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Rydberg-dressed spin-flip blockade
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Quantum-Coherence ) e,

Qubit fountain .
Outstanding guantum coherence in neutral atoms

enables precision metrology and quantum information
* Example: atomic clocks
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Atomic fountain principle
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Atom interferometer inertial sensors @
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Stanford gravity gradiometer 100 m drop tower, Bremen

! .

P _
/../" ' 10 m tower, Stanford /

Gravitational Wave Detector concept
==miasevich group website, Stanford
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Entangled states for metrology ) B,

Cat states with ions [1] 938 nm beam
1.0 4 launcher
0.8 l . (.
4 0.6 —AN_
fluorescence
0.4 to APD
0.2 N ( \, /
0.0 T T T T T T T T T 1
® 1.0 .
g s, 852 nm scatter:
8084 = = . .
2 . = LIF from laser cooling light
5 S 0.6 En 1
T 0.4 o
N < 0
g 0.2 0 200 400 600
§ 0.0 T T T T T T T T T 1 time (ms)
1.0 0.08
_ background
0.8 . >
N Micron-scale: = o6 s
.0 . =T
6 - inherently low  §
0.2 power "é 0.04
0.0 — § 0.02
0 b4 2n o
z.

Decoding phase, ¢
0.00

[1] Leibfried, et al., "Creation of a six-atom 'Schrédinger cat' state", Nature 438, 639 (2005) APD signal (arb. units)




Building a fringe, one atom at a time

Counts

Counts
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11 o o o 2- O
N=1 * |1 atom per phaseNh=o2gh interferometer.
. ICOLBt 6toms in F=3 state
0L o Q000 o 0iQ QOQ O
7W0ﬂ: 1n 2n 2500 0111; 2n
@) .
e | 2 atom$ per-phase through interferometer.
o N=17 perbhaze thioug
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O
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Rydberg state mediated interaction @&,

An example of the radial wavefunctions of a Cs atom at n = 100:
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A Rydberg atom can have a strong electric dipole moment.
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Electric dipole-dipole interaction (UL

Z D . _ 3D . 3¢ D(J))
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Weighted Rydberg Energy levels: Excitation from ground-state to 64P3/2
x-polarized light; B = 4.8 G; E = 6.4 V/m;
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Interaction between two Rydberg- e
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dressed atoms
Normal light shift: With Rydberg blockade:
AT |T> A/v_|,r> 0
( + ( A |07) + |r0)
—v. we \/5
y—10y ,_2_|0)
1) 1)
(SI/L g (SI/Lg \ |OO>
AI/BLS
_2(51/1“5‘ -JOOO_ _OO>_
_ _ 0 0O 0 0 O 01)
HBLS - HLS + Hint - 0 0 00 0 fOI' 10)
0 | 0 0 0 0 - |11) |
Qf 305 3508 Ji
J = Avprs — Avpg = A3 16A5 T 128A7 Hine = Z(Uz(l) + 1)(0'z(2) +1)




Rydberg-dressed interactions ) B,

Tunable interaction strength (J), low sensitivity to atom motion, and effectively
strong ground-state interactions.

Jij . i
Hine = ) (08 + D)(0 + 1)
ij

_ 0* _ 309 350°
max — gA3 16A% = 128A7

................................................ -

0 i
Interatomic distance (R)

Ground-state coupling strength (C)

|. Bouchoule, K. Mglmer, Phys. Rev. A 65, 041803 (2002).

J. Johnson, S. Rolston, Phys. Rev. A 82, 033412 (2010). Dressing laser field




Optimizing for long-term
relationships

4. Cesium energy levels
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Advantages:
* Reduced photon scattering
------------------------ * Minimizes dipole forces
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Disadvantages:
* Laser system cost and complexity
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Rydberg-dressed ground state

i Notionl
interaction o
N
1"E = g}AL
64P3/2 m(,___% =2flr * |nteraction range increases as
my = principal quantum number n
increases
1, 319 nm * However, oscillator strength
T decreases as n increases—
making €2, smaller and thus J
8 =) mp =4 * Target smallest n that your
@ mp =0 i optical resolution can
! mi = 4 10) ) 5?3 accommodate
. 51/2 Q. }ZJ * Solution—dynamic postioning
+
mF——SmF_O ) :%
F=3) ) =

Single atom picture
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Dynamic atom positioning )

Atom 2 path
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State preparation Rydberg dressing State detection




Dynamic atom positioning

1 319 nm
&
+3.3 um atom 2 Raman
P
C E
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o drop recapture
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3.3 um atom 1
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Apparatus ) i,

dipole-trap
lens assembly

vacuum
cell




Experiment schematic

Raman

Rydberg
dipole trap
laser (938 nm)

dichroic

atom 1

to APD
gold knife
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bandpass filter APD

852 nm PerkinElmer
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Two-qubit microwave resonances ) i,

J/h = 750 kHz
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JVs. R )

Direct measurement of two-qubit interaction strength J as a function of two-atom
separation with two conditions.
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Producing Bell-state entanglement

Initial stateis |1) or |11), then apply 318-nm and Raman lasers
Experimental data with J /h = 750 kHz

Single-atom Rabi
oscillation: |1) & |0)

| Single atoms

Two-atom Rabi oscillation:

111) & (]10) + |01))/V2

* /2 times faster

* No significant population
being transferred to |00)

Relative populations

Two atoms

* Bell state |¥,. ) is produced
att = /V2Q,

Process occurs entirely and
directly in the ground state




Entanglement Fidelity > 81%

Verify the entanglement via parity measurements

V) = [0,1]0[1,0)]
j —

x2=0.81%0.01
u |

Parity: O(¢)

1.04 ¢

|<1> ) = KO, OIP\I 1>|

x2= 081+002

1

Relative phase offset (¢) of n/2 pulse (rad)

2

3
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Prepare two Cs atoms in Bell
state |, ) or |D,)

¥

Apply a global /2 rotation
with a given phase

¥

Perform parity measurement
Q = P11+ Pyo — (Py1 + P1o)

¥

Obtain the two-qubit

entanglementfidelity F,
whereQ < F < 1.



Application to metrology )
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Simulated CPHASE gate fidelities ) B,

Q2 =0— 3 MHz

100 _ T'=0K A/27 = 6 — 0 MHz
S Doppler sensitive = I' = 3.7 kHz
- " T =16 pK
P Doppler free e
I ®
= g = ’:.- * Motional errors set a high
= E o ""mEpEgEEguEEESEEnEnt floor on error for the
f L = original scheme.
- B! [ ]
4"% 10 2 3 .l... .
U : lg!’ * The Doppler-free scheme is
i !222300.. limited by the much smaller
10-3L R photon scattering rate.
E | [ | | |
1.0 1.5 2.0 25 3.0 * Entanglement fidelity
expected to be even larger

Gate duration (pus)
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Published: Phys. Rev. A91, 012337 (2015) %S;E
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Quantum Control of Ensembles ) e,

Symmetrically couple ensemble of atoms
localized with Rydberg blockade radius

For n atoms Control

H = Z[ e (9010) (1 4+ O {0) "+ S (1)l + 1 1D + Al |<“>] A UNM

Faa 3 )] ) ] @ coult
21 ul
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A 5-atom “Cat State”

Example
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Summary 7
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* We have demonstrated an effective ground-state interaction of J/h ~ 1 MHz via the
Rydberg dressing technique

* Possible uses include many-body physics, quantum simulation/computation, and
metrology.

* We experimentally show neutral atom entanglement with a fidelity of > 81 + 2%

* With two-atom survival probability is about 74 % and about 10 s data rate, we
produce 6 entangled pairs per second

* Multi-atom entanglement can be achieved based on a similar approach

* Universal quantum gate control can be realized with individual addressing of the
trap atoms

* The parity quantity is immediately useful for enhanced metrology

* We are investigating atom interferometry with cat states and N > 2
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