd & Yunl e, |4 %
= ) iy
a I t = ‘a
E 4 X f A 200
2 9 —@— Experimental Center @ 8.1um ' \
< 160 @ Experimental Center (@ 8.8um ¥
= [ | ——FDTD simulation '

300 450 600 750 900 1050 1200 1350 1500 %¢ 72 76  so0  sa 83 92
Time (fs) Wavelength (pm)



— s1n9

Tl
A
€<0, u=>0 >0, u=>0
metals, doped most dielectric
semiconductors materials
-
€<0, p<0 e>0, u<0
no natural some ferrites
materials
n = 8}" H}"
(Causality)

Metamaterials: Exotic optical properties
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Negative index,
Negative
refraction

(Snell’s Law)

e Superlensing, Cloaking, Chirality/Optical activity, Perfect absorption

e Enhanced nonlinear interaction, Optical force manipulation, Light
emission control



