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Quantum-Coherence

Outstanding quantum coherence in neutral atoms 
enables precision metrology and quantum information
• Example: atomic clocks

62 S1/2;F  3, M F  0  62 S1/2;F  4, M F  0

0  1

http://smsc.cnes.fr/PHARAO/GP_instrument.htm

Atomic fountain principle
http://www.nist.gov

Qubit fountain

Optical
clocks
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Atom interferometer inertial sensors
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Stanford gravity gradiometer

10 m tower, Stanford

Gravitational Wave Detector concept 
Kasevich group website, Stanford

Gyro/Accel Sandia

100 m drop tower, Bremen



[1] Leibfried, et al., "Creation of a six-atom 'Schrödinger cat' state", Nature 438, 639 (2005)
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Entangled states for metrology

Cat states with ions [1]
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Micron-scale:
inherently low 
power

852 nm scatter: 
LIF from laser cooling light



Building a fringe, one atom at a time

Parazzoli, et al., “Observation of free-space single-atom matterwave interference”, Phys. Rev. Lett. 109, 230401 (2012)

• 1 atom per phase through interferometer.
• Count atoms in F=3 state

• 2 atoms per phase through interferometer.

7,317 atoms
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Rydberg state mediated interaction

A classical picture of an atom
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orbital radius α n2

An example of the radial wavefunctions of a Cs atom at n = 100:
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Principal quantum number

A Rydberg atom can have a strong electric dipole moment.



Electric dipole-dipole interaction

very far

close enough ( < 10 m)
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Weighted Rydberg Energy levels: Excitation from ground-state to 64P3/2
x-polarized light; B = 4.8 G; E = 6.4 V/m;



Interaction between two Rydberg-
dressed atoms

Normal light shift: With Rydberg blockade:

+
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Rydberg-dressed interactions

I. Bouchoule, K. Mølmer, Phys. Rev. A 65, 041803 (2002). 
J. Johnson, S. Rolston, Phys. Rev. A 82, 033412 (2010). 

Tunable interaction strength (J), low sensitivity to atom motion, and effectively 
strong ground-state interactions.

Dressing laser field

Favors small detuning
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Optimizing for long-term 
relationships

1038 nm 1038 nm

318 nm

459 nm

Advantages:
• Reduced photon scattering
• Minimizes dipole forces

Disadvantages:
• Laser system cost and complexity

852 nm

508 nm

Cesium energy levels

Published: Phys. Rev. A 89, 033416 (2014) 10



Rydberg-dressed ground state 
interaction
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Single atom picture

• Interaction range increases as 
principal quantum number n
increases

• However, oscillator strength 
decreases as n increases—
making L smaller and thus J

• Target smallest n that your 
optical resolution can 
accommodate

• Solution—dynamic postioning
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Dynamic atom positioning
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6.6 m



Dynamic atom positioning
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Apparatus

Picture of shield.
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Experiment schematic
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Two-qubit microwave resonances
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J vs. R

Direct measurement of two-qubit interaction strength J as a function of two-atom 
separation with two conditions. 
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Producing Bell-state entanglement

Process occurs entirely and 
directly in the ground state
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Entanglement Fidelity ≥ 81%

Verify the entanglement via parity measurements 
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Application to metrology

Cat state 2x response to phase
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Simulated CPHASE gate fidelities

• Motional errors set a high 
floor on error for the 
original scheme.

• The Doppler-free scheme is 
limited by the much smaller 
photon scattering rate.

• Entanglement fidelity 
expected to be even larger

Published:  Phys. Rev. A 91, 012337 (2015)
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Quantum Control of Ensembles

Symmetrically couple ensemble of atoms
localized with Rydberg blockade radius

Optimal Control 
0


target

For n atoms
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 cat 
1

2
0 0 0 0 0  1 1 1 1 1   (t)

Example: A 5-atom “Cat State” 

see for example arxiv.:1410.3891 23



Summary
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• We have demonstrated an effective ground-state interaction of J/h ~ 1 MHz via the 
Rydberg dressing technique

• Possible uses include many-body physics, quantum simulation/computation, and 
metrology.

• We experimentally show neutral atom entanglement with a fidelity of ≥ 81 ± 2%
• With two-atom survival probability is about 74 % and about 10 s-1 data rate, we 

produce 6 entangled pairs per second
• Multi-atom entanglement can be achieved based on a similar approach
• Universal quantum gate control can be realized with individual addressing of the 

trap atoms
• The parity quantity is immediately useful for enhanced metrology
• We are investigating atom interferometry with cat states and N > 2
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