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Compressed Sensing and Reconstruction of Unstructured Mesh
Datasets

Nathan Fabian, David M. Hensinger, Jeremy A. Templeton and Maher Salloum

Abstract— Exascale computing promises quantities of data too large to efficiently store and transfer across networks in order to
be able to analyze and visualize the results. We investigate Compressive Sensing (CS) as a way to reduce the size of the data
substantially as it is being stored. CS works by sampling the data on the computational cluster within an alternative function space
such as wavelet bases, and then reconstructing back to the original space on visualization platforms. While much work has gone into
exploring CS on structured data sets, such as image data, we investigate its usefulness for unstructured data sets and point clouds
as we find in many finite element simulations. We sample using second generation wavelets (SGW) and reconstruct by Stagewise
Orthogonal Matching Pursuit (StOMP). We analyze the compression ratios achievable and quality of reconstructed results at each

compression rate.

Index Terms—wavelets, compression, compressive sensing, second generation wavelets

1 INTRODUCTION

Large-scale computing platforms are challenged by the growing sizes
of computational datasets generated by the simulations. The datasets
are expected to be too large to be efficiently stored and transferred
across networks to analysis and visualization workstations, thus im-
peding data exploration and knowledge discovery. Several in-situ data
compression schemes are available to reduce the size of simulation
datasets. The compressed version of the dataset is transferred to any
workstation and reconstructed by a scientist for analysis and visualiza-
tion purposes.

A suitable compression scheme is one that has a small impact on
the running simulation. In other words, the code should not be signif-
icantly altered and the overhead cost should be very low. We propose
compressive sensing (CS) as such method to compress and reconstruct
datasets. Starting from the hypothesis that scientific data has low in-
formation density, CS is known to be fast and will provide a high spa-
tial compression ratio. CS is data agnostic i.e. it does not require
any knowledge of the simulation data type and the features contained
therein, as is the case in wavelet compression. Therefore, it does not
require the selection of a basis type and order during the compression
in-situ. The wavelets bases are selected and computed during the post-
processing stage allowing interactive reconstruction and visualization
according to the required accuracy and quality. Finally, CS is non-
intrusive which means that its implementation does not significantly
alter the simulation code.

Conventional CS theory, developed for image compression, is based
on the representation of lattice data using first generation wavelets.
There is currently no literature on the applicability of compressed
sensing on point-cloud data. We will extend the theory to encompass
second generation wavelets (SGW) that can be described on point-
clouds e.g. an unstructured mesh. To our knowledge, this extension of
CS to point-cloud data has not been explored yet. It will require de-
signing random matrices that are incoherent with SGW and establish-
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ing the restricted isometry required for unique inflation of compressed
samples.

1.1 Literature Review

In situ reduction of large computational datasets has recently been the
subject of different research efforts. In the ISABELA project [10], the
dataset is sorted as a vector and encoded with B-splines while com-
puting the resulting associated errors. DIRAQ is a more recent effort
by the same research group [11]. It is a faster parallel in-situ data in-
dexing machinery that enables an efficient query of the original data.
ISABELA and DIRAQ suffer from low compression ratios (~ 4 — 6x)
which might not be sufficient for exascale datasets where 1/O will be a
more critical bottleneck. The zfp project, [12], works by compressing
3D blocks of floating-point field data into a variable-length bitstream.
Compression rates for zfp range between one and two orders of mag-
nitude and is limited to regular grids. However, our CS approach com-
presses unstructured data and is expected to guarantee a range between
one and three orders of magnitude compression.

In situ visualization [19] and feature extraction [15] are also on-
going research efforts that use combustion simulation datasets from
Sandia’s S3D simulator. Selected simulation outputs are analyzed and
visualized in-situ and the resulting processed dataset is several orders
of magnitude smaller than the original one. Data analysis occurs at
separate computational nodes incurring a significant overhead. More-
over, such in-situ techniques require pre-selected outputs and cannot
be used interactively since most clusters are operated in batch mode.
Similar techniques have been implemented in the Paraview coprocess-
ing library [7].

Sampling techniques are also employed in-situ for data reduction.
Woodring et al. [18] devised such approach for a large-scale particle
cosmological simulation. The major feature in this work is the low
cost of the offline data reconstruction and visualization. However, the
compression ratios are low and require skipping levels in the simula-
tion data. Sublinear sampling algorithms are also proposed for data
reduction [3]. Their success has been proven in the analysis of station-
ary graphs. They are an ongoing effort at Sandia National Labs (SNL)
to transfer sublinear sampling theory into practice with focus on large
combustion datasets.

2 MATHEMATICAL BACKGROUND
2.1 Compressive Sensing

Compressive Sensing (CS) [5] was first proposed for image compres-
sion based on the premise that most fields on lattices (images) can
be sparsely represented using first generation wavelets viz., a N-pixel
image can be well-approximated with K judiciously chosen wavelets,
K < N. The non-zero wavelets i.e., the sparsity pattern, are unknown



a priori. Compressive samples are obtained by projecting the image
on random vectors [17],

y=of, e))

where, y € R are the compressed samples, f € RV is the field we are
sampling, and ® € RM*V is the sampling matrix. Theoretically, only
C-K- logz(%) samples are necessary for reconstruction [5].

In practice, reconstruction is posed as a linear inverse problem for
the wavelet coefficients, conditioned on compressive samples, s € RV,
defined as,

f="s, €3

with W the wavelet basis matrix. Then the inverse problem is stated
as,

y = PW¥s = As, 3)

and we must find s from samples y. Regularization is provided by a
Ly norm of the wavelet coefficients, which also enforces sparsity. The
scalability of the inverse problem solvers (called shrinkage regression)
has only been recently addressed [4]. The random vectors in & are de-
signed to be incoherent with the chosen wavelets. Incoherence ensures
that the amount of wavelets information carried by the compressive
samples is high. Different types of sampling matrices & can be used
to perform the compression [17] (see Eq. 1). In our work, we use the
Bernoulli matrix due to its superior incoherence properties with most
basis sets V.

Compression can be cast mathematically as the sparse sampling of
the dataset in transform domains. Reconstruction takes place by solv-
ing a linear inverse problem with the samples obtained by compres-
sion.

2.2 Second Generation Wavelets

Wavelets can represent a basis set that can be linearly combined to rep-
resent multiresolution functions. Wavelets have compact support and
encode all the scales in the data () as well as their location (k) in space.
There are two types of wavelets: First generation wavelets (FGW) and
second generation wavelets (SGW), [9, 16]. To date, all CS work of
which we are aware is based on first generation wavelets which only
accommodate data defined on regular grids. FGWs are characterized
by scaling functions ¢ (x) to perform approximations and y/(x) to find
the details in a function f [14]. These are defined at all levels j in the
hierarchy and span all locations & in the regular grid. They are com-
puted in terms of the so-called mother wavelet ¢y which provides the
approximation at the largest level j = 0. At each level j, the scaling
and detail functions are defined as,

0j(x) =Y a1 (2x—k), 0))
keZ
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keZ

where a; and b, are constrained to maintain orthogonality. Each
new basis function models a finer resolution detail in the space be-
ing spanned. Thus functions with limited polynomial degree can be
approximated in the basis up to a fixed level of detail.

In this work, we examine compression on unstructured data or point
clouds which are defined over some regions of the space and are
not well represented by FGWs. For these unstructured data we use
what Alpert et al., [1,2] refer to as multi-wavelets, or SGWs. The
difference is that in place of one scaling function, there are several,
¢o0,j,**+,0n—1,; defined over non-overlapping regions of the space.
In addition, the functions themselves are defined by a discrete set of
points, x, as opposed to a continuous representation. The discrete
Alpert wavelets are polynomials, they are quick to compute and are
represented in the matrix, V.

2.3 Reconstruction

Much of the work in CS is handled by the reconstruction phase which
uses wavelet basis to reconstruct the data set from the compressed
samples. Here we use a greedy algorithm, Stagewise Orthogonal
Matching Pursuit (StOMP) [6], that has been empirically demon-
strated to be very efficient.

The reconstruction process can be described as follows. We have
an underdetermined linear system,

y =As, (6)

given y and the matrix product A = &YW, where & is our sampling ma-
trix and ¥ is the wavelet basis matrix as discussed in Section 2.1. We
need to find s. If @ and W exhibit low mutual coherence and s is sparse
in ¥ i.e. has few non-zero elements, then StOMP can efficiently pro-
vide a solution. StOMP finds the nonzero elements of s through a se-
ries of increasingly correct estimates. Starting with an initial estimate
so = 0 and an initial residual rg =y, the algorithm maintains estimates
of the location of the nonzero elements of s.
StOMP finds residual correlations,

ch = ATr,Z,l7 @)
and uses these to find a new set of nonzero entries,
Jn={j:len(J)| > taCn}. (8)

where o, assumes a Gaussian noise on each entry and ¢, is a threshold
parameter we provide. Elements above the threshold are considered
nonzero entries and added to the set J,,. The new set of entries J, are
added to the current estimate of nonzero entries I, = I, UJ,, and
used to give a new approximation of s, and residual r,,,

(sa)1, = (AL A1) 'ALy, ©)

and,
rn=y—Asy. (10)

3 IMPLEMENTATION

In order to test the procedure, we have built a processing pipeline that
both samples and reconstructs data from a dataset. It allows us to
experiment with existing data sets and assess reconstruction quality.
In the final implementation, the library will be split into two pieces.
The in-situ piece consists of a small sampling codebase. It stores the
samples, mesh points and connectivity, and the seed used to gener-
ate the Bernoulli sampling matrix . During the in-situ processing
the sampling matrix is not constructed explicity, but used implicitly to
generate the sampled data. No wavelet computation is required at this
stage.

The reconstruction side is responsible for rebuilding the sampling
matrix and constructing the wavelet matrix from the mesh data. By
providing those matrices to StOMP, we are able to reconstruct the
wavelet sampled data, s in Figure 1, and then inverse transform s to
reconstruct the original data.

We have implemented the reconstruction procedure in two ways,
once entirely in Matlab in order to experiment and produce some of the
results shown below, and a more production-oriented version written
using the Trilinos sparse linear algebra library [8] and ParaView for
visualization [13].

4 RESULTS

In this section we discuss the compression capability and reconstruc-
tion quality of our method. We also describe some aspects of its prac-
tical implementation. We consider two types of data defined on un-
structured meshes. The first type are “toy problems” where we as-
sume mathematical functions defined on an irregular two-dimensional
geometry. These datasets are small, we can compress and recon-
struct them on one processor. The second type are larger datasets ob-
tained from simulations. In this case we consider unstructured three-
dimensional meshes distributed among many processors.
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Fig. 1. A schematic showing the major steps during the in-situ data
compression using CS (l) and the offline reconstruction and visualiza-
tion of the original dataset (Il) using Paraview. The random seed, the
mesh and the compressed samples y are transferred to the visualiza-
tion platform where the reconstruction of x takes place.

4.1 Two-dimensional datasets

We consider a square geometry with randomly chosen holes such that
it constitutes an irregular geometry. We discretize it using a triangular
mesh consisting of N = 33,067 nodes. We assume two functions f
and g given in Eqs. 11 and 12 as the datasets represented on the ob-
tained mesh. We choose these functions such that f exhibits multiple
oscillations and reveals more features than g. The motivations behind
this choice is that we would like to explore the effect of data features
on the number of samples y required during compressed sensing, that
are necessary to accurately reconstruct the original dataset.

f = 48sin(87x)sin(7wy)sin(67x)
g = 12sin(27mx) [4sin(27x) — 4sin(27y)]

an
12)

We compress f € RY and g € RY using a random Bernoulli matrix
® € RM*N a5 described in Section 2.1. We select an Alpert wavelet
basis and reconstruct f using the StOMP algorithm described in Sec-
tion 2.3. Both compression and reconstruction are performed in a se-
rial run. We denote the reconstructed fields by f” and g”, respectively.
They are plotted in Figure 2 which shows that the original and recon-
structed datasets are visually identical. The function f that reveals
many features; a minimum compression ratio of R = 10 was required
for its accurate reconstruction. However, g affords a higher compres-
sion ratio R = 30 since it has fewer features which incur more data
redundancy. This result indicates the possibility to predict the com-
pression ratio in terms of the global gradient. This latter increases with
the number of features in a given dataset. Such prediction of the com-
pression ratio is extremely important in-situ since the compressibility
of the datasets is unknown a priori.

In order to obtain a quantitative description of the reconstruction
accuracy, we evaluate the global L, norm of difference between the
original and reconstructed versions. Figure 3 shows this error for f and
g as a function of the wavelet order for different compression ratios.
As expected, the error is lower for low compression ratios. We notice
that there exists a minimum compression ratio required to obtain a
low reconstruction error i.e. a correct reconstruction. For example, the
compression ratio should be smaller than 30 for the dataset g. This is
consistent with the Donoho chart [6] which depicts a discontinuity in
the compression ratio range that guarantees an accurate reconstruction.

The error decreases with the wavelets order w. The decreasing trend
is reversed at larger values of w. This is mainly attributed to the over-
fitting of the function f by the high order Alpert polynomial wavelets.
It is therefore preferred to choose lower orders. According to the plots
in Figure 3, w = 5 is an optimum value for the wavelet order that min-
imizes the reconstruction error and prevents over-fitting of the given
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Fig. 2. Plots showing (left column) smooth datasets represented on

a complex geometry and an unstructured mesh of 33,067 nodes, and
(right column) their reconstructed version from compressed samples.
The top and bottom rows denote two different datasets given by Eqgs. 11
and 12, respectively. The compression ratios are R = 10 and R = 30 for
f and g, respectively. The bases for reconstruction are Alpert wavelets
with an order w =5.

function in the dataset.
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Fig. 3. Plots showing the normalized L, error between the original
and reconstructed datasets f” (left) and g" (right) plotted in Figure 2
as a function of the wavelet order for different compression ratios, as
indicated.

The results presented so far are reported at the full wavelets detail
level. We turn our attention now to the effect of the detail level on
the reconstructed function quality. Such analysis is useful for datasets
that exhibit multiple features. By construction, wavelets are able to
represent all scales in a function as described in Section 2.2. A scale
j reveals a level of detail in the function. In FGWs, the number of
the detail levels is equal to logy(N). In SGWs, this number, jmax, is
computed by recursively splitting the mesh into different groups [9]. In
this work, we perform orthogonal splits along each axis which results
in jmax = 11 for w =5 for the mesh representing f. The wavelet matrix
¥ is computed as the product of different detail level sparse matrices
Y¥; [2, 1] following:

J=Jmax

v=J] ¥,
j=1

WY can be computed at any 1 < j < jpax and used to perform a
StOMP reconstruction. The sparsity of ¥ decreases with j to encode

13)
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Fig. 4. Plots showing (left) the normalized L, error and (right) the time
taken in a serial run to perform the reconstruction of the dataset, as a
function of the wavelet detail level j for w = 5. These results are reported
using with and without the CLOD approach, as indicated.

more details. Figure 5 shows the reconstructed function f” at different
detail levels j. By scanning the figure, we notice how the fine details in
the function are revealed. Changes between functions reconstructed at
two consecutive detail levels decrease with j, indicating convergence.
At j = 6, the function is visually identical to the original f in Figure 2.
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Fig. 5. Plots showing the dataset in Figure 2 reconstructed at differ-

ent wavelet detail levels j, as indicated. Results are generated from
samples compressed with R = 10 that are reconstructed with an Alpert
wavelet basis of order w = 5.

For each detail level, we consider two reconstruction approaches.
In the first approach, the initial guess of the StOMP reconstruction is
the same and assumes wavelet modes equal zero. In the second ap-
proach, an initial guess at a detail level j is obtained from the solution
at level j — 1. Thus, we call this approach a continuous level of detail
(CLOD) reconstruction. Figure 4 (left) shows the reconstruction error
of the dataset f as a function of the wavelet detail level. For both ap-
proaches, the error decreases with the detail level, as expected. How-
ever, the CLOD approach results in an error about three times lower at
the finest details. This is due to the accumulation of knowledge in the
reconstructed f” with consecutive detail levels. Figure 4 (right) shows
the reconstruction time required at each level. Using CLOD, the rela-
tive time taken between two consecutive levels decreases with j due to
updated initial guess; it results in a decreased number of StOMP iter-
ations. However, the cumulative time is substantially higher than the
case without CLOD. The additional time required by CLOD to reach
a smaller reconstruction error can be alleviated by skipping the recon-
struction at some levels e.g. performing the CLOD reconstruction at
the odd numbers levels.

4.2 Three-dimensional distributed datasets

In this section, we consider a larger dataset represented on a three-
dimensional tetrahedral mesh with 396,264 points. The data is the
temperature field obtained by a transient heat conduction simulation.
The cylindrical geometry constitutes several sub-domains of different
solid materials. The sub-domains sizes, heat conductivity and heat
generations rates are chosen in a random fashion which results in a het-
erogeneous temperature distribution. Initially, the temperature is uni-
form across the domain, after which, it evolves to a steady state. The
simulation is performed in parallel on 16 processors and the datasets is
split equally among the processors ( 24,766 point per processor). The
compression is performed locally on each processor i.e. the matrix-
vector product in Eq. 1 was performed serially on each processor with
no communications with other processors. Doing so preserves an ef-
ficient in-situ compression, and a faster and memory-efficient StOMP
reconstruction on the visualization workstation. The whole dataset can
be recovered by assembling the different reconstructed portions. Fig-
ure 6 shows the original and reconstructed versions of the steady state
temperature fields for different portions of the dataset. For a compres-
sion ratio R = 10, the reconstructed and original datasets are in a visual
agreement.
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Fig. 6. Plots showing the steady state temperature distributions in dif-
ferent portions of the three-dimensional (top) original and (bottom) re-
constructed dataset 7. Results are reported from a parallel simulation
on 16 processors where compression is performed locally with a ratio
R = 10. The vertical panels correspond to almost equal portions of the
full dataset as distributed among different processors, as indicated. The
reconstruction is performed using StOMP for a wavelet order w =5 at
full detail.

Finally, we report in Figure 7 (left) the evolution of the reconstruc-
tion error as a function of time for a constant compression ratio. The
error is initially large since at earlier times, large gradients exist in the
dataset initialized at uniform temperature. As heat diffuses in the do-
main, the temperature field becomes smoother and better represented
by the wavelet bases. It leads to a smaller reconstruction error. Overall,
the error decreases with larger wavelet orders as expected. We notice
a saturation in the error and even a slightly increased error for higher
orders mainly at early times. Similarly to the test cases in Section 4.1,
this is due by the over-fitting of the high gradients in the temperature
field by the higher order Alpert wavelets. These results suggest that
local large gradients form discontinuities and contribute to the overall
reconstruction error. Therefore, when predicting the compression ratio
in-situ, the local gradients have to be accounted for along the global
gradient discussed in Section 4.1.

5 CONCLUSION

In this paper we have demonstrated an application of compressive
sensing to unstructured mesh data. We used second generation
wavelets to efficiently represent the irregularities present in the spa-
tial geometries and meshes. We are able to achieve lossy compression
ratios of between 10 and 30 on field defined on these meshes, depend-
ing on the oscillations and features present in the data. The visual
deterioration as a result of the lossy compression at those rates is min-
imal. Large gradients and discontinuities in the data also contribute in
assessing the reconstruction quality. We explored continuous level of
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Fig. 7. Plots showing the variation of the reconstruction error in the
dataset T as a function of time. Results are reported from a parallel
simulation on 16 processors where compression is performed locally
with a ratio R = 10. The reconstruction is performed using StOMP at full
detail for different wavelet orders w, as indicated.

detail reconstruction for datasets exhibiting many features and found
that it results in a lower reconstruction error at the expense of an in-
creased computational cost. We continue to explore ways to improve
the algorithms used here in terms of reconstruction time and streaming.
It may also be the case that other wavelet and sampling matrix pairs
and reconstruction algorithms will produce better results on some data.
We continue to investigate these as well.
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