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Introduction

• Autoignition chemistry of fuel – air mixture plays a crucial role in the
development of modern, high-efficiency, low-emission engine technologies.

• Oxidation of fuel radicals R and especially reaction channels which lead to
chain-branching are essential for autoignition and ketohydroperoxides (KHP's)
are a marker of this chemistry.

• We study Cl-atom initiated oxidation chemistry of neopentane, n-butane, and
3-pentanone using a High-Pressure (HP) reactor under 475 – 700 K and 1 – 7
atm conditions.

• Fuel radicals of the current work are different: neopentyl radical has no β-
hydrogens, 1-butyl + O2 and 2-butyl + O2 radicals constitute a smallest system
with low-temperature behavior of larger hydrocarbons, and secondary DEK
radical (3-oxopental-2-yl, main radical of the system) is resonantly stabilized.



PESs of R + O2, QOOH + O2, and KHP decomposition

• Due to relatively simple and symmetric molecular structure of neopentyl radical, fairly 
compact representation is possible for the ketohydroperoxide formation under 
neopentane low-temperature combustion conditions.

• Ketohydroperoxide decomposition channel leading to an oxy-radical + OH results in 
chain-branching . Yet it might not be the sole KHP decomposition channel.
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Laser photolysis ‒ flow reactor coupled to time-of-flight 
mass spectrometer with synchrotron photoionization

Experimental

High-Pressure reactor (~ 1 – 10 atm)
Metal or Quartz surface in contact with 

reacting gases 

• Oxidation initiated by 193 nm photolysis of CFCl3 → CFCl2 + Cl or 248 nm photolysis 
of (ClCO)2 → 2*Cl + 2*CO



KHP formation and decomposition: n-butane

• Important products for autoignition observed at m/z = 56 (butenes), m/z = 57 
(RO2),  m/z = 72 (oxygenates), and m/z = 104 (KHP, ketohydroperoxide)



KHP and n-butane: The effect of [O2] and T

• Intensity of RO2 signal (m/z = 57) is independent of [O2] whereas KHP signal (m/z
= 104) intensity increases with a factor of ~ 1.55 as [O2] is doubled. 

• Under constant conditions (total density, [O2]) KHP signal intensity and formation 
rate increases with temperature up to about 650 K. At higher T KHP signal intensity 
decreases, probably due to unimolecular decomposition of KHP.



KHP and n-butane: The effect of pressure

• We estimate that diffusion-limited wall-loss rate of KHP at 2 atm, 590 K is ~ 35 s-1

and at 6.7 atm, 590 K ~ 10 s-1.

• Once temperature was increased from 625 to 640 K (or higher) at 6.7 atm and [O2] 
= 5.3×1018 cm-3, spontaneous oxidation was observed, i.e. oxidation products 
appeared at several masses without laser initiation.

No sign of RO2, KHP decay!



• Simulations reproduce experimental KHP 
time-behavior and intensity dependence 
on [O2] once an additional decomposition 
rate of KHP 28 s-1 (wall reaction?) is added 
to the model

• Experimental time profiles are very 
similar at various [O2] (as was above 
observed in case of n-butane), only 
the signal intensities change due to 
increased interception of QOOH 
radicals by O2. 

KHP formation and decomposition: neopentane

• In neopentane oxidation experiments at 2 atm, KHP signal formation rate and intensity 
increased with temperature until above ~ 625 K spontaneous oxidation was observed.



KHP formation and decomposition: DEK

• Probably due to resonance stabilization of both secondary DEK radical (3-oxopental-
2-yl) and corresponding QOOH radical, intense KHP signal starts to appear at lower T
than in case of n-butane and neopentane, it reaches maximum around 575 K, after 
which KHP signal intensity starts to decrease with T.

• In DEK oxidation experiments, KHP signal (m/z = 132) intensity increases with a factor 
of ~ 2 as [O2] is doubled, i.e. faster than in case of n-butane and neopentane. 



KHP decomposition: neopentane
• KHP decomposition via suggested Korcek decomposition of �-ketohydroperoxide * 

mechanism leads to aldehyde + acid products, not to reactive OH + oxy-radicals that 
are needed for chain-branching, thus this new mechanism reduces system reactivity.

Korcek decomposition of �-ketohydroperoxide* Jalan et al. J. Am. Chem. Soc. 135 (2013), 11100

1526 Torr, 575 K



neopentane �-KHP decomposition: Exp. vs. Model
• Cl + neopentane + O2 –system was modelled using NUI Galway new C5-model. Without any 

adjustment, modelled [KHP] increases rapidly that is not observed in the 2 atm experiments

• Upon including additional KHP decomposition mechanism in the model which does not 
produce OH, significantly better agreement is observed between the model and the exp. 

Wall reaction ? Diffusion-limited wall loss ~ 30 s-1…

Yield(KHP → HCOOH + i-C3H7CHO) = 0.7 s-1 /(1 + 28 + 0.7) s-1 = 0.024
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• Direct, time-resolved measurements of ketohydroperoxide formation in Cl-atom
initiated n-butane, neopentane, and DEK oxidation experiments were performed at
high, 2 – 7 atm, pressures.

• Current KHP formation measurements clearly show differences among systems
studied: intensity and rate of KHP formation in neopentane oxidation experiments
increase with temperature up to a point of spontaneous oxidation, while both in n-
butane and DEK experiments KHP formation was observed to first increase and
then decrease with temperature. Also, KHP formation was observed in DEK
experiments at ~ 75 K lower temperatures than in n-butane measurements.


