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Data Center Electricity Usage 

 In 2010, data centers accounted for 
~1.3% of all electricity use worldwide, 
~2% of all electricity use in the U.S.  

 

J. Koomey, Growth in Data center electricity use 2005 to 2010 (Analytics Press, Oakland, CA), 2011  



Power Usage Rising 

High Performance ITRS Roadmap 

• Power consumption is      Vdd
2  and Vdd (operation voltage) 

scaling has slowed. 

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What’s Wrong With Current Transistors? 
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Need a New, More Sensitive Switch 



The New Switch has to Satisfy Three 
Specifications 

1. Steepness (or sensitivity) 

  switches with only a few milli-volts 

  60mV/decade  1mV/decade 

 

2. On/Off ratio.   106 : 1 

    

 

3. Current Density or Conductance Density  

   (for miniaturization) 

 old spec at 1Volt: 1 mAmp/micron 

  our spec: 1 milli-Siemen/micron 



2 Ways to Obtain Steepness 
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 Modulate the Tunneling Barrier Thickness 

 

 

 

 

 Energy Filtering - Density of States Switch 

Only steep at 
the lowest 

current 
densities 

The sub-threshold slope  
for tunneling depends 

 on the steepness of  
the band-edges 
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Barrier Width Modulation Explains all Steep 
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2 Ways to Obtain Steepness 

EC 

OFF 

EV EV 
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EC 

 Modulate the Tunneling Barrier Thickness 

 

 

 

 

 Energy Filtering Density of States Switch 

Only steep at 
the lowest 

current 
densities 

The sub-threshold slope  
for tunneling depends 

 on the steepness of  
the band-edges 



EC 

EV 

Band Tails Prevent a Steep Swing 

There are states below the 

band edge that prevent the 

junction from turning off 



Conduction 

band 

Valence 

band 

Switching Principle: 



Conduction 

band 

Valence 

band 

Switching Principle: 



A problem arises from states where they 

should not be: 

Conduction 

band 

Valence 

band 

TkE be
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Thermal excitation is the rate limiting 

step in some devices 



 Desired:  Band-to-Band Tunneling – 

  Quantum Density of States ~1012/cm2 eV 

 

 Undesired:  Tunneling into gate insulator States 

     DIT ~ 1011/cm2 eV 

Interface Traps are Disastrous 

 Interface state density might have to be lowered < 108/cm2eV as 
one of many pre‐requisites to get a good On/Off ratio. 

 This translates also into purity and reproducibility 
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Use Optical Absorption Measurements to 
Measure the Band Edge Density of States 

~ 23 meV /decade 

The absorption curves of Silicon at 

different doping levels 

E. Daub and P. Wurfel, Journal of Applied Physics, 

vol. 80, pp. 5325-5331, 1996. 

23 meV/decade 



Optical Absorption Slope Gets 
Worse With Doping 

The doping induced potential 

variations are screened by free 

carriers.  The slope will be far 

worse in a depletion region 

J. I. Pankove, “Absorption Edge of Impure Gallium Arsenide” 

Physical Review, vol 140 pp A2059-A2065, 1965 

Undoped 

~ 17 mV/decade 

 

Heavily Doped 

~ 60 mV/decade 

 

GaAs 80 

60 

40 

20 

0 

A
b

so
rp

ti
o

n
 S

te
ep

n
es

s 

(m
V

/d
ec

ad
e)

 

1016 1017 1018 1019 1020 

Doping Level (/cm3) 



What’s Going on? 
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Analyze the Diode Conductance to 
Measure Steepness 
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In0.53Ga0.47As PIN Diode Characteristics 
Steeper than TFET! 

Mookerjea, (2010) 
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SiGe Epi Diodes Steeper at Lower Doping 

(A) 5e19/3e20/3e19 n+/p+/p 

(B) 1e19/1e20/3e19 n+/p+/p 

(C) 1e19/1.5e20/1e17 n+/p+/p 
 

p Si 

 

p+ Si1-yGey 

n+  Si 
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NA=1.8x1019 

From Pawlik et all, “Benchmarking and Improving III-V Esaki Diode Performance with a Record 2.2 

MA/cm2 Peak Current Density to Enhance TFET Drive Current” IEDM 2012, pp. 812-814 
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How to Eliminate Doping 

N+ 

Drain

P+ 

Source

N+ 

Drain
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Source

Lateral Double Gate TFET 



How to Eliminate Doping 
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Source N+ 
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Bilayer TFET 



Layered chalcogenides: atomic level 
flatness and new opportunities 

 Scalable down to a single monolayer (~ 7 Angstroms) 

 Lack dangling bonds; no native oxide 

 van der Waals bonding/interfaces – reduced lattice matching constraints 

 Uniform thickness at the atomic level – sharp band edges 
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An Ideal Density of States Switch is 
Explicitly Affected by Dimensionality: 
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Fermi’s Golden Rule Approach 



Confinement in the Tunneling 
Direction Increases Conductance 

2v
2

1
zz mE 

Higher energy results in 

more tunneling attempts 

Smaller quantum well 

results in a larger 

wavefunction overlap 
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Conductance increase verified by NEGF 
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Putting it All Together: Bilayer TFET 
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• Need a steep density of states to get a steep subthreshold swing 

• No doping – use gates to electrostatically control the Fermi level 

• Use Quantum Confinement 

Reduce the voltage to < 100 mV 

 

10X reduction in voltage 

100X reduction in power 

• Must drastically reduce the interface state trap density 
• Quantum Well DOS ~1012/cm2 eV,  DIT ~ 1011/cm2 eV 

 

The Low Voltage TFET Demands Higher 
Perfection than Previously Required 
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Consider an Ideal Density of States 
Switch 
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EFv 

EFc 

T ≈ constant 

VOL ~ kbT 
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Why so many Non-Steep Results? 

Technological: 

 Band-tails caused by heavy 
doping 

 Interface traps 

 Mid-gap traps 

 Electrostatic design 
(parasitic paths) 

 Spatial Inhomogeneity of 
semiconductor-- 
 Doping  & Thickness 

Fundamental 

 Inherent level broadening 

(source to drain tunneling) 

 Phonon effects 

 



 Make the Devices Very Small. 
 The threshold may not be reproducible, but so far the field doesn't 

have a single steep device. 
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Can we use SBarrier? 

)log(T
S s

Barrier




Consider T~ 1% 

Log(T) = -2 

For SBarrier = 60 mV/decade, need φS of 120 meV 

 

Is this reasonable? 

log(ION/IOFF)= 120 meV / SDOS 

For 5 orders of magnitude on/off need SDOS < 24 mV/decade 

Use steep SDOS for steep subthreshold swing 



Find SBarrier 
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Find SBarrier 

Vertical  TFET 
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Need to Maximize Gate Efficiency 

Voltage lost on 

the gate oxide: 

el 

Triangular barrier gets 

steeper, which increases 

the confinement energy:  

conf 



Need to Maximize Gate Efficiency 

Voltage lost on 

the gate oxide: 
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Triangular barrier gets 

steeper, which increases 

the confinement energy:  
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Four Factors Determine The 
Subthreshold Swing 
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Modeling the Tunneling Current 
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Four Factors Determine The 
Subthreshold Swing 
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Vertical TFET 
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Bilayer TFET 
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High Bilayer Conductance 
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What is Happening in a Diode at Small 
Bias? 

Tunneling probability Fermi Functions Joint Density of States 
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0 0.5
-1

-0.5

0

0.5

1

0   
-1

-0.5

0

0.5

1

FV 

FC 

V = -50 mV 

0 0.5
-1

-0.5

0

0.5

1

0   
-1

-0.5

0

0.5

1

FV 

FC 

V = -5 mV 

What is Happening in a Diode at Small 
Bias? 
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The Band Tails Can be Modeled 
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I-V Fits Band Tail Model Well 

-1.5 -1 -0.5 0 0.5 1 1.5
10

-4

10
-2

10
0

10
2

10
4

Voltage (V)

J
 (

A
/c

m
2
),

 T
=

2
9
5
 K

-1.5 -1 -0.5 0
0

200

400

600

800

1000

S
S

 m
V

/d
e
c
a
d
e

dV/d[Log(J/V)]

Voltage (V)

-1.5 -1 -0.5 0 0.5 1 1.5
10

-2

10
-1

10
0

10
1

10
2

10
3

J
 /
 V

Voltage (V)

C
o
n
d
u
c
ta

n
c
e
 S

lo
p
e

 



)(*)(** EDffTEj BandEdgeVCt  

Fixed by source-drain  
bias in a transistor 
and is a CONSTANT 
with gate voltage 

Varies with voltage in a diode 
At small bias: 

Simply dividing the diode current  by voltage will 
approximately give the transistor response! 
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At larger biases it becomes energy dependent, but  

Band Edge 
Density of States 
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Band Edge Tunneling Current 



Jackson, Johnson and Biegelsen, 

“Density of Gap States of Silicon Grain 

boundaries Determined by Optical 

Absorption,” 1982 

Polycrystalline Silicon is Very Bad! 



Cody, “Urbach Edge of crystalline and amorphous silicon: 
a personal review” (1992)  

Amorphous Silicon is Very Bad! 



 



N 

I 

P 

Z 

G 

VG 

 

OLVG 

1d-1d Point Overlap 

EF 
VSD 

E 

EF 

z 
VOL 

EC 

EV 

T OLdd V
h

e
I

2

Point,11
2



• We are interested in thee case where all voltages < kT 

• All states are roughly half occupied,  

  and current flows both ways according  

  to the difference in occupation probability: 

 

 

 

 
 

• Take the cold current and multiply by qVSD/4kT 

 

 
 

• Therefore conductance of the diode is: 

 

Consider a Very Small VSD 
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EV 
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dJ/dE 

Why is it Still a Quantum of 
Conductance? 

high group 

velocity and low 

density of states 

low group 

velocity and high 

density of states 

high group 

velocity and low 

density of states 

low group 

velocity and high 

density of states 

2q2/h T 



Turn on Broadening 

N I 
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Z 

X 

k1≠k2 
overlap integral is 

NOT zero 

Transverse Momentum is NOT Conserved at Low 
k 

Transverse Momentum is Conserved at High k 

Transverse momentum conserved once λ ~ L’ 

L’ 



Case Picture Current Conductance, G 
Maximum G for pert. 

theory to be valid 

Maximum G  

for end contacts 
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 Define a 1d-1dedge Geometry 

Use NEGF to Model a 1d-1d Edge 
Overlapped Junction 

z 

x y 

2.5 nm 

10 nm 5 nm 

2.5 nm 
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• Let contacts extend to infinity 

Use an 8 band k.p based 

basis for the NEGF Modeling 



Compare to an Unconfined 2d-2dedge 
Structure 
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Compare the Structures 

G1d-1d, edge is 10 times larger than G2d-2d, edge!  
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What is the Difference Between the 
Analytic Model and Simulation? 

Need to account for discrete transverse states 
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What Happens When the Overlap is 
Increased? 

Assumed ky=0 
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Define a Hamiltonian for the System 

 Start with an 8 band k.p Hamiltonian 
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• Convert k to a discrete spatial 

derivative 

 

 

• Write Hamiltonian for each grid point 

to get spatial variation 
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Principles Behind NEGF Calculation 

Electron density is given by a sum of delta functions 

 


 )()( EED

Write the delta function as a limit 

























0

11

)(

2
)(2

0

2
















iEiE
i

E
E

 

 iE
EG

EGEGiA




 

1
)( where

)()(

Converting this to a matrix gives the spectral density function, A  

 -Consider the eigenstates of H as the basis 

Thus we have defined the Green’s function as a 

convenient way to express a delta function 



How to deal with an infinite contact? 

Contact/ Reservoir 
Channel 
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Channel Hamiltonian (Size d X d)    Small 

Contact Hamiltonian (Size R X R)    Huge!! 

Coupling between channel and contact (Size d X R) 
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If we know the self energy, Σ, 

finding G is easy 
Invert the 

channel part 

Subtract our the effect of 

the contact/reservoir 



Trick to finding Σ  

In the contact adjacent atoms are identical and have the same electron density  

Contact/ 

Reservoir 
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How to Find Current 

Weight the electron density from the left contact by f1 

and the electron density from the right contact by f2 
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 Need a steep density of states to get a steep subthreshold 
swing 
 Must eliminate doping: Use bilayer or double gate lateral FET 

 Vertical FET needs doping and so it will not work 

 Lateral FET has a gate efficiency ~1 

 Bilayer has a gate efficiency ~ 0.5 

 Bilayer has a higher ION and lower overdrive voltage 

What do We Know So Far 



 Increase T from ~1% to 50% 
 How? 

 Would reduce the required overdrive voltage and increase ION 

 If we can’t increase T, use quantum confinement in a lateral 
structure I-V is a delta function 

 

Can we Improve the Lateral Structure? 
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