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. Fuel radicals of the current work are different: neopentyl radical has no B-
hydrogens, 1-butyl + O, and 2-butyl + O, radicals constitute a smallest system
with low-temperature behavior of larger hydrocarbons, and secondary DEK
radical (3-oxopental-2-yl, main radical of the system) is resonantly stabilized.

. We study Cl-atom initiated oxidation chemistry of neopentane, n-butane, and
3-pentanone using a High-Pressure (HP) reactor under 475 - 700 K and 1 — 7
atm conditions.
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PESs of R + O,, QOOH + O,, and KHP decomposition
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Primary DEK radical, 3-oxopentan-1-yl
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Experimental

Laser photolysis — flow reactor coupled to time-of-flight
mass spectrometer with synchrotron photoionization
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High-Pressure reactor (~ 1 — 10 atm)
Metal or Quartz surface in contact with

reacting gases

Oxidation initiated by 193 nm photolysis of CFCl; - CFCl, + Cl or 248 nm photolysis

of (CICO), - 2*Cl + 2*CO
: @ Sandia National Laboratories
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KHP formation and decomposition: n-butane

e |mportant products for autoignition observed at m/z = 56 (butenes), m/z = 57
(RO,), m/z =72 (oxygenates), and m/z = 104 (KHP, ketohydroperoxide)
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KHP and n-butane: The effect of [0,] and T
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KHP formation: exp. vs. new model
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Under constant conditions (total density, [O,]) KHP signal intensity and formation
rate increases with temperature up to about 650 K. At higher T KHP signal intensity

decreases, probably due to unimolecular decomposition of KHP.
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’\/\ KHP and n-butane: The effect of pressure

e \We estimate that diffusion-limited wall-loss rate of KHP at 2 atm, 590 K is ~ 35 s'1
and at 6.7 atm, 590 K ~ 10 sL.

No sign of RO,, KHP decay!

=0=- m/z =57 (RO,)
=0O= m/z = 56 (Butenes)

W =O= m/z = 104 (KHP)
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e Once temperature was increased from 625 to 640 K (or higher) at 6.7 atm and [O,]
= 5.3 X 10'® cm3, spontaneous oxidation was observed, i.e. oxidation products
appeared at several masses without laser initiation.
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KHP (m/z = 118) formation and decay in Cl + C(CH,), + O, system ([O,] = 5.0 x10"° cm™)
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* In neopentane oxidation experiments at 2 atm, KHP signal formation rate and intensity
increased with temperature until above ~ 625 K spontaneous oxidation was observed.

—
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KHP formation and decomposition: DEK

In DEK oxidation experiments, KHP signal (m/z = 132) intensity increases with a factor
of ~ 2 as [0,] is doubled, i.e. faster than in case of n-butane and neopentane.

VEK (m/z = 84) formation under constant conditions, [O,] = 6.7 x 10" em™
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2,4-DMO-3-one (m/z = 100) formation under constant conditions, [O,] = 6.7 x 10" cm™
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Probably due to resonance stabilization of both secondary DEK radical (3-oxopental-
2-yl) and corresponding QOOH radical, intense KHP signal starts to appear at lower T
than in case of n-butane and neopentane, it reaches maximum around 575 K, after
which KHP signal intensity starts to decrease with T.
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N\ KHP decomposition: neopentane
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e KHP decomposition via suggested Korcek decomposition of y-ketohydroperoxide *
mechanism leads to aldehyde + acid products, not to reactive OH + oxy-radicals that
are needed for chain-branching, thus this new mechanism reduces system reactivity.

* Jalan et al. . Am. Chem. Soc. 135 (2013), 11100 Korcek decompOSition Of y-ketOhyd roperoxide
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?\Y\QF neopentane y-KHP decomposition: Exp. vs. Model

-ﬁa+ neopentane + O, —system was modelled using NUI Galway new C5-model. Without any
adjustment, modelled [KHP] increases rapidly that is not observed in the 2 atm experiments

e Upon including additional KHP decomposition mechanism in the model which does not
produce OH, significantly better agreement is observed between the model and the exp.

Modified Model: kK(KHP —> OH + oxy-radical) ~ 1 s_1

) -1
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FRE Conclusions and Acknowledgements

Direct, time-resolved measurements of ketohydroperoxide formation in Cl-atom
initiated n-butane, neopentane, and DEK oxidation experiments were performed at
high, 2 — 7 atm, pressures.

e Current KHP formation measurements clearly show differences among systems
studied: intensity and rate of KHP formation in neopentane oxidation experiments
increase with temperature up to a point of spontaneous oxidation, while both in n-
butane and DEK experiments KHP formation was observed to first increase and
then decrease with temperature. Also, KHP formation was observed in DEK
experiments at ~ 75 K lower temperatures than in n-butane measurements.

* |t is concluded that more direct study of KHP decomposition and other studies of
KHP, e.g. absolute photoionization cross section and reaction kinetics with OH
radical, would be greatly helpful to better understand chain-branching
mechanism.
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