

Characterizing Switching Variability in TaO_x Resistive Memories

**D. R. Hughart, P. R. Mickel, R. T. Apodaca,
G. S. Haase, F. El Gabaly, A. A. Talin,
C. D. James, and M. J. Marinella**

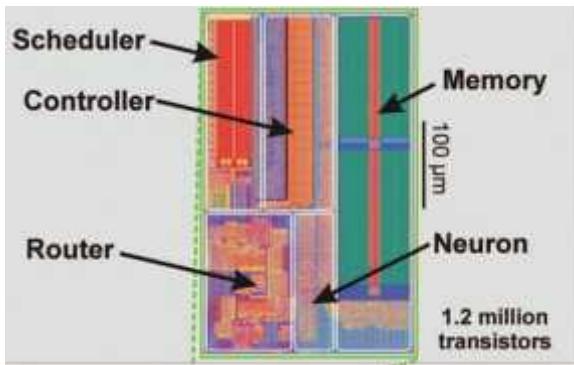
Sandia National Labs

Neural-inspired Computing Hardware

Mark I Perceptron (Rosenblatt 1960):

Arvin Calspan Advanced Technology Center; Hecht-Nielsen, R. *Neurocomputing* (Reading, Mass.: Addison-Wesley, 1990); Cornell Library;

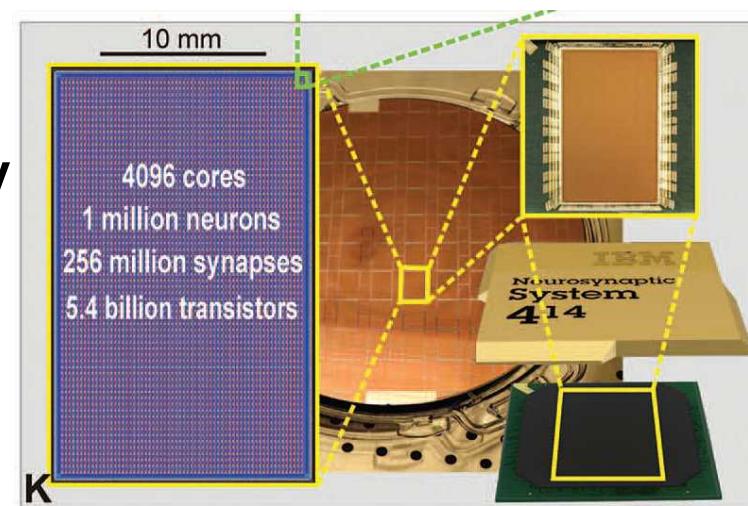
DARPA , IBM TrueNorth (2014):



EU HBP, SpiNNaker (2014):

Current State of the Art in Neural Algorithm Computing

- CPU/GPU
 - Most general; common programming languages
 - Lowest power efficiency and performance
 - Memory separate from chip
 - Example: Google deep learning study (CPU→GPU)
- FPGA
 - General; requires hardware design language
 - Moderate performance and efficiency
- Custom IC (Truenorth, Spinnaker)
 - Specific: ex. executes STDP
 - Highest performance and efficiency
 - Expensive, 40MB local memory
 - Example: IBM Truenorth
- Moore law has provided enormous benefits to all of these technologies



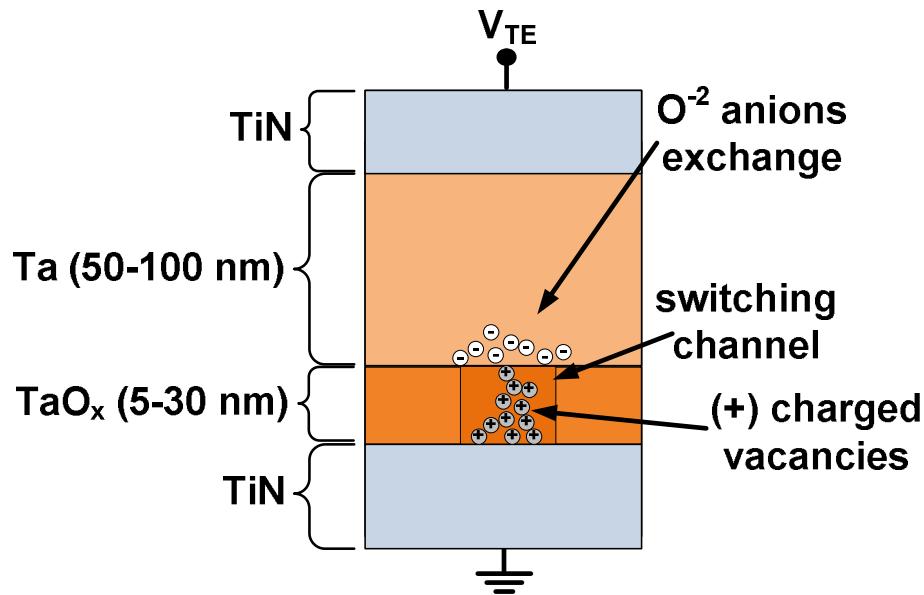
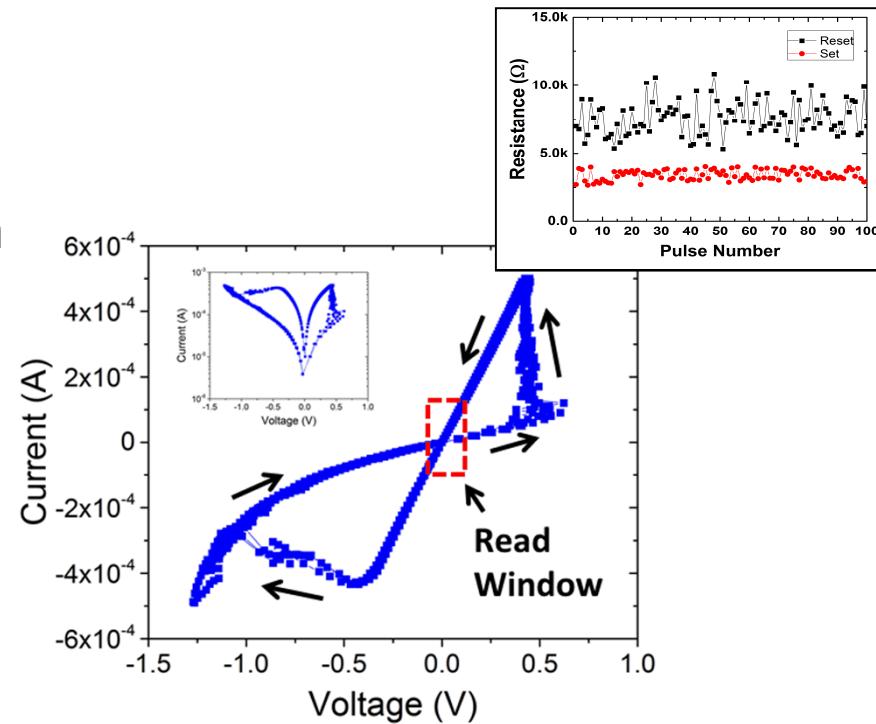
Why Do We Need an HW Accelerator?

- **Problem: perceptron network training slow and extremely computationally intensive**
- Use simulation results for similar algorithm as example
- Significant power savings using a memristor-based HW accelerator :
- **16x reduction in power over SRAM ASIC**
- **6x reduction in chip area over SRAM ASIC**
 - **Equivalent to 6x improvement in performance/area**

Configuration	Example 1: 25,600 neurons 100,000 iterations/s					Power eff. over Xeon
	# of chips	Chip area (mm ²)	% active	Power (W)		
Memristor Analog (config 4)	1	5.9	38.6%	0.07	234,859	
Memristor Digital (config 5)	1	18.2	89.6%	0.62	16,968	
SRAM (config 6)	1	29.1	89.6%	1.13	8,215	
NVIDIA M2070	12	529.0	99.2%	2700.00	6	
Intel Xeon X5650	179	240.0	99.9%	17005.00	1	

Memristor I-V Characteristics

- Resistive RAM stores state in the form of resistance
- Applied current and voltage can change resistance state
 - Hysteresis loop
- Low voltages can read state
 - Read window

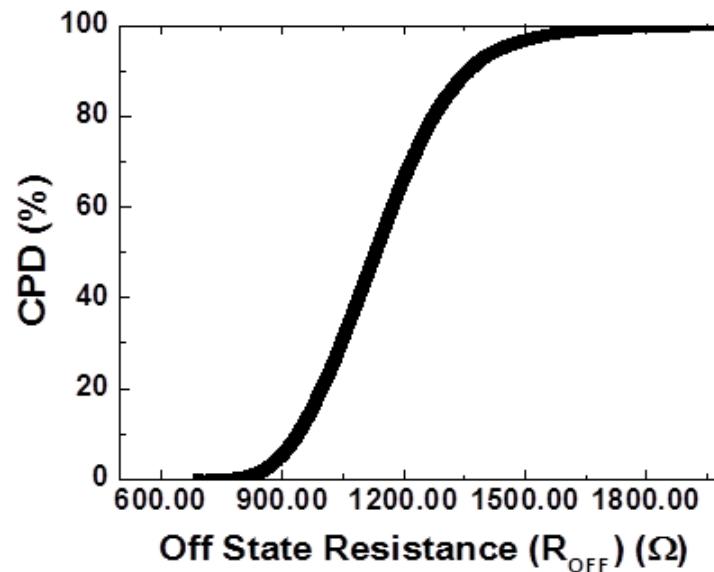
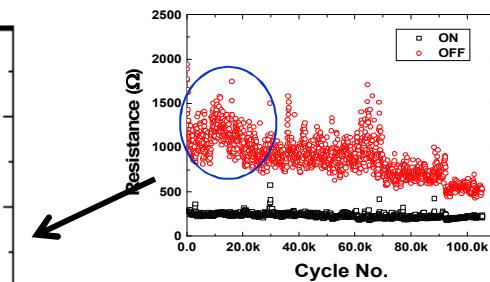


- Resistive switching
 - Oxygen vacancies
- TaO_x
 - Oxygen anions

Variability and Noise

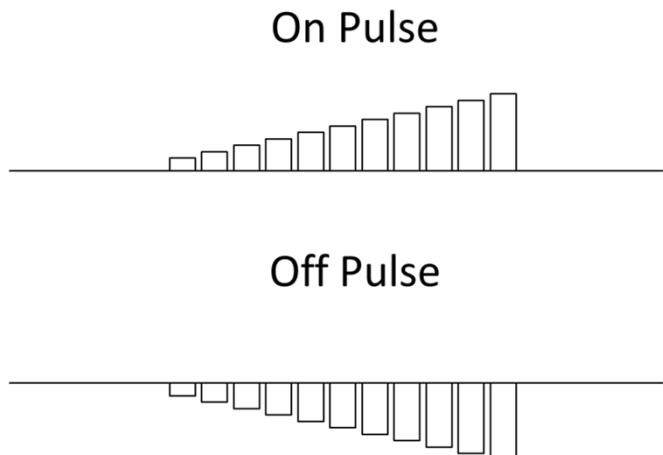
- **Interdevice variability:** device to device, can be $>10x$
 - Variations in film thickness, topography
- **Intradevice variability:** cycle to cycle, can be $>2x$
 - Fundamental physical attributes
- **Random telegraph noise:**
 - Affects read current

- Characterizing cycle to cycle variability is essential for future neuromorphic applications



Testing Algorithms

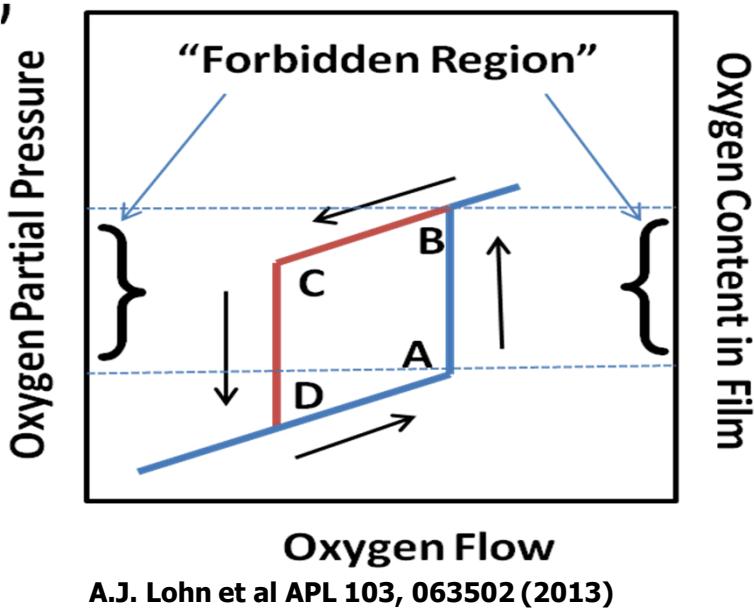
- An automated test algorithm has been developed to form, reset, and cycle devices with gradually increasing pulse heights
- The algorithm can be programmed to target specific resistances, stopping once a particular resistance threshold is reached



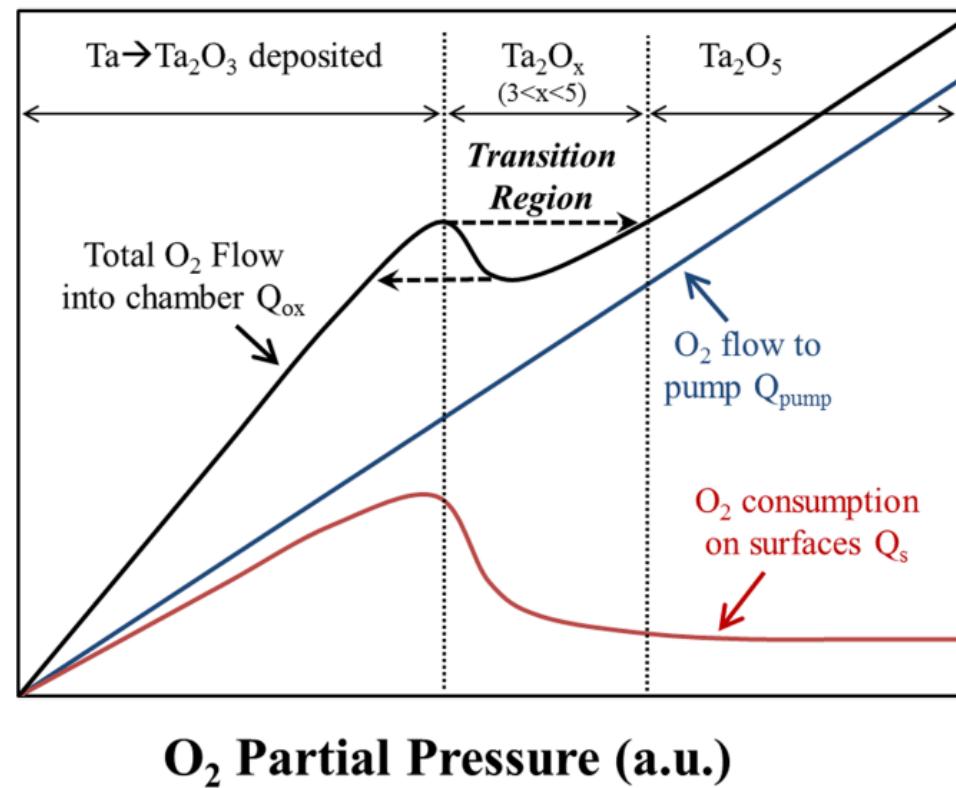
- Evaluate the effects of process changes like thickness and stoichiometry to optimize future devices for the targeted characteristics
 - Multi-state suitability

Switching Film Development: Overcoming the “Forbidden Region”

- One of the parameters that we vary is oxygen content
- **Forbidden oxygen flow-pressure region occurs due to target poisoning**
 - This is the region we need to be in to get ideal ReRAM stoichiometry



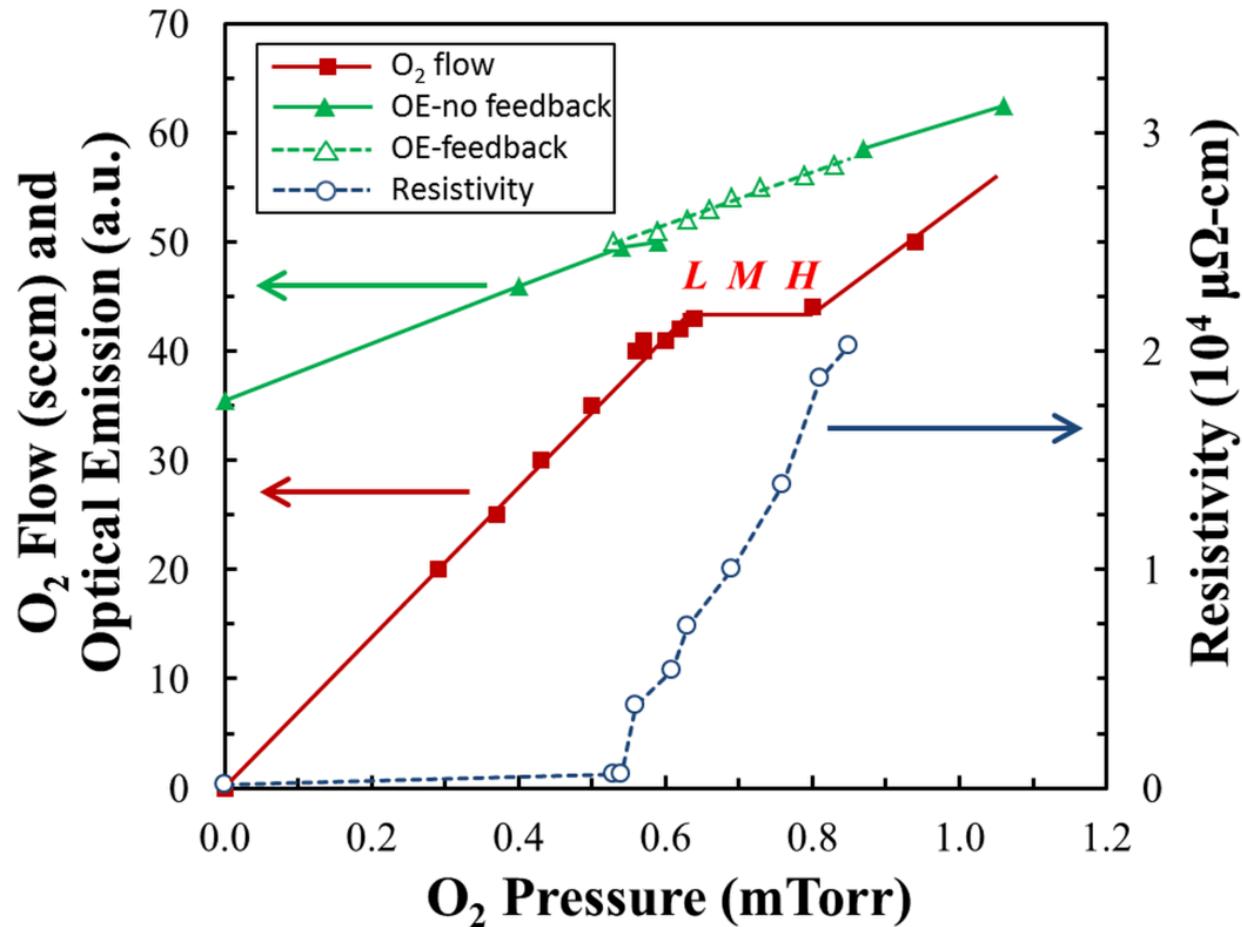
A.J. Lohn et al APL 103, 063502 (2013)



J.E. Stevens et al, J. Vac. Sci. Technol. A 32, 021501 (2014)

Solution: Feedback System

- Penning gauge measures oxygen partial pressure
- Real time feedback to oxygen flow control
- Elimination of Forbidden Region!



J.E. Stevens et al, J. Vac. Sci. Technol. A 32, 021501 (2014)

Effect on Device Behavior

Fraction of “forbidden region”	Partial pressure set #1	x: Ta_2O_x set #1	Yield (%)	Endurance	Partial pressure set #2	X: Ta_2O_x set #2
0	50.0	1.9 + 0.5	20	~3 cycles	43.0	2.1 + 0.5
1/3	52.5	3.3 + 0.5	80	>10 ⁴ cycles	44.6	3.5 + 0.5
2/3	55.0	4.2 + 0.5	0	...	46.2	4.0 + 0.5
1	57.5	4.6 + 0.5	0	...	48.0	4.4 + 0.5
4/3	60.0	5.0 + 0.5	0	...	49.5	5.0 + 0.5

A.J. Lohn et al APL 103, 063502 (2013)

- Thickness and stoichiometry splits tested for multi-level suitability
- Another lot had a range of partial pressures that spanned from 50% to 100% of the forbidden region and a thickness of 8 nm
 - No multi-level switching seen
- Another lot had a range of oxygen-flow that spanned from 60% to 150% of the forbidden region and thicknesses of 5, 8, and 11 nm
 - Only the 11 nm samples showed multi-level switching
 - May be due to higher resistance ranges

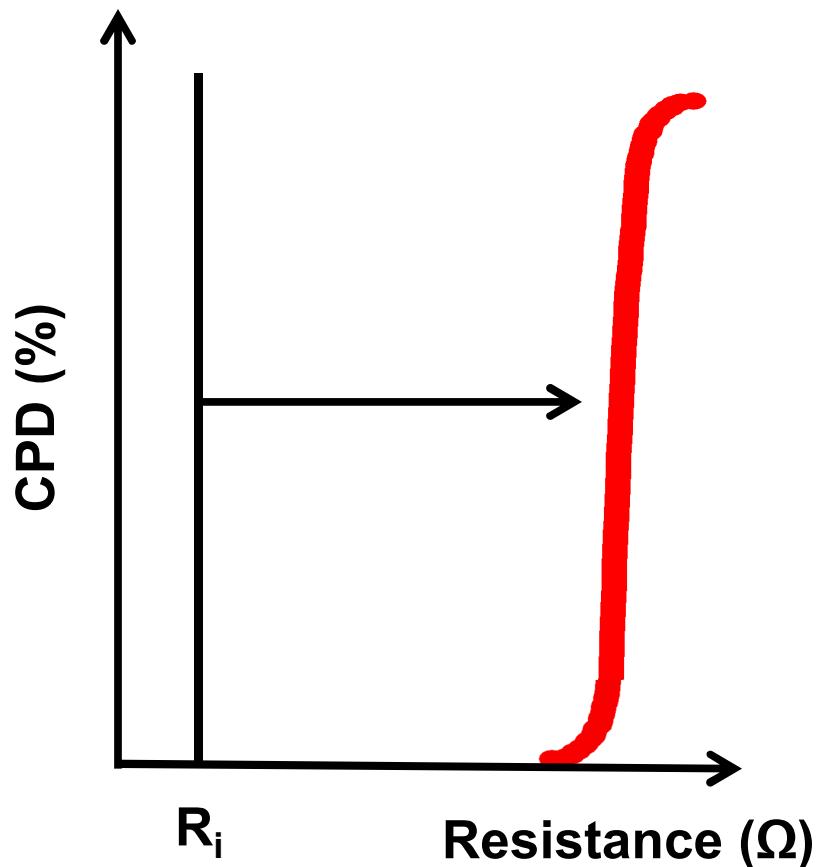
Modeling Variation

- Characterizing cycle to cycle variation can inform models to help predict whether the variation present will be tolerable by neuromorphic algorithms

- Analytical model

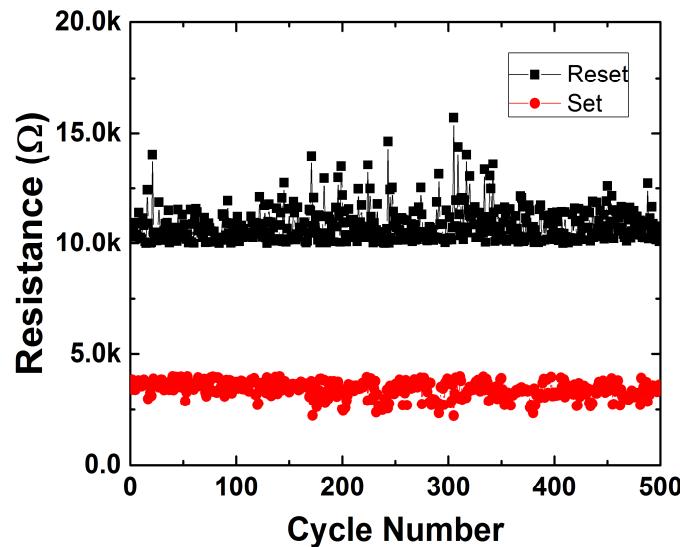
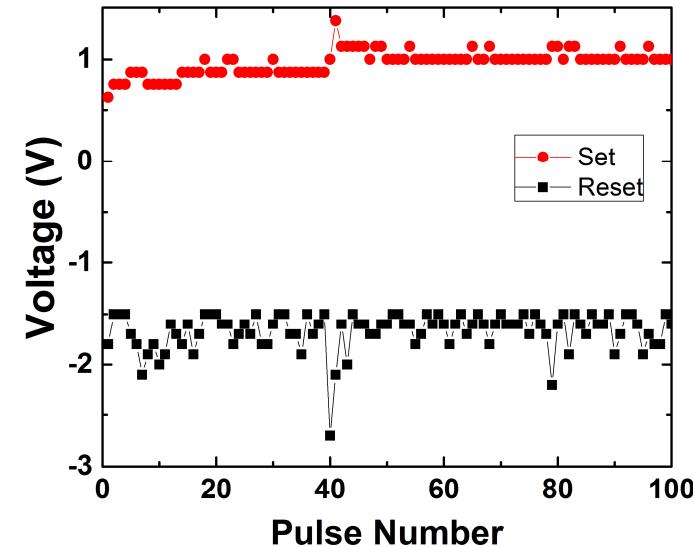
$$R_{\text{final}}(V,t) = R_i + R_{\text{avg}}(V,t) \pm R_{\sigma}(V,t)$$

- Feedback helps to achieve a more consistent R_i



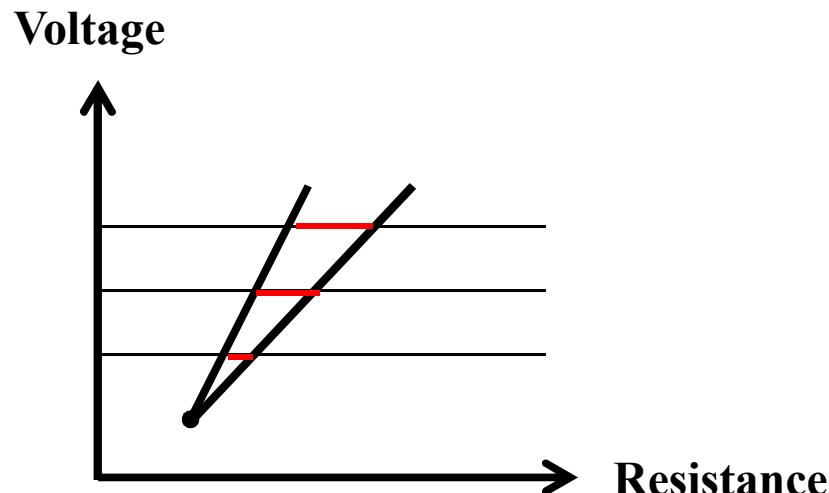
Programming Resistance with Feedback

- Initial tests are run with feedback designed to target specific resistances
 - Useful when characterizing a specific transition
- Voltages are recorded when the resistance threshold is reached
 - Can be used to determine programming pulses for operation without feedback



Switching Variation for Multiple States

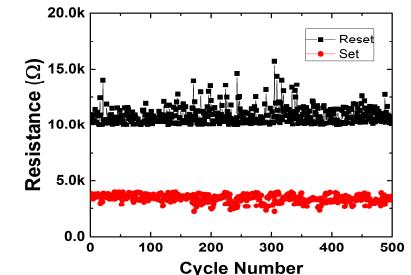
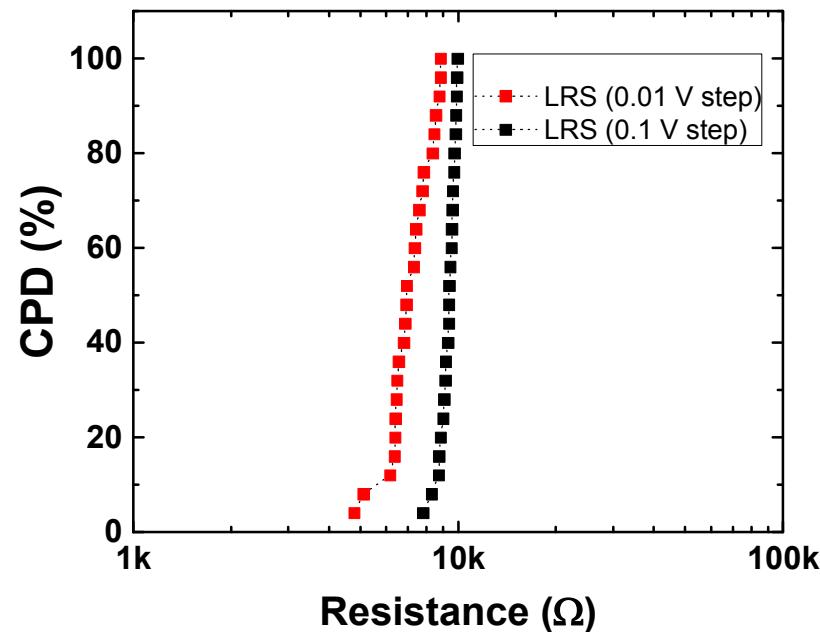
- One concern is how the variation changes when switching between multiple potential states
 - Does it vary based on the magnitude of the switch?



- To investigate, devices were programmed to a specific on-state resistance and programmed with a single reset pulse to multiple levels

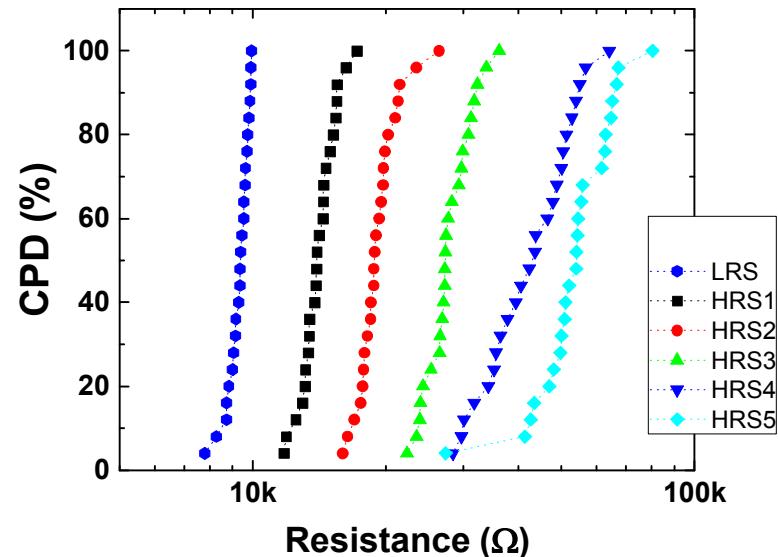
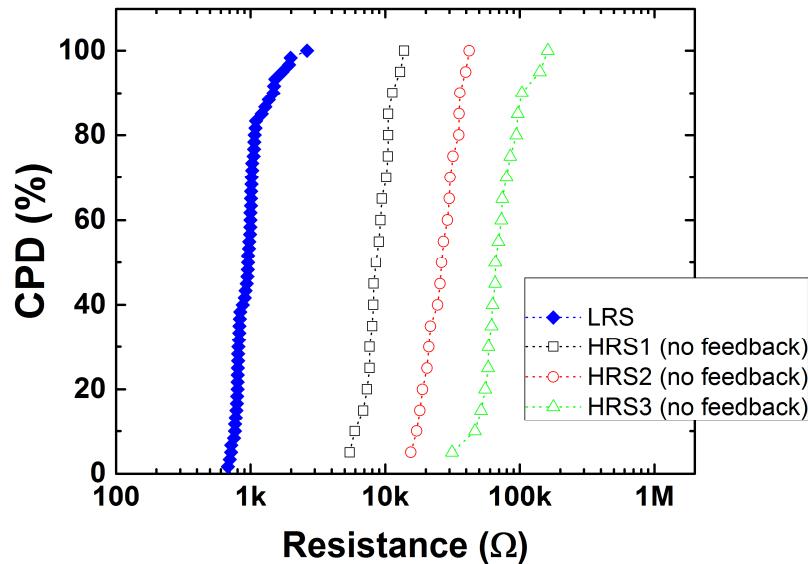
Voltage Step Size

- The voltage step size used to program the on-state for the results in this talk was 0.1 V
- A finer step size was tested to see if the resistance distribution would be better
- The larger step size actually showed a larger distribution
 - Device quality likely a larger factor in this regime than voltage step size



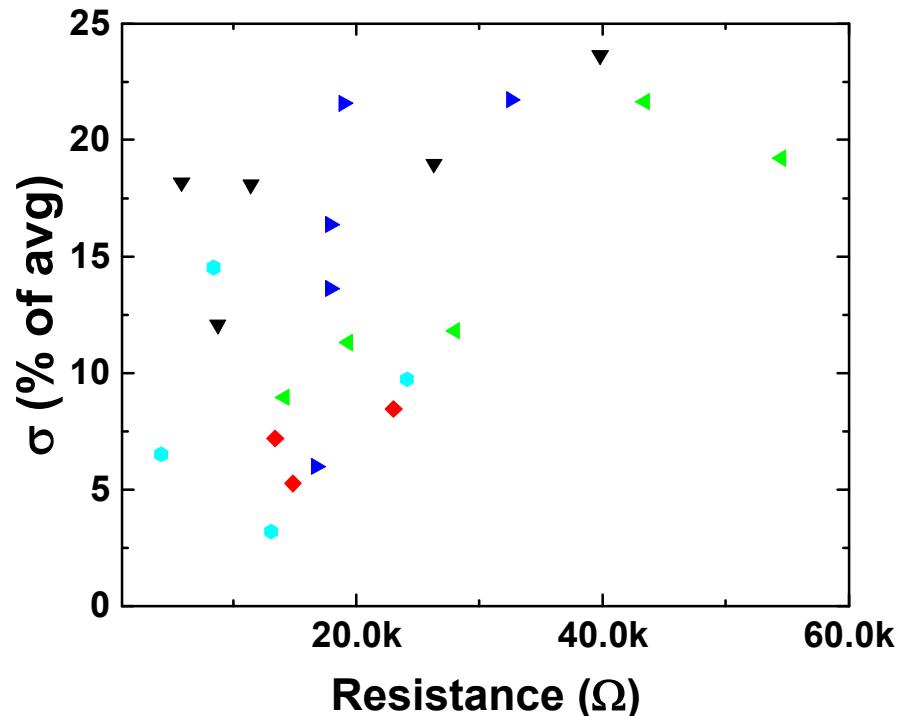
Multi-State Operation

- Devices were cycled with feedback to get the initial reset voltage, which was increased by -0.25 V for each test
- Targeted resistances for all levels also possible
- Future tests will continue to investigate devices with different combinations of thickness and oxygen content to optimize multi-level switching



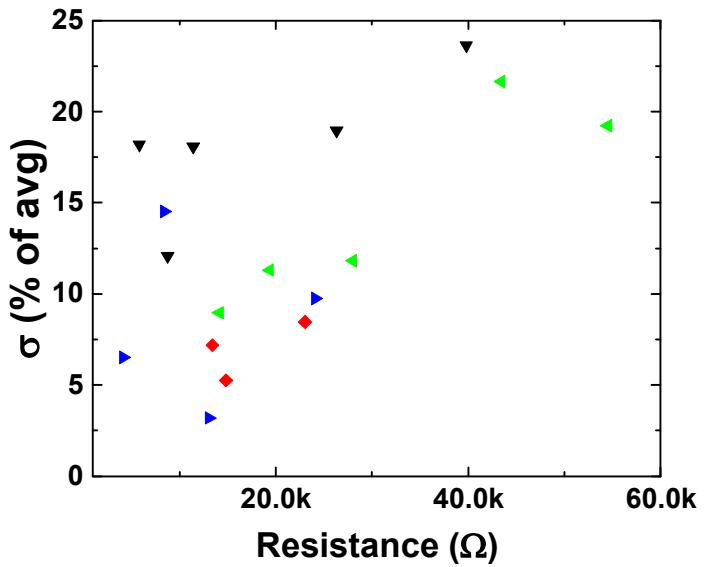
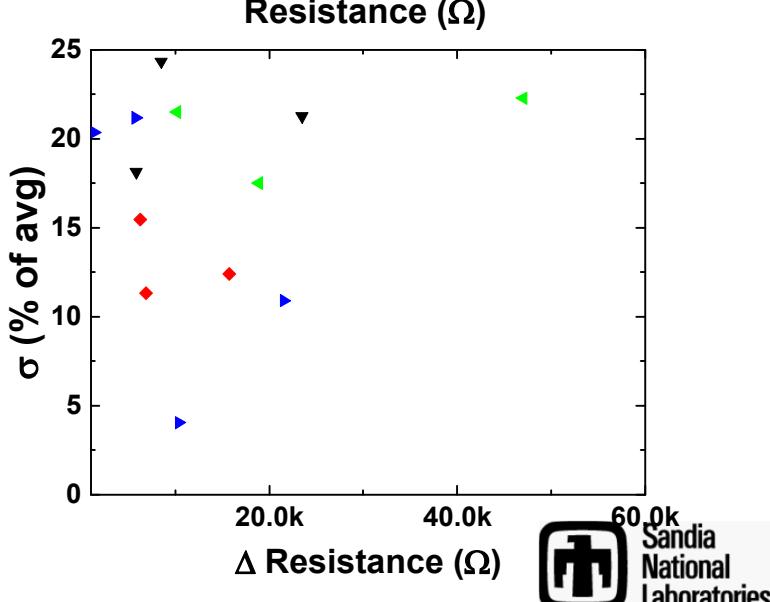
Variability at Different Resistances

- The standard deviation as a percentage of the average resistance has been plotted at various resistances
- Initial data suggests that the variability in switching increases as the resistance increases
 - Fewer critical defects?
 - It may be easier to create more discrete states at lower resistances



Variability at Different Resistances

- The standard deviation as a percentage of the average resistance increases with increasing resistance
 - Not with magnitude of resistance change
- Initial data suggests that the variability in switching increases as the resistance increases
 - Fewer critical defects?
 - It may be easier to create more discrete states at lower resistances



Summary

- Feedback algorithms have been used to gather data on cycle to cycle variability
 - Essential for modeling realistic devices for neural algorithms
 - Data collection is ongoing, expanding to include more process variables and programming pulses
- Multiple high resistance states have been demonstrated on TaO_x devices
 - Thicker films show more promise for multi-state operation
 - Higher resistance range will be investigated
 - Multiple methods of multi-state programming
- Cycle to cycle variation tends to increase at higher off-state resistances
 - The number of discrete states may increase when targeting lower resistances