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Electricity use (billion kWh/year)

Data Center Electricity Usage
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In 2010, data centers accounted for
~1.3% of all electricity use worldwide,
~2% of all electricity use in the U.S.

Google's new data center in Hamina, Finland, has an energy-efficient cooling system that uses seawater from a nearby bay

J. Koomey, Growth in Data center electricity use 2005 to 2010 (Analytics Press, Oakland, CA), 2011




Power Usage Rising ) &,

« Power consumption is ocVy4* and V4 (operation voltage)
scaling has slowed.
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What’s Wrong With Current Transistors? @,

Electron

Probability If the barrier is shifted

by k,T, the current only
changes by a factor of e




Need a New, More Sensitive Switch @) &:
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The New Switch has to Satisfy Three g
Specifications

1. Steepness (or sensitivity)
switches with only a few milli-volts
60mV/decade = 1mV/decade

2. On/Off ratio. 106: 1

3. Current Density or Conductance Density
(for miniaturization)
old spec at 1\olt: 1 mAmp/micron
our spec. 1 milli-Siemen/micron
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2 Ways to Obtain Steepness ) .

= Modulate the Tunneling Barrier Thickness

Only steep at
the lowest

current
densities

= Energy Filtering - Density of States Switc

The sub-threshold slope

for tunneling depends
on the steepness of
the band-edges




Barrier Width Modulation Explains all Steep s,
TFET Results and it’s not Good Enough
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2 Ways to Obtain Steepness ) i

= Modulate the Tunneling Barrier Thickness

‘ or- eep at
the lowest
___________ \ N\ current
__ — e, densities
//’ -
. &Tgy Filtering Density of States Switc o,

The sub-threshold slope

for tunneling depends
on the steepness of
the band-edges
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Band Tails Prevent a Steep Swing ~ ®&=.

There are states below the
band edge that prevent the
junction from turning off

hd

=




Sandia

Switching Principle: ) S
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Switching Principle: ) S
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A problem arises from states where they ) e,

should not be:

Laboratories

Conduction
band
N\N—@
Valence
band Thermal excitation is the rate limiting
step in some devices




Interface Traps are Disastrous .

» Desired: Band-to-Band Tunneling —
Quantum Density of States ~10%%/cm? eV

» Undesired: Tunneling into gate insulator States
D~ 101 /cm? eV

» Interface state density might have to be lowered < 108/cm?eV as

one of many pre-requisites to get a good On/Off ratio. %_w»—o
» This translates also into purity and reproducibility SPYYU m—




Thermally Activated Tunneling ) .
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Thermally Activated Tunneling 1) ..

Gate
InGaAs | D D I
| \ ]
: + InAs :
Tunneling . .
Source '

I 77K
' SS=22 mV/dec
RT: -
SS=97 mV/dec |

100

g 4 40 05 00 05 10
S ~ v
g®) 8 60 -
% % 40+
g % Guangle Zhou, et all, IEEE EDL 2012
B S 20)
-
p) 0 F F _
0 100 200 300

Temperature (K)



Thermally Activated Tunneling 1) ..
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Use Optical Absorption Measurements to
Measure the Band Edge Density of States
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Optical Absorption Slope Gets
Worse With Doping

e GaAs Undoped
g@m i . ~ 17 mV/decade
% § 00 .
£ % 40 + o 0L, Heavily Doped
27 01 o = oo e ~ 60 mV/decade
Z 0, AW ew 200

° 1016 1317 1318 1(519 1320

Doping Level (/cm?3)

The doping induced potential
J. I. Pankove, “Absorption Edge of Impure Gallium Arsenide” VariatiOnS are Screen6d by fl’ee
Physical Review, vol 140 pp A2059-A2065, 1965 . .

carriers. The slope will be far

worse in a depletion region



What’s Going on? ) .,
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Analyze the Diode Conductance to @,
Measure Steepness 10°
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Ing s5Ga, 47AS PIN Diode Characteristics @z
Steeper than TFET!
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SiGe Epi Diodes Steeper at Lower Doping @&z

10°

350
mV/decade

10 :

> ; 200

— 102%_ mV/decade

1:
10: 160
107 | of mV/decade
0.5 0 05 04 02 0 02 04
Voltage (V) Voltage (V)
Thickness
i 92&"11 (A) 5e19/3e20/3e19  n+/p+/p

(B) 1€19/1e20/3e19 n+/p+/p
0.3 um (C) 1€19/1.5e20/1e17 n+/p+/p

p+ SWGEH




GaAs Homojunction Diodes ) .
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From Pawlik et all, “Benchmarking and Improving II1-V Esaki Diode Performance with a Record 2.2
MA/cm2 Peak Current Density to Enhance TFET Drive Current” IEDM 2012, pp. 812-814
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InAs Homojunction Diodes h) e
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How to Eliminate Doping ) i,

Lateral Double Gate TFET

Source

Source




How to Eliminate Doping ) .

Bilayer TFET

e —
Source
Mﬁh




Layered chalcogenides: atomic level e

flatness and new opportunities

Scalable down to a single monolayer (~ 7 Angstroms)
Lack dangling bonds; no native oxide
van der Waals bonding/interfaces — reduced lattice matching constraints

YV V.V V

Uniform thickness at the atomic level — sharp band edges
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An |Ideal Density of States Switch is

Explicitly Affected by Dimensionality:
1d:1d 0d-1d o n

| = P n |




Fermi’s Golden Rule Approach @

=y 4q”\|\/|f,\ S(E, —E,)

oky ke Explicitly include
conservation of
Now include all possible transverse momentum
states
4q7z
| = k kzk \Mf,\ S(E —E( ), x, O x,
The number of Byl
. T Ky ke ok
sums is reduced
for reduced ,
dimensionality h KK,
ey A
m zi —zf
References:
W. A. Harrison, "Tunneling from an independent-particle point of view," Physical Review, vol. 123, pp. 85-89, 1
July 1961.

C. B. Duke, Tunneling in Solids. New York: Academic Press, Inc, 1969.




Confinement in the Tunneling SE
Direction Increases Conductance

Higher energy results in
more tunneling attempts

Smaller guantum well
results in a larger
wavefunction overlap
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2d-2d Bilayer ) i
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Compare the Dimensionalities @i
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Putting it All Together: Bilayer TFET @.
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The Low Voltage TFET Demands Higher ()&,
Perfection than Previously Required

Need a steep density of states to get a steep subthreshold swing

Must drastically reduce the interface state trap density
* Quantum Well DOS ~10*?/cm?eV, D, ~ 10't/cm?eV

No doping — use gates to electrostatically control the Fermi level

Use Quantum Confinement

Reduce the voltage to < 100 mV

<= >|-4- 10X reduction in voltage
100X reduction in power
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Extra Slides ) i
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3d-3d Tunneling ) .
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1d-1d Edge Overlap
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0d-1d Junction )
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3d-3d Tunneling
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Consider an Ideal Density of States

)
Switch
Ec
FveE o oy
Er.
E,,

] = constant
S



Compare the Dimensionalities ) i,
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Compare the Dimensionalities
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Compare the Dimensionalities ) i,
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Why so many Non-Steep Results? @)=,

Technological: Fundamental

= Band-tails caused by heavy o Inherent level broadening
doping (source to drain tunneling)

= |nterface traps o Phonon effects

= Mid-gap traps
= Electrostatic design
(parasitic paths)

= Spatial Inhomogeneity of
semiconductor--
= Doping & Thickness



Eliminate Spatial Inhomogeneity — .

= Make the Devices Very Small.

= The threshold may not be reproducible, but so far the field doesn't
have a single steep device.

. Thickness Fluctuation Impact
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Can we use Sg_ o/ ?

SBarrierz

"
log(T)

Consider T~ 1%
Log(T) = -2
For Sg,ier = 60 mV/decade, need ¢¢ of 120 meV

Is this reasonable?

For 5 orders of magnitude on/off need Sy < 24 mV/decade
Use steep Spog for steep subthreshold swing




Find S

Barrier
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Lateral/point TFET
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Find SBarrier

Vertical TFET

‘lz‘: ?s = s
Wdepletion \/€s¢s/2qu
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Need to Maximize Gate Efficiency

Triangular barrier gets
steeper, which increases
Voltage lost on the confinement energy:

the gate oxide: Neonf
MNel \/ 7‘//
A /

/
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Need to Maximize Gate Efficiency

Triangular barrier gets
steeper, which increases

Voltage lost on the confinement energy:
the gate oxide:

] L
P
1

/
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Four Factors Determine The
Subthreshold Swing

£ | «c DOS x Tunneling Probability
X d log(l h
3 w SS =[ el )j
N o
Tunnel 1
Barrier _ 1 [ Uconf n 1 j
| Mel \Sp0Os  SBarrier

Z,

- _dlog(T) S _ dlog(DOs) . _dEq = dg,
Barrier DOS dE conf d el dv

— d




Modeling the Tunneling Current @,

| ocj (fc — fy)xT xDj (E)xdE

--------------------------------------------------------------------

D,(E)

Ioce|EOL|/qVO IEC(fC fyy )xT x Dg x 0E

| o« DOS x Tunneling Current




Four Factors Determine The
Subthreshold Swing

Ee | «c DOS x Tunneling Probability
X“ SS:(ollog(l)j1:[d|og(D05)+d|og(T)j1
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Vertical TFET ) i

oxide
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NE3

Undoped Channel Drain
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Bilayer TFET )

Laboratories

T
PT oxide 0t
Source Undoped Channel Drain
A |
Er
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in(i) _ | A
P+ N
i BTBT Gate
Source <

(1)

oxide

(f)
Two gate oxides and thin body
—> Mg ~ 60-70% Highest Iy

Confined Electron and Hole Levels Lowest Overdrive Voltage
Mg ~ 60-70%

Neconf X Mel ~ 40-50%




High Bilayer Conductance ) e

2d-2d
tunneling

Large Tunneling Area
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What is Happening in a Diode at Small @&
Bias?

| ocj (fc — fV)xTTx D; (E)x6E

Fermi Functions Tunneling probability Joint Density of States

Consider Small Bias I (fc — fy )xT x D(E)x 6E
| oc [ (fc — fy )% x

| (fc —fy)xeE

2T
—2KpT

qVv X <T X D(E))‘




What is Happening in a Diode at Small
Bias?

E E
1
4k T
.7 0.5}
VAN SRR
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What is Happening in a Diode at (@i,
Large Bias > 4k,T?

0.1 V| =100 mV. [ (fc - fy)xT x D(E)xoE
| | oc [ (fc — fiy )OE x
0 j (fo — fy )OE
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020/ S0
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The Band Tails Can be Modeled ) e

J :Joj OExT x(f.—f,)xD, (E)xD,(E)

1, E < E\/p
D, (E)= g EBw)aVo £ o E,,
1, E> ECn
D, (E) = ' EEn)dVo E < E_
¢ _ 1
¢ 14 eEEn) kT
¢ _ 1
v 1+ e(E—Efp)/ka

4

T — eMi~Vep )2

Evn ECn

V,, =0.91V
E, =1.12eV
V, =0.126 V
J, =3.84e7
a =0.843




|-V Fits Band Tail Model Well ) e,
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Band Edge Tunneling Current ) .

jt oC _[ OE*T *( fC o 1:V ) * DBandEdge(E)
. / \ Band Edge

Density of States

Fixed by source-drain Varies with voltage in a diode
bias in a transistor At small bias:
and is a CONSTANT 1 E-F. 1 E-F, F.—F, qV
with gate voltage (fe-f)=| - |5 = =
g g C \Y 2 4KBT 2 4KBT 4ka 4ka

At larger biases it becomes energy dependent, but

I( fo —fy)E =0V,

Simply dividing the diode current by voltage will
approximately give the transistor response!
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Polycrystalline Silicon is Very Bad!
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FIG. 1. Absorption vs photon energy for different intervals of atomic hy-
drogenation exposure. Evaporated amorphous silicon {a-Si) from Ref. 16. _
Fine grained polysilicon, unhydrogenated (solid), 60 min idot-dash), 120  Jackson, Johnson and Biegelsen,

min {dash}, 30 min {dotted), silicon-on-sapphire {SOS). Bulk crystallline sili- “Density of Gap States of Silicon Grain
con (¢c-Si) from Ref. 17. Inset shows the integrated density of optically ab- boundaries Determined by Optical
sorbing defects with a cross section of 1.2 X 10~ " cm ~? (Ref. 8) vs the dan- Absorption,” 1982

gling bond spin density.



Amorphous Silicon is Very Bad! @E=.

T/ S
0’k IO‘ ;

/ a=ayexp|E—Ep/E(T, X)]

-

N IOJ.
]02__ - . . . -
3 o 3 Fig. 1. Absorption edge of two films of amorphous silicon
—_ " /1 hydride (a-Si:H). The film with the higher Tauc gap was
TE [ ok | grown at a substrate temperature of 250°C compared with
¥ ! o~ 92 meV / ! - 200°C for the lower gap film, It has a hydrogen content of 14
: Eg =164 d 1\ ! at.% compared with 9 at.% for the lower gap film (adapted
10°F \l f-d2meV ] from ref. [2]).
g l Eg =1.72 ]

Cody, “Urbach Edge of crystalline and amorphous silicon:
a personal review” (1992)
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1d-1d Point Overlap ) &,
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Consider a Very Small V¢,

« We are interested in thee case where all voltages < KT
» All states are roughly half occupied,
and current flows both ways according
to the difference in occupation probability: v
f 1 oL
c e(E—EFC)/kT 11

f . .I: ~ (EFC _EFV) qVSD EV
4KT 4KT
 Take the cold current and multiply by qV¢,/4KT

QVsp _ 2q° V.. x qVsp Qld-1d
oL

| X
1d-1dPoint kT h 4kT
* Therefore conductance of the diode is:

2q qu

G [ —
1d-1d Pomt h oL 4kT VOL




Why is it Still a Quantum of
Conductance?

low group
velocity and high

density of states
EV

20°/h xT
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high group

velocity and low
density of states

high group
velocity and low
density of states

dJ/dE

low group
velocity and high
density of states




Turn on Broadening ) 2.

N Z
= "
X >
Transverse Momentum is NOT Conserved at Low
‘ q\J
k1zk2

overlap integral is

NOT zero

Transverse Momentum is Conserved at High k
(_A_\ < LI

T,

Transverse momentum conserved once A ~ U




) Maximum G
Case Picture Current Conductance, G M?;(égl;r?o(;g?/;ﬁgrt. for end contacts
httpy/arxiv.org/abs/1109.0096 Y= (2/m)Ey
— 2
1d-1d Zﬂ Ny, % T ZE Vo X T N/A N/A
b
i Am" Vo 20° A Vo 20°\, G N/A N/A
3d-3d a2 < Vo T | e Ty Vo Teene X g
2d-2d 2an Vo, 207 | POV 207 g G N/A N/A
edge 37 h device 3k h device 4ka
4 |oE— 2 CL N/A N/A
Od 1d — h XE ><Tclievu:e h - X X dewce 4ka
: Am qVOL 4q Am qVOL q N/A
] AL A E, x Ty E,xT,
2d 3d |\\\|//\ 271:712 2 x Z>< device 271',722 2 h X dewce 4ka N/A
L E 4 L E 4q q N/A N/A
1d-2d ﬁ T;ZX am Vg, x hq xE Xﬁev.ce ?;;X am Vo, x h —xE ><7Qev.ce 4k, T
4q o 4q e q 29 y 29 Y
_ TE.. device E_. device M 2, I e B 2., I
ovod | (B T B T BT h kT h " T
gmA gmA q 2> ©° , 1 2mA |20° w* W vy
- E. xE..xT. . XE, i X Eg ¢ X Tipice X ok BV 2t
2d-2d;,.. @ pEre = R 23 4 KT o x 5 xy% x 4kb_I_>< Poa : x 1 x L x KT
gl m gl m q |2q° 1 oml2 | 29° 2n** v
- 2 E,, xE — xT. .12 E. xE _ «T.. <9 2302 X
1d 1dedge % zhz Zi Z,f x qVOL X device 7_':zhz Z,i x zf X qVOL X devu:e>< 4ka h X\/ETE X’y X 4kaX nzhz h X 4 X ka
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Use NEGF to Model a 1d-1d Edge

Overlapped Junction
= Define a 1d-1d

edge GEOMeELrY

» Let contacts extend to infinity

Use an 8 band k.p based
basis for the NEGF Modelin




Compare to an Unconfined 2d-2d 4, g
Structure
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Compare the Structures

0.25F d

~ 02F _

3 f,’% & / Second
L 015 5 %, Y i <«—Vvalence
< - Yoy, af ]

g | oy, | subband
2 0lp 3 "Ny, ey e, AnalYtical _
g ; ! .'"""J.["I'I"I.'l-l'l.lllllrmlm. .
s LU LTI
O 005t & d
s —— numerical
0 v A "
0 10 20 30 40 50 60 70
Overlap Voltage (mV)

G14-1d, edge 1S 10 times larger than G, 5q eqqe!
T



What is the Difference Between the
Analytic Model and Simulation?
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E/\ E/\

i

Vv

<V
K oFFr Kk ON

N\
/

dN/dE -

Need to account for discrete transverse states




What Happens When the Overlap is
Increased?
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Laboratories

02 L L
m— | X=5 nm
= |_Xx=10 nm

0.15 = Lx=20 nm
== |_x=40 nm
= Lx=60 nm

y,

,:
e —
O r r

0 10 20 30 40 50 60 70
Overlap Voltage mV

Conductance uS
o
|_\

o
o
al

Assumed ky:O




Define a Hamiltonian for the System

= Start with an 8 band k.p Hamiltonian

i 21,2
E.+ nk +iPk, +iPk,
2m,
_ E, +h°k?/2m,
—iPk, s , N'kK,
Hy O +M(k; +k;)+ L'k,
H = 0 H tHso Hy= E, +7°k?/2m
i . vV 0
nt —iPk, N'kK, . s ,
+M (ki +k;)+ L'k,
—iPk, N'k,K, N'k Kk,

« Convert k to a discrete spatial 0 0 0 O
derivative 0 -1 -i 0
kXXn =~ i X, = __I (an+1 — an—l) ool 0

Ox 23 G |00 0 -1
. N . . *> 10 0 0 O

* Write Hamiltonian for each grid point 6 0 0 -1

to get spatial variation 0 0 o0 _i
01 i 0
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+iPk,

N'k Kk

N'k K,
E, +7°k?/2m,
+M(k; +k;)+ L'k

0 0 O

0O 0 0 1

0O 0 0 -i

0O -1 i O

O 0 0 O

0O -1 i O

0O -1 -1 0

0 0 0 -1



Principles Behind NEGF Calculation rh) i,

Electron density is given by a sum of delta functions
D(E)=) 5(E-¢,)

Write the delta function as a limit

27zx5(E—8a):(EE—Z)Z

n—0"

i 1 B 1
E-¢,+in E—-¢,—in
Converting this to a matrix gives the spectral density function, A
-Consider the eigenstates of H as the basis

r7—>0+

A=i|G(E)-G"(E)]
1
E-¢, +in

where G(E) =

Thus we have defined the Green’s function as a
convenient way to express a delta function



How to deal with an infinite contact?

Contact/ Reservoir

Channel
/ Channel Hamiltonian (Size d X d) €—— Small

H - H 7 Coupling between channel and contact (Size d X R)
_r+ H ;€ Contact Hamiltonian (Size R X R) €—— Huge!!
-1
~_| . —7- E+i0")I -H —
G =[E+ioy—A]"=|¢ ) N
' —7" (E+i07)I —H;

{A B}l { Gﬂl\
= = Only care about the electron density
¢ D Gra G in the channel and thus G

G=(A-BD'C)’

:«E+mw|—H—%£

whereX =7G, 7", G, =[(E+i0+)| —HRF

!
Invert the Subtract our the effect of If we know the self energy, Z,
channel part the contact/reservoir finding G is easy
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Trick to finding 2 ) S

Contact/
Reservoir

In the contact adjacent atoms are identical and have the same electron density

G=[E+i0)-H-3

!

2=7Gg7"

Gy =|(E+i07)1 —H, ]

G=Gg

Solve the equation self consistently for G
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How to Find Current

Weight the electron density from the left contact by f,
and the electron density from the right contact by f,

d
Evaluate | =—yw ™
dtw 4

usmglhdc{lt} [H [}
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What do We Know So Far

= Need a steep density of states to get a steep subthreshold
swing
= Must eliminate doping: Use bilayer or double gate lateral FET
= Vertical FET needs doping and so it will not work

= Lateral FET has a gate efficiency ~1
= Bilayer has a gate efficiency ~ 0.5

= Bilayer has a higher I,y and lower overdrive voltage
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ndia

Can we Improve the Lateral Structuréi:.

" |ncrease T from ~1% to 50%
" How?
= Would reduce the required overdrive voltage and increase |,

= |f we can’tincrease T, use quantum confinement in a lateral

structure I-V is a2delta functio

1.5¢

G (uS)




Gate Controls Band Overlap

OFF

@)
e
oxide/

oxide |

—
Ey Er E,
J; ; ; ; ; gate
7| | gate — | metal
metal
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