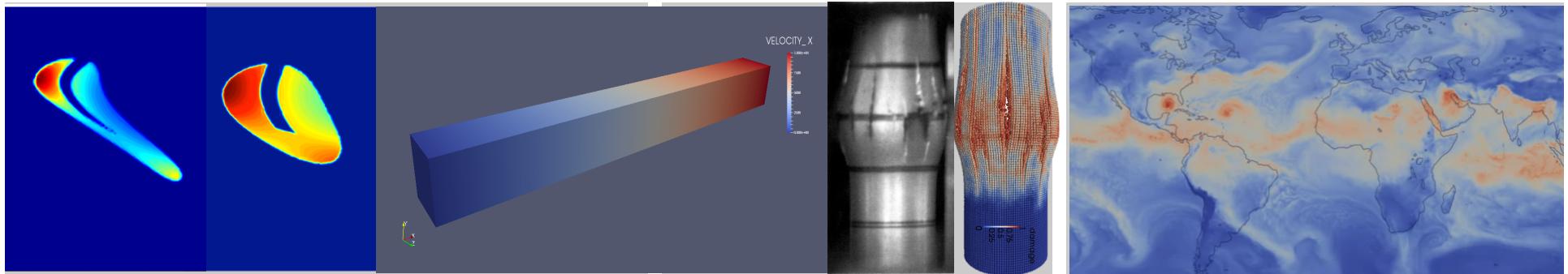


Exceptional service in the national interest



Optimization-Based Property Preserving Methods, or Going Boldly Beyond Compatible Discretizations

Pavel Bochev
Sandia National Laboratories

New trends in compatible discretizations

CEA-EDF-INRIA School, June 29 - July, 02, 2015 INRIA Paris-Rocquencourt

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Roadmap

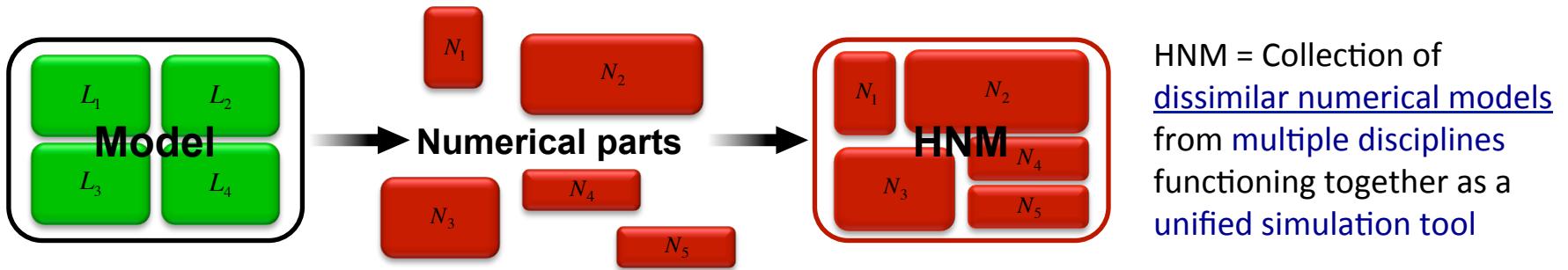
- **Prologue**
 - What do we want in a numerical method?
 - What are the challenges?
 - What do we propose to do: an overview of optimization ideas
- **Case study 1: Optimization-based Heterogeneous Numerical Methods**
 - Application to the coupling of local and nonlocal models
- **Case study 2: Optimization-based transport schemes**
 - A spectral element scheme
 - A cell-centered scheme

Thanks to:

- M. D'Elia, P. Kuberry, D. Littlewood, M. Perego, K. Peterson, D. Ridzal (SNL)
- M. Shashkov (LANL)
- M. Gunzburger (FSU), A. Shapeev (SkolTech), S. Moe (U. WA),
- M. Luskin, D. Olson (U. MN)

What do we want?

- **DOE uses computer models** to understand, predict, and verify complex systems in **high consequences analyses** that would be difficult or even impossible by other means.
- **Integrated models** of such systems incorporate **diverse “mathematical parts”**: *PDEs, non-local (integral) equations, classical DFT, potential-based atomistic* and so on...



- **Diversity of models leads to a diversity of “numerical parts”**: mesh based (FE, FV, FD), particle based (SPH, DPD, MLS), implicit, explicit, Eulerian, Lagrangian, semi-Lagrangian...
- **Requirements¹⁾:**
 - Each part must be **stable, accurate and preserve the relevant physical properties**.
 - The parts must function together as **a unified simulation tool**.
 - This tool itself must be **stable, accurate and preserve the relevant physical properties**.

¹⁾ Of course, we also need efficient solvers, but this is beyond the scope of this talk

What are the challenges?

1. Achieving Stability & Accuracy (Structural aspects)

- **Game changer:** Homological techniques: FE exterior calculus (DEC), mimetic FD,...
- Typically achieved by *topological means*:
 - Careful placement of the variables on the mesh;
 - Special grid structure, e.g., topologically dual grids
- **Challenges:**
 1. **Models that don't fit EC structure**, e.g., heterogeneous methods: FEM+SPH
 2. **Stable and accurate does not imply property preserving...**

2. Preserving Physical Properties (Qualitative aspects)

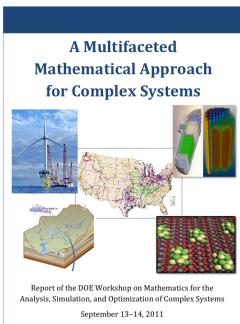
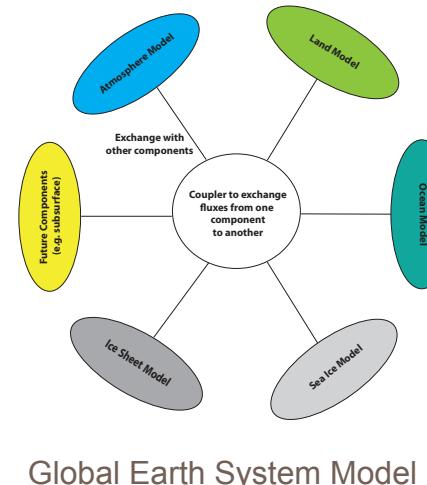
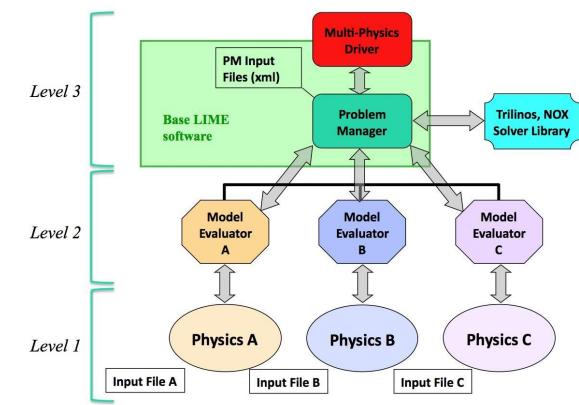
- Maximum principles, local bounds, symmetries, Geometric Conservation Laws,...
- Correlations between variables, e.g., between two passive tracers.
- **Challenges:** conventional ways to preserve these properties are either
 - **Restrictive**: Cartesian mesh, angle conditions, etc, and/or,
 - **Entangle accuracy** with the property preservation, e.g., limiters.
- **Game changer? Optimization!**

What are the challenges?

3. Assembling Diverse Numerical Parts into HNMs

- “Exascale computing will enable consideration of new classes of multiscale problems in which different types of discretizations, appropriate to a particular scale in different portions of the domain, are employed and models which treat distinct phenomena in different parts of the domain, such as ocean-atmosphere coupling...”
- “Effective models must be hierarchical and include multiple sub-models that represent different phenomena with vastly differing scales.”

“As this type of simulation expands, there is a critical need to develop systematic approaches for coupling across the range of scales and quantification of the properties of these types of coupling strategies”

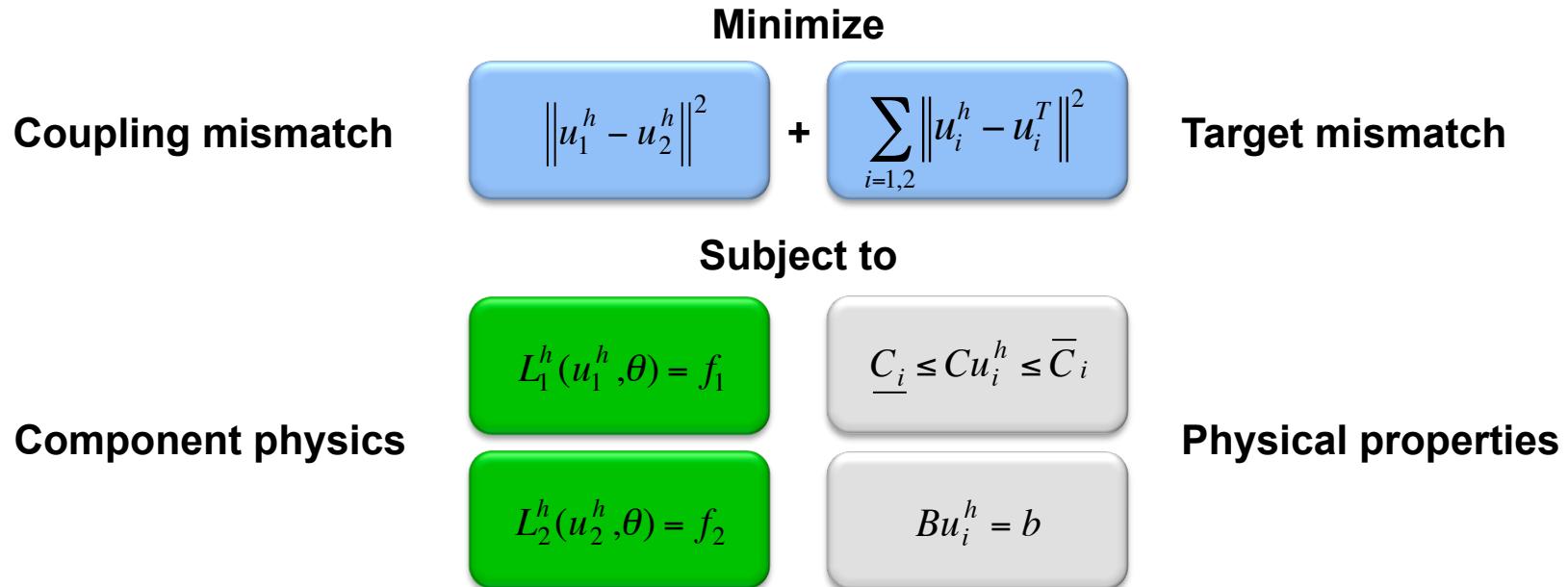


LIME: Lightweight Integrating Multiphysics Environment (CASL)

Traditional monolithic and operator-splitting modeling approaches fall short of meeting the crosscutting challenges; see *Multifaceted Mathematical Approach for Complex Systems*.

What do we propose to do

Couch **assembly of numerical parts** and **preservation of properties** into an **optimization problem**:

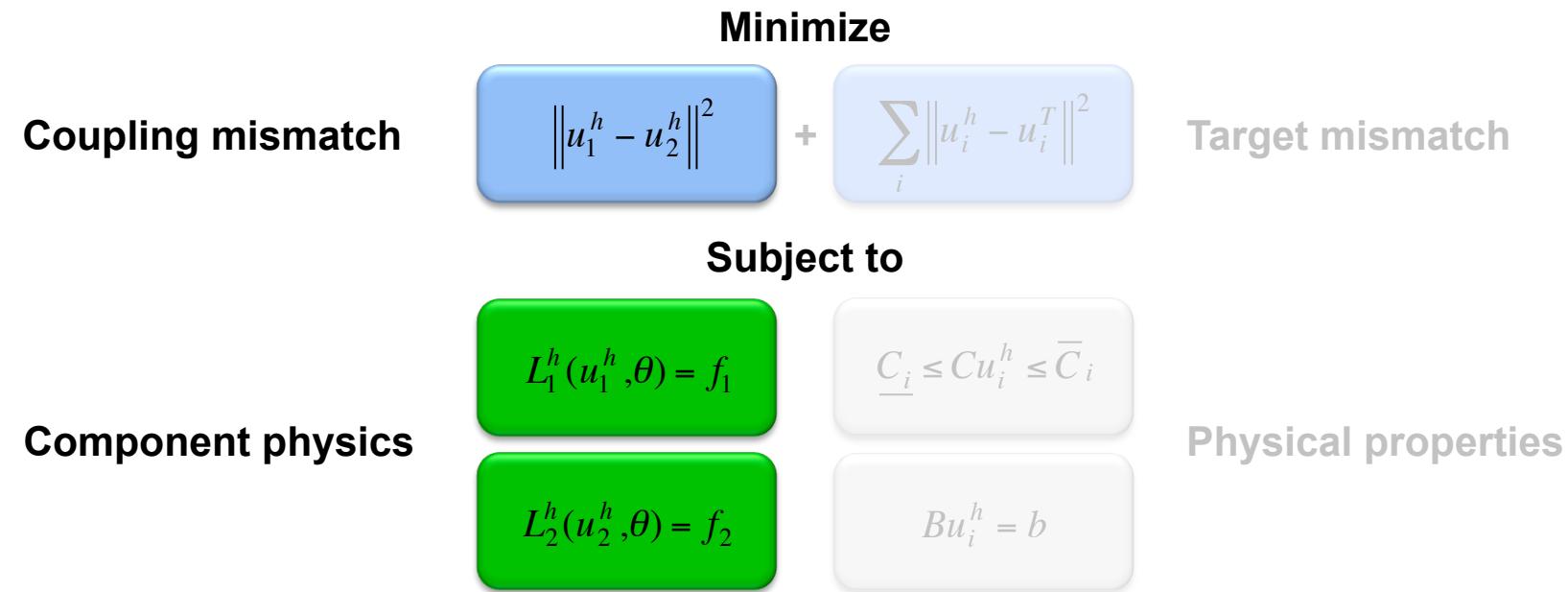


- ➡ **Reverses the roles** of the coupling conditions and the models
- ➡ **Divide and conquer approach:**
 - **separates numerical parts: facilitates merging of heterogeneous methods**
 - **separates accuracy from physical properties** (local bounds, conservation, etc..)

Part 1

Case study 1: optimization-based HNMs

In Part 1 we consider HNMs combining local (PDE) and non-local models. Such couplings are often called **heterogeneous domain decomposition**.

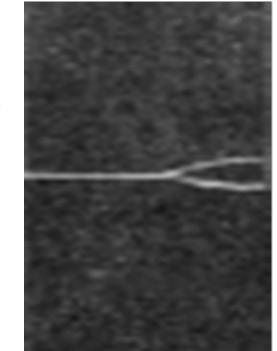
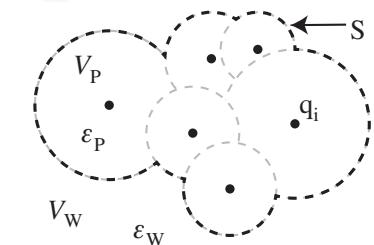


This case study highlights the use of optimization ideas for the stable and accurate coupling of fundamentally different numerical models.

Related work: Lions (2001), Quarteroni (2000), Gunzburger (2000), Du (2001) – applications to PDEs, Oden (2011 – Atomistic to Continuum), Discacciati (2013 – heterogeneous domain decomposition), Karniadakis (2014-Stochastic PDE) 8

Why Local-to-Nonlocal (LtN) couplings?

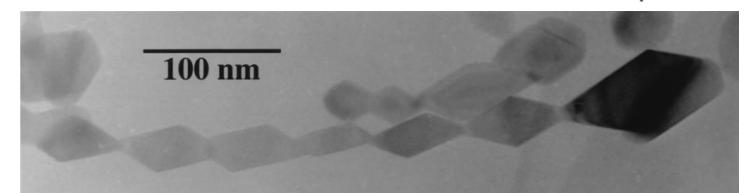
- **Nonlocal continuum mechanics: allows interactions at distance **without contact**:**
 - Can accurately resolve **small scale** features, e.g., crack tips or dislocations.
- **Nonlocal dielectric models: more accurate description of **solvation processes**:**
 - Essential in, e.g., **electrokinetic nanofluidic channels**, where local response modification to Poisson-Boltzmann are qualitatively incorrect.
- **Atomistic models: accurate simulation of defects (vacancy, impurity...)**
- **Classical DFT: evaluation of **chemical potentials** of charged species**
 - More accurate than Poisson-Nernst-Planck models at **mesoscale**.



However, full nonlocal simulation can be very expensive!

Coupling to local (PDE) models can improve efficiency.

Anatase TiO_2 nanoparticles in
DI water + HCl to control pH



J. Bardhan. "Gradient models in molecular biophysics: Progress, challenges, opportunities.". *Journal of the mechanical behavior of materials*, 22:5-6: 2013

R. Nilson and S. Griffiths. *Influence of atomistic physics on electro-osmotic flow: An analysis based on DFT*. *The Journal of Chemical Physics*, 125(16), 2006.

Penn, Banfield. *Geochim. et Cosmochim. Acta*, 63/10, 1999

A non-overlapping LtN example

Expanding tube experiment

- Tube expansion via collision of Lexan projectile and plug within AerMet tube
- Accurate recording of velocity and displacement on tube surface

Modeling Approach

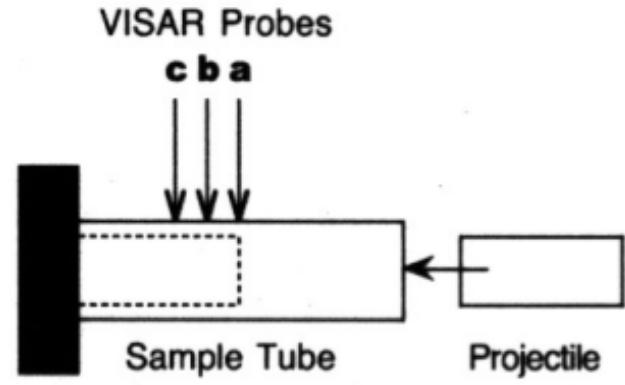
- AerMet tube: **nonlocal peridynamics**, elastic-plastic material model with linear hardening
- Lexan plugs: **classical local (PDE)**, equation-of-state Johnson-Cook material model
- Interaction via **contact algorithm**

Discretization

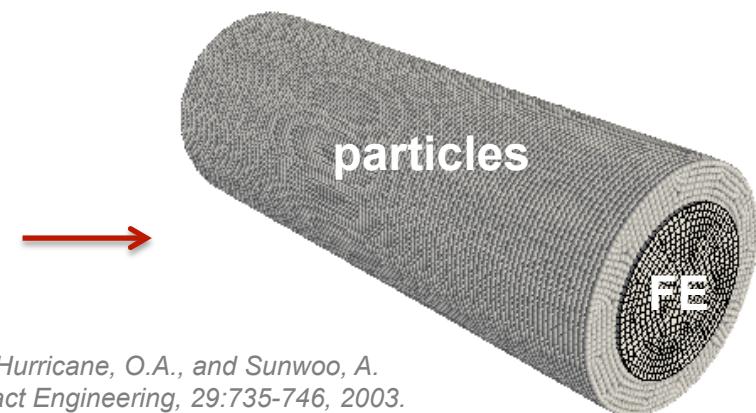
- Particles (Perydigm) + nodal FEM (Sierra/SM)
- Contact algorithm.

* Vogler, T.J., Thornhill, T.F., Reinhart, W.D., Chhabidas, L.C., Grady, D.E., Wilson, L.T., Hurricane, O.A., and Sunwoo, A. Fragmentation of materials in expanding tube experiments. *International Journal of Impact Engineering*, 29:735-746, 2003.

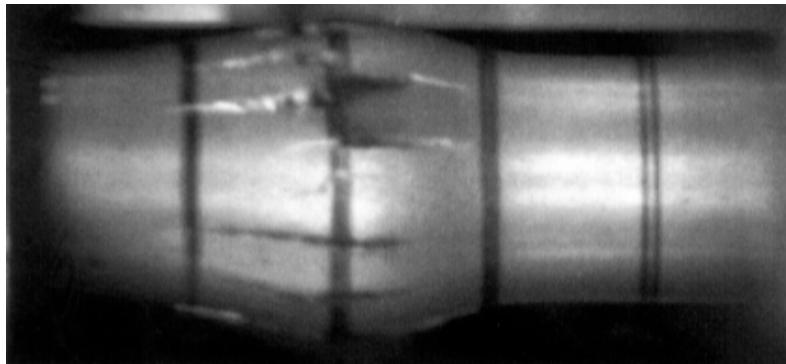
** D. Littlewood. 2010. Simulation of dynamic fracture using peridynamics, finite element modeling, and contact. *Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition*, British Columbia, Canada.



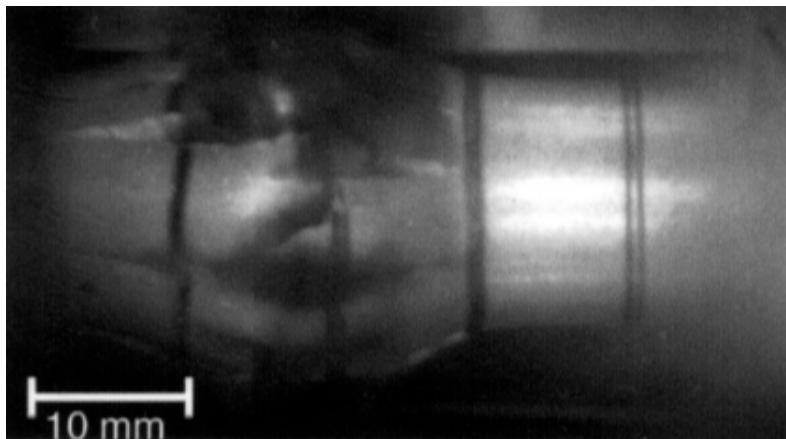
Experimental setup*



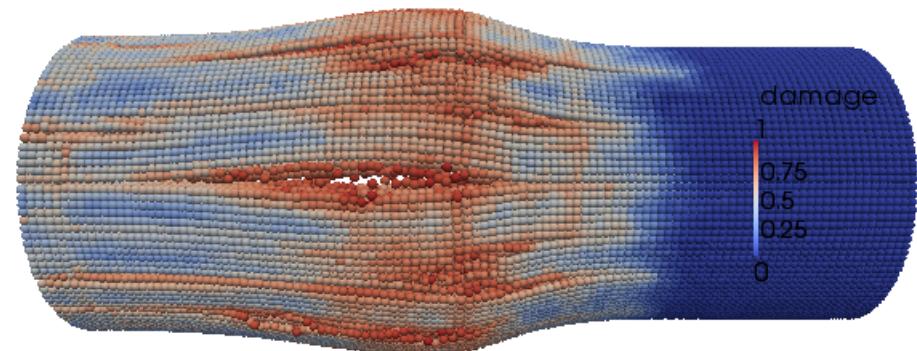
Expanding tube simulation



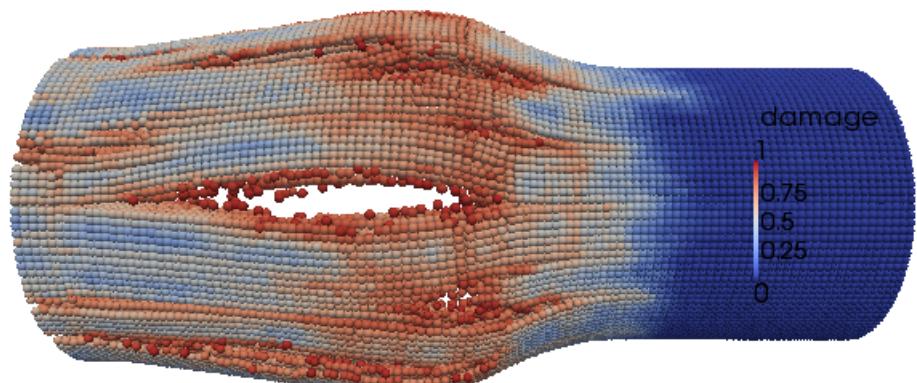
Experimental image at 15.4 microseconds*



Experimental image at 23.4 microseconds*



Simulation at 15.4 microseconds**



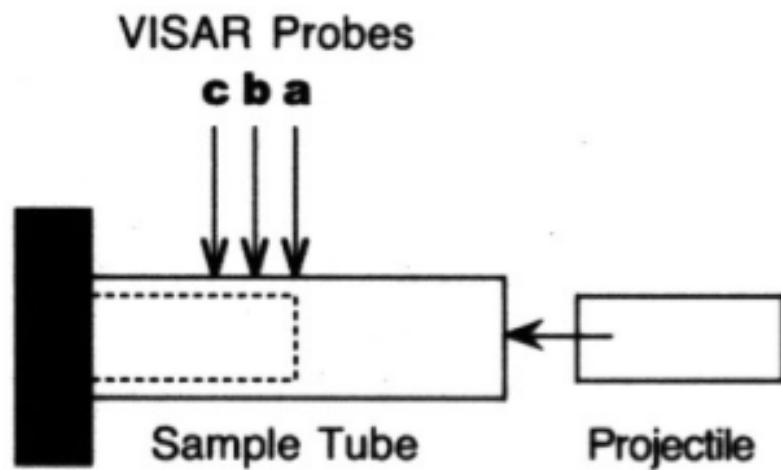
Simulation at 23.4 microseconds**

* Vogler, T.J., Thornhill, T.F., Reinhart, W.D., Chhabidas, L.C., Grady, D.E., Wilson, L.T., Hurricane, O.A., and Sunwoo, A. *Fragmentation of materials in expanding tube experiments*. *International Journal of Impact Engineering*, 29:735-746, 2003.

** D. Littlewood. 2010. *Simulation of dynamic fracture using peridynamics, finite element modeling, and contact*. *Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition*, British Columbia, Canada.

Expanding tube simulation

Displacement and velocity
on tube surface
at probe position (a)



* Vogler, T.J., Thornhill, T.F., Reinhart, W.D., Chhabidas, L.C., Grady, D.E., Wilson, L.T., Hurricane, O.A., and Sunwoo, A. Fragmentation of materials in expanding tube experiments. *International Journal of Impact Engineering*, 29:735-746, 2003.

** D. Littlewood. 2010. Simulation of dynamic fracture using peridynamics, finite element modeling, and contact. *Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition*, British Columbia, Canada.

An optimization based LtN coupling

The nonlocal problem

$$\begin{cases} -\mathcal{L}u_n &= f_n & \mathbf{x} \in \Omega \\ u_n &= \sigma_n & \mathbf{x} \in \tilde{\Omega}, \end{cases}$$

The nonlocal diffusion operator

$$\mathcal{L}u(\mathbf{x}) = \int_{\mathbb{R}^n} (u(\mathbf{y}) - u(\mathbf{x})) \gamma(\mathbf{x}, \mathbf{y}) d\mathbf{y}$$

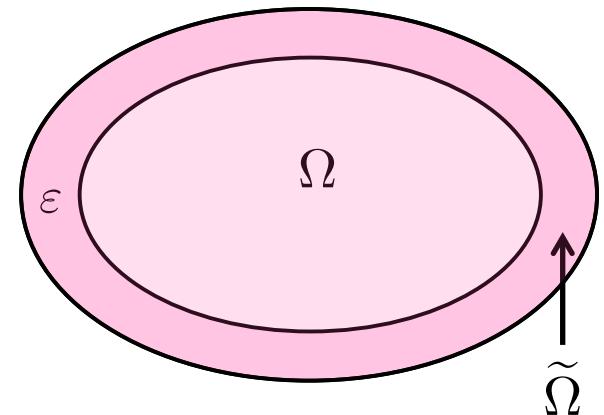
acting on $u(\mathbf{x}): \mathbb{R}^d \rightarrow \mathbb{R}$

The local problem

local diffusion model given by the Poisson equation

$$\begin{cases} -\Delta u_l &= f_l & \mathbf{x} \in \Omega \\ u_l &= \sigma_l & \mathbf{x} \in \partial\Omega, \end{cases}$$

where $\sigma_l \in H^{\frac{1}{2}}(\partial\Omega)$ and $f_l \in L^2(\Omega)$



- D'Elia, Bochev, *Mat. Res. Soc. Cambridge Univ. Pres.* 2015.
- D'Elia, Bochev, *SIAM J. Num. Anal.* 2015 (submitted).

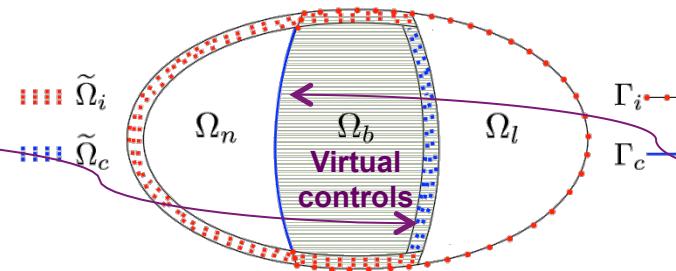
Optimization-based LtN formulation

We couch the LtN coupling into a constrained optimization problem:

$$\min_{u_n, u_l, \theta_n, \theta_l} J(u_n, u_l) = \frac{1}{2} \|u_n - u_l\|_{0, \Omega_b}^2 \quad \text{s.t.}$$

Nonlocal

$$\begin{cases} -\mathcal{L}u_n &= f_n & x \in \Omega_n \\ u_n &= \theta_n & x \in \tilde{\Omega}_c \\ u_n &= 0 & x \in \tilde{\Omega}_i \end{cases}$$



Local

$$\begin{cases} -\Delta u_l = f_l & x \in \Omega_l \\ u_l = \theta_l & x \in \Gamma_c \\ u_l = 0 & x \in \Gamma_i. \end{cases}$$

CM4, ASCR

Key properties of the optimization-based LtN formulation:

- Eliminates ghost forces and is consistent for all polynomial orders.
- Is provably stable & admits rigorous coupling and discretization error analysis.
- Basic idea applicable to diverse modeling scenarios:
 - PNP+cDFT, local+nonlocal dielectric, Atomistic-to-Continuum coupling, ...

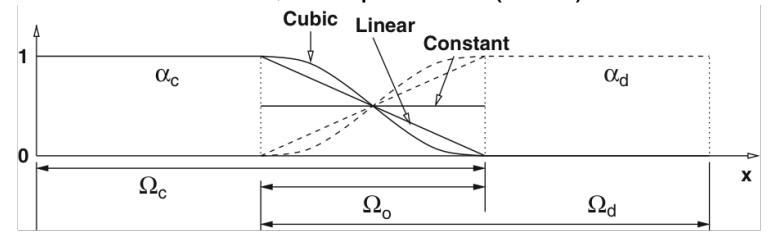
None of the existing multi-model coupling formulations such as Arlequin, blending, morphing, force-based, etc. possess all of these properties!

Optimization vs. traditional couplings

An example of an energy-blended LtN method

$$\begin{cases} \text{minimize} & E_N(\sqrt{\alpha}u_N) + E_L(\sqrt{(1-\alpha)}u_L) \\ \text{subject to} & \|\Pi u_N - u_L\|_{\Omega_o} = 0 \end{cases}$$

Bauman et al, Comp. Mech. (2008) 42.



Minimize blended energy subject to constraints forcing the equality of the nonlocal and local states

- Blending of two disparate physical models is **mathematically challenging**
- The notion of “equality” depends on the projection Π , introducing **some ambiguity**
- Resulting LtN formulations may suffer from spurious effects, e.g., **ghost forces**

An optimization-based LtN approach: reverse the roles!

Minimize the mismatch between the nonlocal and local states subject to the two models acting independently in Ω_N and Ω_L

Existence of an optimal solution

Reduced space formulation

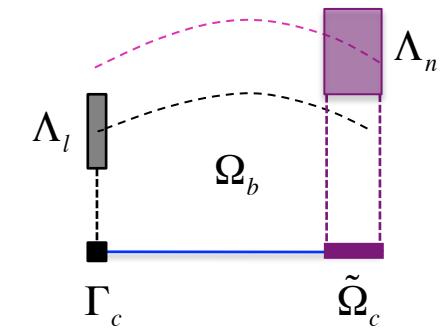
We switch to an equivalent **reduced space problem** in terms of the virtual controls only

$$\begin{cases} -\mathcal{L}u_n = f_n & \text{in } \Omega_n \\ u_n = \theta_n & \text{on } \tilde{\Omega}_c \rightarrow u_n = u_n(\theta_n) \\ u_n = 0 & \text{on } \tilde{\Omega}_i \end{cases}$$

$$\begin{cases} -\Delta u_l = f_l & \text{in } \Omega_l \\ u_l = \theta_l & \text{on } \Gamma_c \rightarrow u_l = u_l(\theta_l) \\ u_l = 0 & \text{on } \Gamma_i \end{cases}$$

minimize $\frac{1}{2} \|u_n(\theta_n) - u_l(\theta_l)\|_{0, \Omega_b}^2$

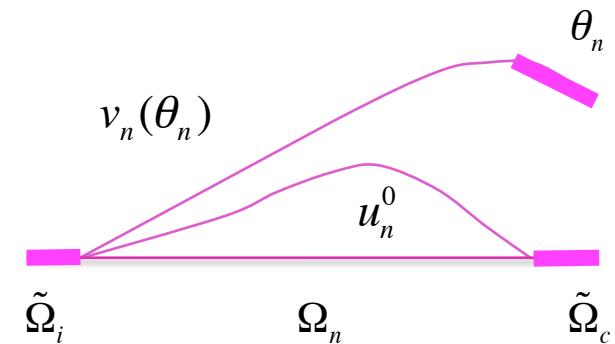
Unconstrained minimization problem over the nonlocal and local trace spaces Λ_n and Λ_l



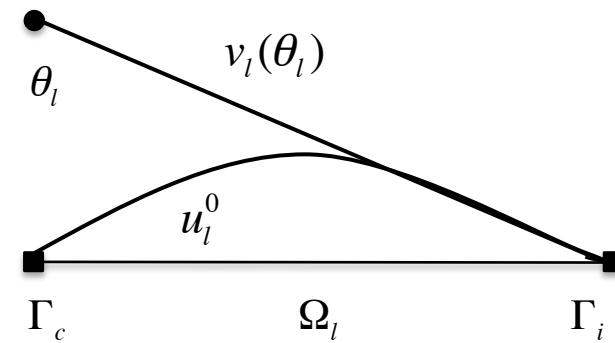
Existence of an optimal solution

Decomposition of the states into harmonic and homogeneous parts:

$$u_n(\theta_n) = v_n(\theta_n) + u_n^0 \rightarrow \begin{cases} -\mathcal{L}v_n = 0 & \text{in } \Omega_n \\ v_n = \theta_n & \text{on } \tilde{\Omega}_c \end{cases} \rightarrow \begin{cases} -\mathcal{L}u_n^0 = f_n & \text{in } \Omega_n \\ u_n^0 = 0 & \text{on } \tilde{\Omega}_n \end{cases}$$



$$u_l(\theta_l) = v_l(\theta_l) + u_l^0 \rightarrow \begin{cases} -\Delta v_l = 0 & \text{in } \Omega_l \\ v_l = \theta_l & \text{on } \Gamma_c \end{cases} \rightarrow \begin{cases} -\Delta u_l^0 = f_l & \text{in } \Omega_l \\ u_l^0 = 0 & \text{on } \Gamma_l \end{cases}$$



This decomposition follows the idea of Gervasio et al., Num. Math. 2001

Existence of an optimal solution

Reduced space problem in terms of the dual norm

$$\underset{\Lambda_n \times \Lambda_l}{\text{minimize}} \frac{1}{2} \left\| \{\theta_n, \theta_l\} \right\|_*^2 + \left(v_n(\theta_n) - v_l(\theta_l), u_n^0 - u_l^0 \right)_{0, \Omega_b} + \frac{1}{2} \left\| u_n^0 - u_l^0 \right\|_{0, \Omega_b}$$

The corresponding Euler-Lagrange equation

$$\left\langle \{\theta_n, \theta_l\}, \{\mu_n, \mu_l\} \right\rangle_* = - \left(u_n^0 - u_l^0, v_n(\mu_n) - v_l(\mu_l) \right)_{0, \Omega_b} \quad \forall \{\mu_n, \mu_l\} \in \Lambda_n \times \Lambda_l$$

Theorem

The following form defines an inner product on the trace space $\Lambda_n \times \Lambda_l$.

$$\left\langle \{\theta_n, \theta_l\}, \{\mu_n, \mu_l\} \right\rangle_* := \left(v_n(\theta_n) - v_l(\theta_l), v_n(\mu_n) - v_l(\mu_l) \right)_{0, \Omega_b}$$

Corollary. The reduced space problem has a unique solution $\{\theta_n, \theta_l\} \in \Lambda_n \times \Lambda_l$.

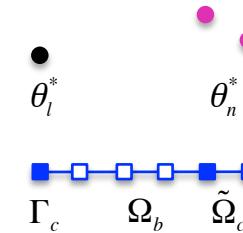
The LtN approximation

Solution procedure

1. Solve the reduced space problem:

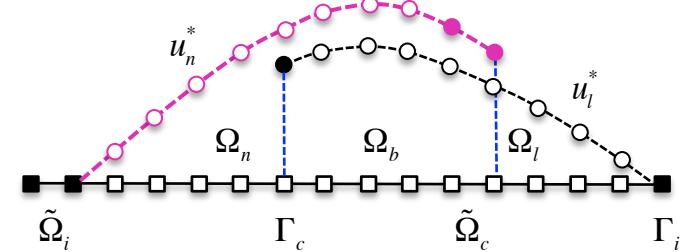
$$\{\theta_n^*, \theta_l^*\} \in \Lambda_n \times \Lambda_l$$

approximate solution traces \rightarrow



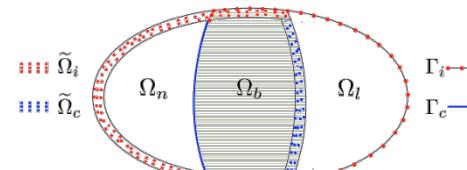
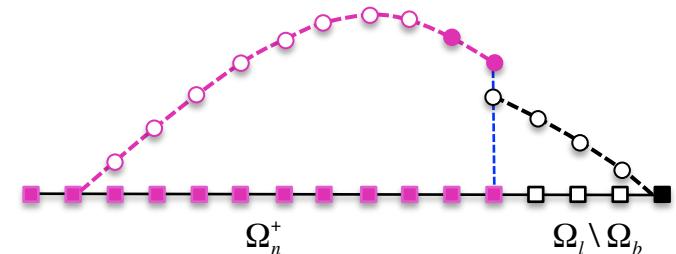
2. Recover the optimal states

$$u_n^* = u_n^0 + v_n(\theta_n^*) \quad \text{and} \quad u_l^* = u_l^0 + v_l(\theta_l^*)$$



3. Stitch them into an LtN solution

$$u^* = \begin{cases} u_n^* & \text{in } \Omega_n^+ \\ u_l^* & \text{in } \Omega_l \setminus \Omega_b \end{cases}$$



Analysis of the LtN coupling error

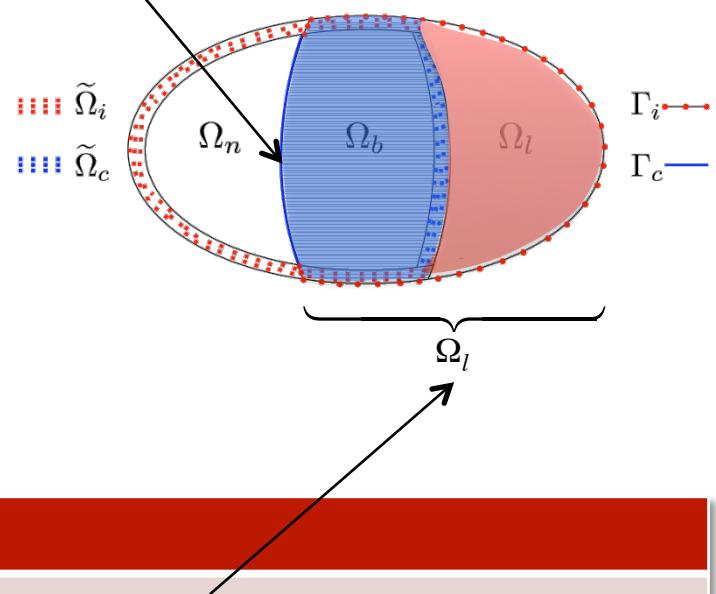
Assumptions

- The global non-local solution \hat{u}_n has a well-defined trace on Γ_c :

$$T(u) = (T_n(u), T_l(u)) = \left(u|_{\tilde{\Omega}_c}, u|_{\Gamma_c} \right)$$

- The kernel $\gamma(x,y)$ is such that

$$\bar{\gamma}_k < \infty \quad \text{where} \quad \bar{\gamma}_k = \left\| \gamma_k \right\|_{\infty, \Omega}^{1/k}, \quad \gamma_k = \int_{\Omega^+} \gamma^k(x, y) dy$$



Main result

Theorem

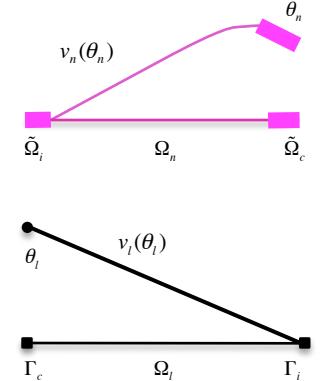
LtN **coupling error** is bounded by the **modeling error** on the **local subdomain**:

$$\left\| \hat{u}_n - u^* \right\|_{0, \Omega^+} \leq (1 + C(\Omega_b)) \left\| \hat{u}_n - \hat{u}_l \right\|_{0, \Omega_l}$$

where \hat{u}_n - global nonlocal and

$$\begin{cases} -\Delta \hat{u}_l = f & \text{in } \Omega_l \\ \hat{u}_l = T_l(\hat{u}_n) & \text{on } \Gamma_c \\ \hat{u}_l = 0 & \text{on } \Gamma_i \end{cases}$$

Elements of the proof



Harmonic lifting operator

$$L(\mu_n, \mu_l) = \mathbf{u}^0 + H(\mu_n, \mu_l) \quad \text{where} \quad \mathbf{u}^0 = \begin{pmatrix} u_n^0 \\ u_l^0 \end{pmatrix}; \quad H(\mu_n, \mu_l) = \begin{cases} v_n(\mu_n) & \text{in } \Omega_n^+ \\ v_l(\mu_l) & \text{in } \Omega_l \setminus \Omega_b \end{cases}$$

Error splitting

$$\begin{aligned} \|\hat{u}_n - u^*\|_{0, \Omega^+} &= \|\hat{u}_n - L(T(\hat{u}_n))\|_{0, \Omega^+} + \|L(T(\hat{u}_n)) - u^*\|_{0, \Omega^+} = \\ &\leq \|\hat{u}_n - L(T(\hat{u}_n))\|_{0, \Omega^+} + \|H(T(\hat{u}_n)) - H(\theta_n^*, \theta_l^*)\|_{0, \Omega^+} \\ &\leq \|\hat{u}_n - L(T(\hat{u}_n))\|_{0, \Omega^+} + \|H\|_* \|T(\hat{u}_n) - (\theta_n^*, \theta_l^*)\|_{0, \Omega^+} \end{aligned}$$

The error components

$$\|\hat{u}_n - L(T(\hat{u}_n))\|_{0, \Omega^+}$$

$$\|T(\hat{u}_n) - (\theta_n^*, \theta_l^*)\|_{0, \Omega^+}$$

$$\|H\|_* = \sup_{\{\mu_n, \mu_l\}} \frac{\|H(\mu_n, \mu_l)\|_{0, \Omega^+}}{\|\{\mu_n, \mu_l\}\|_*}$$

Consistency error

Approximation error

Lifting operator norm

Consistency error

Lemma 1

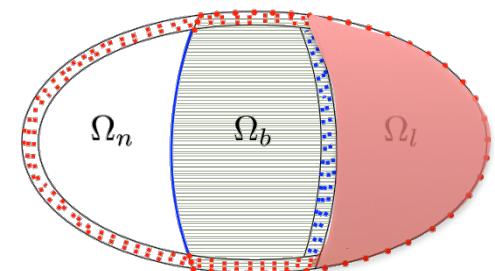
Consistency error is bounded by the modeling error on the “pure” local region:

$$\|\hat{u}_n - L(T(\hat{u}_n))\|_{0,\Omega^+} = \|\hat{u}_n - \hat{u}_l\|_{0,\Omega_l \setminus \Omega_b} \quad \text{where } \hat{u}_n \text{ - global nonlocal and} \quad \begin{cases} -\Delta \hat{u}_l = f & \text{in } \Omega_l \\ \hat{u}_l = T_l(\hat{u}_n) & \text{on } \Gamma_c \\ \hat{u}_l = 0 & \text{on } \Gamma_i \end{cases}$$

Proof. Note that $L(T_n(\hat{u}_n), T_l(\hat{u}_n))|_{\Omega_n^+} = u_n^0 + H(T_n(\hat{u}_n), T_l(\hat{u}_n))|_{\Omega_n^+} = \hat{u}_n|_{\Omega_n^+}$ and so,

$$L(T(\hat{u}_n)) = \begin{cases} \hat{u}_n & \text{in } \Omega_n^+ \\ \hat{u}_l & \text{in } \Omega_l \setminus \Omega_b \end{cases} \quad \begin{array}{l} \leftarrow \text{Recovers the exact nonlocal solution in } \Omega_n^+. \\ \leftarrow \text{Local lifting of the exact nonlocal trace.} \end{array}$$

$$\begin{aligned} \|\hat{u}_n - L(T(\hat{u}_n))\|_{0,\Omega^+} &= \left\| \chi(\Omega_n^+) (\hat{u}_n - \hat{u}_n) + \chi(\Omega_l \setminus \Omega_b) (\hat{u}_n - \hat{u}_l) \right\|_{0,\Omega^+} \\ &= \left\| \chi(\Omega_l \setminus \Omega_b) (\hat{u}_n - \hat{u}_l) \right\|_{0,\Omega^+} \\ &= \|(\hat{u}_n - \hat{u}_l)\|_{0,\Omega_l \setminus \Omega_b} \end{aligned}$$



Approximation error

Lemma 2

Approximation error is bounded by the modeling error on the overlap region:

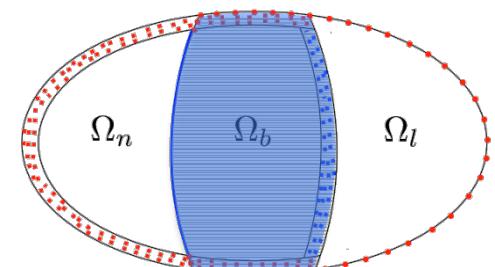
$$\|T(\hat{u}_n) - (\theta_n^*, \theta_l^*)\|_* \leq \|\hat{u}_n - \hat{u}_l\|_{0, \Omega_b}$$

Proof. Using that $\{\theta_n^*, \theta_l^*\}$ solves the Euler-Lagrange equation of the reduced problem

$$\|T(\hat{u}_n) - \{\theta_n^*, \theta_l^*\}\|_* = \sup_{\{\mu_n, \mu_l\}} \frac{\langle T(\hat{u}_n), \{\mu_n, \mu_l\} \rangle_* + (u_n^0 - u_l^0, v_n(\mu_n) - v_l(\mu_l))_{0, \Omega_b}}{\|\{\mu_n, \mu_l\}\|_*}$$

Using definition of the dual inner product

$$\begin{aligned} & \langle T(\hat{u}_n), \{\mu_n, \mu_l\} \rangle_* + (u_n^0 - u_l^0, v_n(\mu_n) - v_l(\mu_l))_{0, \Omega_b} \\ &= (\hat{u}_n - \hat{u}_l, v_n(\mu_n) - v_l(\mu_l))_{0, \Omega_b} \\ &\leq \|\hat{u}_n - \hat{u}_l\|_{0, \Omega_b} \|v_n(\mu_n) - v_l(\mu_l)\|_{0, \Omega_b} = \|\hat{u}_n - \hat{u}_l\|_{0, \Omega_b} \|\{\mu_n, \mu_l\}\|_* \end{aligned}$$



H is bounded from above

Lemma 3

The harmonic lifting operator is bounded by a constant depending only on $|\Omega_b|$:

$$\|H\|_* = \sup_{\{\mu_n, \mu_l\}} \frac{\|H(\mu_n, \mu_l)\|_{0, \Omega^+}}{\|\{\mu_n, \mu_l\}\|_*} \leq C(\Omega_b)$$

Proof. The statement is equivalent to the inequality

$$\|v_n(\mu_n)\|_{0, \Omega_n^+}^2 + \|v_l(\mu_l)\|_{0, \Omega_l \setminus \Omega_b}^2 \leq C^2(\Omega_b) \|v_n(\mu_n) - v_l(\mu_l)\|_{0, \Omega_b}^2 \quad \forall \{\mu_n, \mu_l\} \in \Lambda_n \times \Lambda_l$$

Furthermore:

$$\begin{array}{ccc} \|\mu_n\|_{\tilde{V}(\tilde{\Omega}_n^+)} \leq c_n \|v_n(\mu_n)\|_{E, \Omega_b} \leq K_n \|v_n(\mu_n)\|_{0, \Omega_b} & \xrightarrow{\hspace{1cm}} & \|v_n(\mu_n)\|_{0, \Omega_n^+}^2 \leq K_n \|v_n(\mu_n)\|_{0, \Omega_b}^2 \\ \text{Trace} \quad \updownarrow \quad \text{Caccioppoli} & & \\ \|\mu_l\|_{\frac{1}{2}, \Gamma_c} \leq c_l \|v_l(\mu_l)\|_{1, \Omega_b} \leq K_l \|v_l(\mu_l)\|_{0, \Omega_b} & \xrightarrow{\hspace{1cm}} & \|v_l(\mu_l)\|_{0, \Omega_l \setminus \Omega_b}^2 \leq K_l \|v_l(\mu_l)\|_{0, \Omega_b}^2 \end{array}$$

H is bounded from above

Proof of nonlocal trace and Caccioppoli inequalities requires the kernel assumption

$$\bar{\gamma}_k < \infty \quad \text{where} \quad \bar{\gamma}_k = \left\| \gamma_k \right\|_{\infty, \Omega}^{1/k}, \quad \gamma_k = \int_{\Omega} \gamma^k(x, y) dy$$

Now the statement of the theorem boils down to

$$\left\| v_n(\mu_n) \right\|_{0, \Omega_b}^2 + \left\| v_l(\mu_l) \right\|_{0, \Omega_b}^2 \leq C^2(\Omega_b) \left\| v_n(\mu_n) - v_l(\mu_l) \right\|_{0, \Omega_b}^2 \quad \forall \{\mu_n, \mu_l\} \in \Lambda_n \times \Lambda_l$$

Which follows from the strong Cauchy-Schwartz inequality

$$\left| (v_n(\mu_n), v_l(\mu_l))_{0, \Omega_b} \right| \leq (1 - \delta) \left\| v_n(\mu_n) \right\|_{0, \Omega_b} \left\| v_l(\mu_l) \right\|_{0, \Omega_b}; \quad 0 < \delta < 1$$

The proof of strong CBS again requires the kernel assumptions.

Modeling error

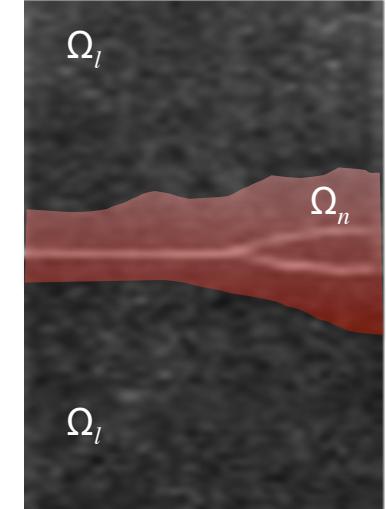
Recall our main result

Theorem

LtN **coupling error** is bounded by the **modeling error** on the **local subdomain**:

$$\|\hat{u}_n - u^*\|_{0,\Omega^+} \leq (1 + C(\Omega_b)) \|\hat{u}_n - \hat{u}_l\|_{0,\Omega_l}$$

We make the assumption that the restriction of the nonlocal solution to the local region is of class C^4



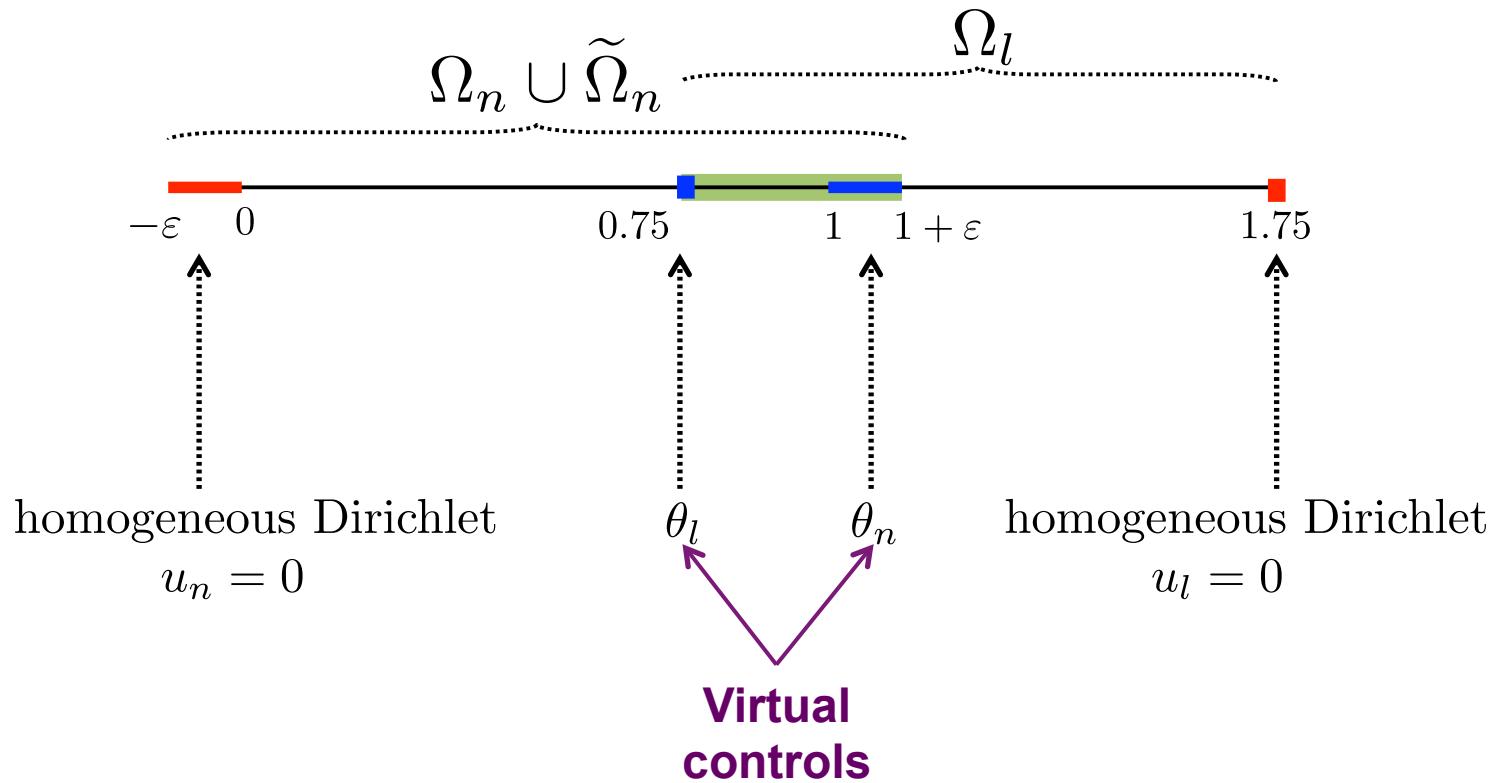
Corollary

Modeling error is bounded by the square of the interaction radius

$$\|\hat{u}_n - \hat{u}_l\|_{0,\Omega_l} \leq C\varepsilon^2 + O(\varepsilon^4)$$

Numerical examples

Problem setting in 1D

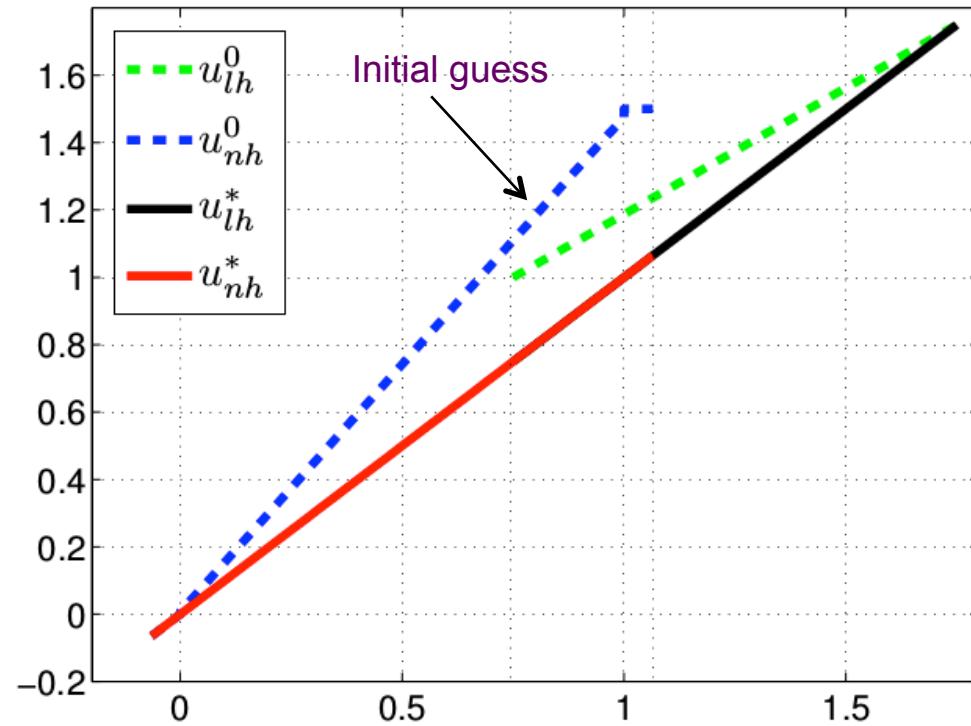


Patch test

Kernel: $\gamma(x, y) = \frac{1}{\varepsilon^2|x - y|}\chi(x - \varepsilon, x + \varepsilon)$

Exact solution:

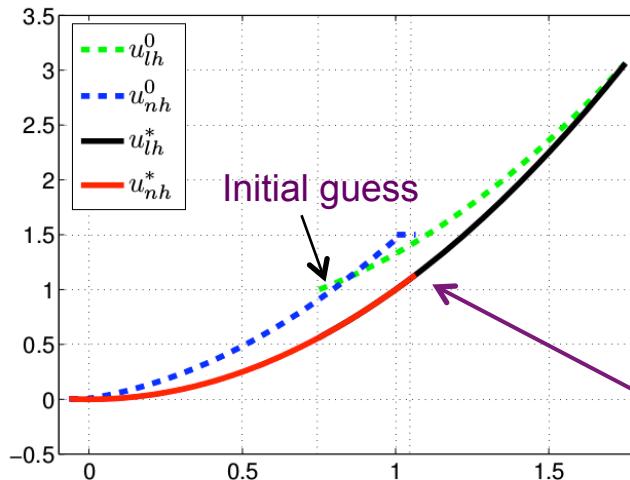
- $u_n = u_l = x$
- $u_n|_{\tilde{\Omega}_i} = x$
- $u_l(1.75) = 1.75$
- $f_n = f_l = 0$



Smooth global solution

Example 1

- $u_n = u_l = x^2$
- $u_n|_{\tilde{\Omega}_i} = x^2$
- $u_l(1.75) = 1.75^2$
- $f_n = f_l = -2$

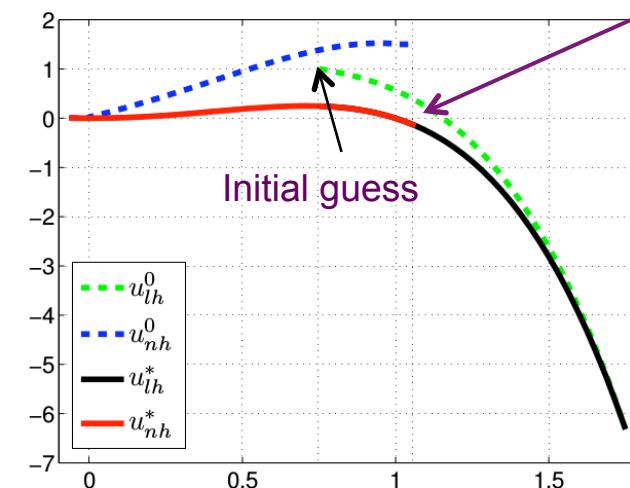


ε	h	$e(u_n)$	rate	$e(u_l)$	rate
0.065	2^{-3}	2.36e-03	-	2.62e-03	-
	2^{-4}	7.54e-04	1.65	7.12e-04	1.88
test 1.	2^{-5}	1.88e-04	2.00	1.78e-04	2.00
	2^{-6}	4.67e-05	2.01	4.44e-05	2.00
	2^{-7}	1.14e-05	2.04	1.10e-05	2.01

Optimization
approach merges the
models seamlessly!

Example 2

- $u_n = u_l = x^2 - x^4$
- $u_n|_{\tilde{\Omega}_i} = x^2 - x^4$
- $u_l(1.75) = 1.75^2 - 1$
- $f_n = -2 + 12x^2 + \varepsilon$
- $f_l = -2 + 12x^2$

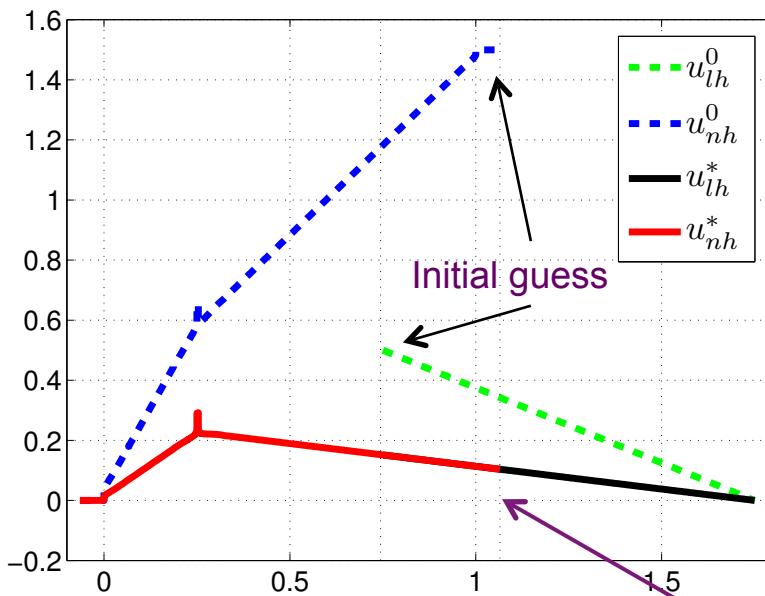


ε	h	$e(u_n)$	rate	$e(u_l)$	rate
0.065	2^{-3}	9.70e-03	-	2.95e-02	-
	2^{-4}	2.68e-03	1.86	7.54e-03	1.97
test 2.	2^{-5}	7.02e-04	1.93	1.90e-03	1.99
	2^{-6}	1.78e-04	1.98	4.76e-04	2.00
	2^{-7}	4.48e-05	1.99	1.19e-04	2.00

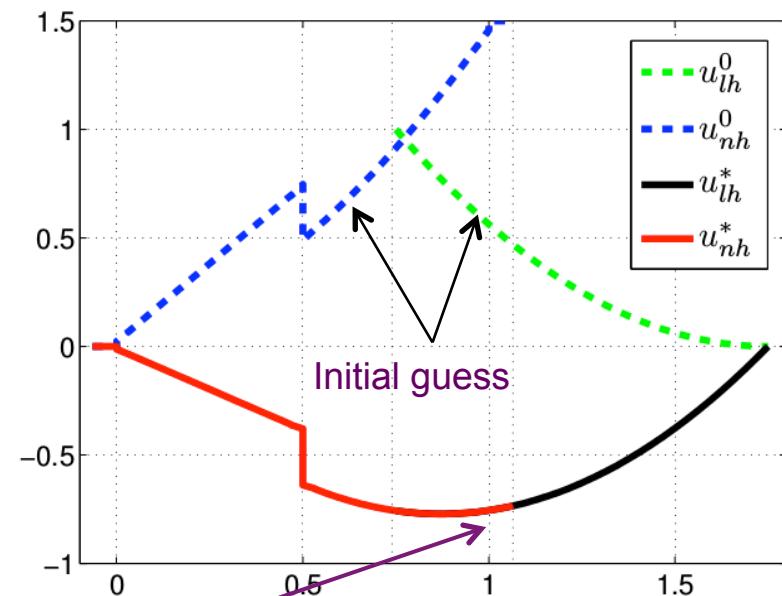
Rough nonlocal solution

Demonstrate the effectiveness of the coupling method in the presence of “real” nonlocal effects

Point force



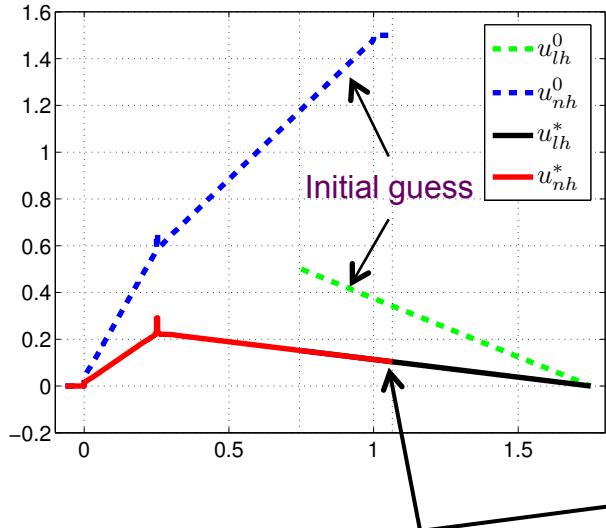
Discontinuous nonlocal state



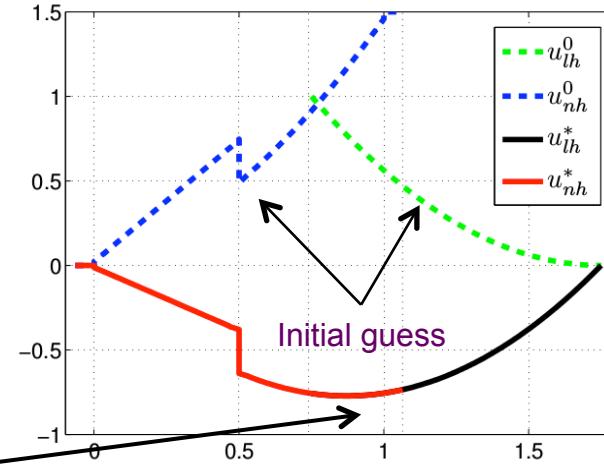
Optimization
approach merges the
models seamlessly!

Absence of ghost forces

Point force

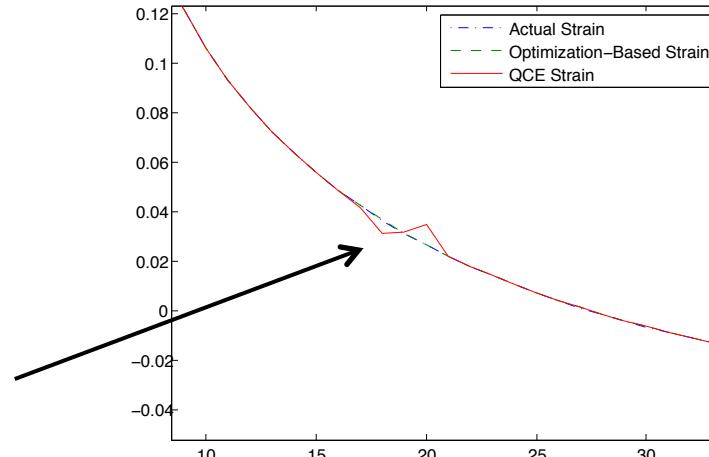


Discontinuous nonlocal



Optimization coupling eliminates ghost forces because it **does not try to enforce equality of disparate states**, rather it tries to **minimize their mismatch**.

On the contrary, ghost forces are very difficult to avoid in formulations where **coupling conditions are hard constraints enforcing equality of disparate states**.

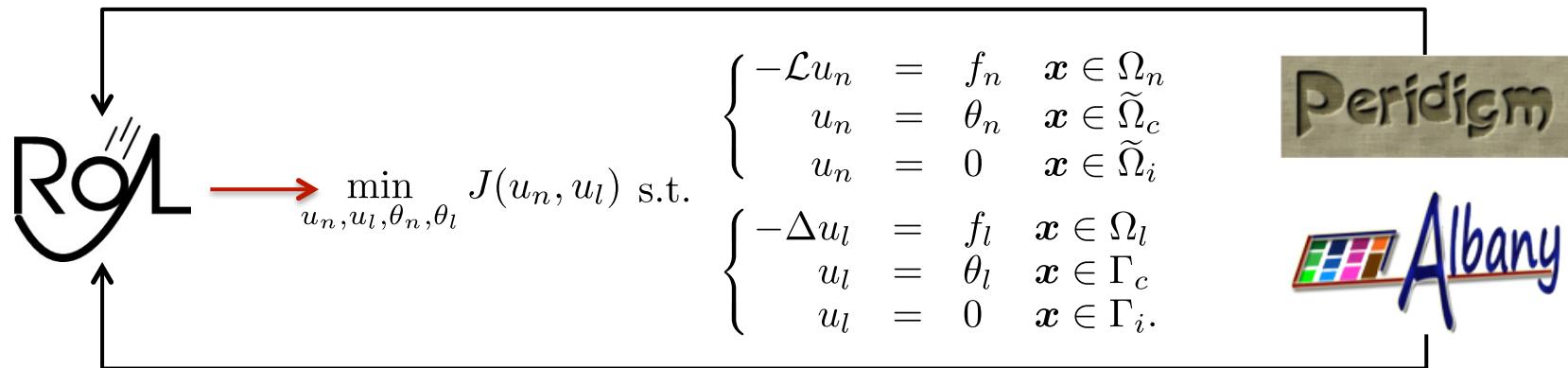


Ghost force example; Luskin et al.

Crossing the valley of death

Significance of the agile components approach:

- Provide access to adjoints, sensitivities, etc. for adjoint-based fast optimization.
- Enable effective transitioning of research ideas into powerful production software.

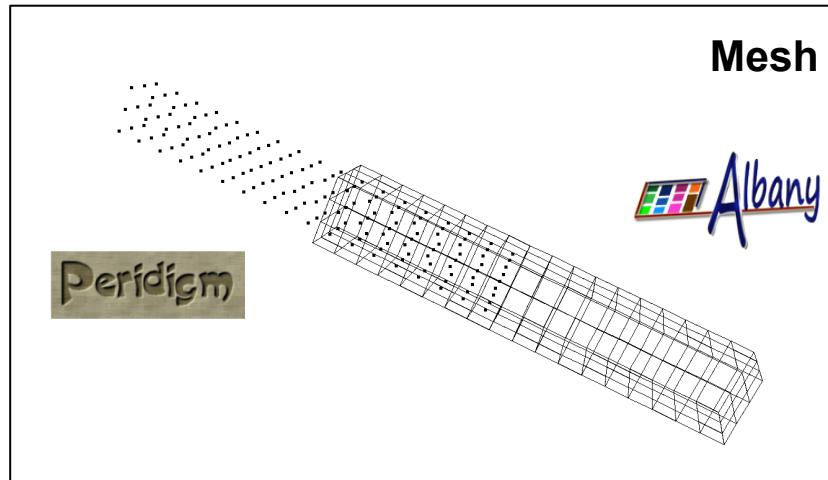
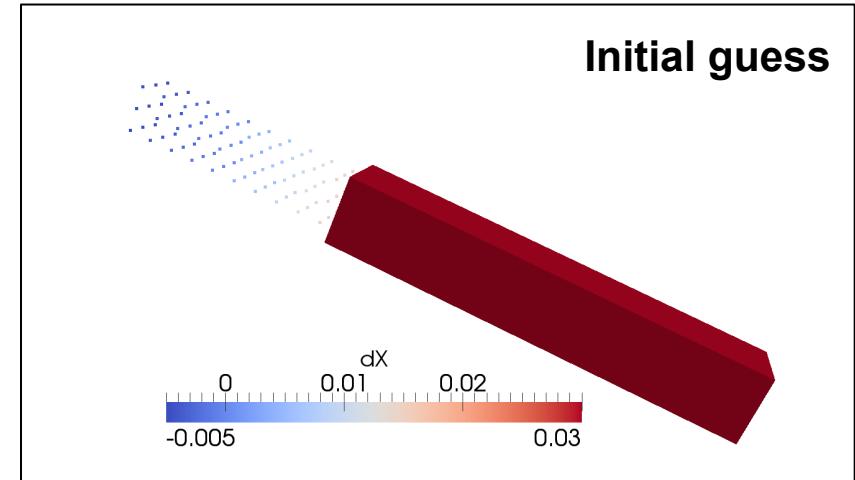
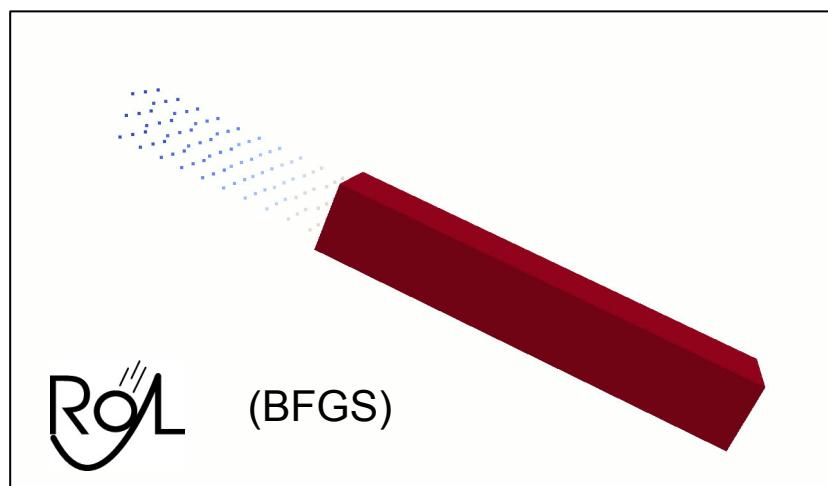
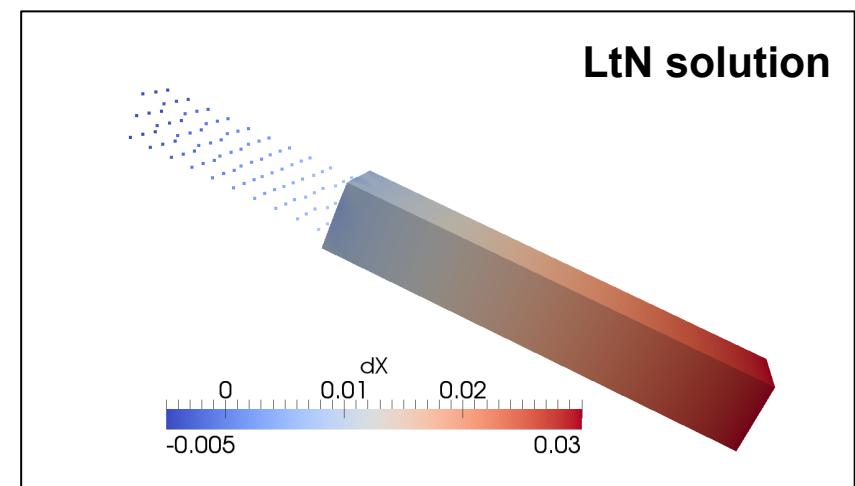


Collaboration with D. Littlewood, M. D'Elia, M. Perego

- Provides a new material simulation capability with unique mathematical and computational properties that are not currently available by other means.
- Can be used as a “corrector” to a conventional coupling to improve its accuracy.

LtN coupling of Peridigm+Albany

Linear consistency test



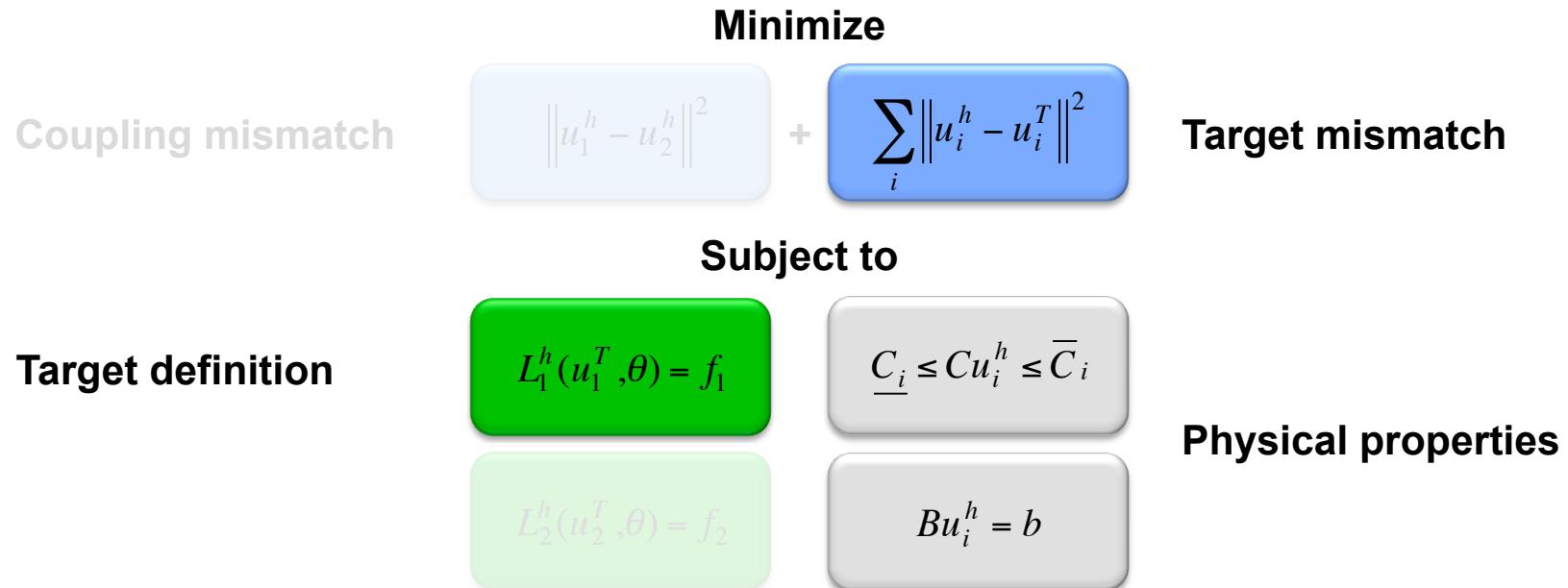
References

1. D. Olson, M. Luskin, A. Shapeev and P. Bochev, Analysis of an optimization-based atomistic-to-continuum coupling method for point defects. To appear in *ESAIM (Mathematical Modeling and Numerical Analysis)*. SAND2014-18401J.
2. D. Olson, P. Bochev, M. Luskin and A. Shapeev. An optimization-based atomistic-to-continuum coupling method. *SIAM. J. Num. Anal.*. Vol. 52, Issue 4, pp.2183-2204 (2014)
3. D. Olson, P. Bochev, M. Luskin and A. Shapeev. Development of an optimization-based atomistic-to-continuum coupling method. In. Lirkov, Wasniewski, editors, Large-Scale Scientific Computing, Vol. 8353, LNCS, pp. 33-44, Springer Berlin, Heidelberg, 2014.
4. M. D'Elia and P. B. Bochev. Optimization-based local-to-nonlocal coupling method, Sandia Technical Report, No. SAND2014-17373J (2014).
5. M. D'Elia and P. B. Bochev, Optimization-Based Coupling of Nonlocal and Local Diffusion Models. *Materials Research Society Proceeding*, (2014) .
6. M. D'Elia and P. Bochev, Formulation, analysis and computation of an optimization-based local-to-nonlocal coupling method. Submitted to *SIAM. J. Num. Anal.* SAND2014-17373J.

Part 2

Case study 2: Transport schemes

In Part 2 we apply optimization ideas to develop **property-preserving** methods for **transport of passive tracers** in climate models.



This case study highlights application of optimization ideas for the preservation of relevant physical properties in numerical methods.

P. Bochev, D. Ridzal, M. Shashkov, *Fast optimization-based conservative remap of scalar fields*, *J. Comp. Phys.* 246 (2013)

P. Bochev, D. Ridzal, K. Peterson, *Optimization-based remap and transport: A divide and conquer strategy for feature-preserving discretizations*, *J. Comp. Phys.* 257, (2014) 1113 – 1139.

Transport of passive tracers

Governing equations

$$\left. \begin{array}{l} \frac{\partial \rho}{\partial t} + \nabla \cdot \rho \mathbf{u} = 0 \\ \frac{\partial \rho q}{\partial t} + \nabla \cdot \rho q \mathbf{u} = 0 \end{array} \right\} \Rightarrow \frac{\partial q}{\partial t} + \mathbf{u} \cdot \nabla q = 0 \quad \text{where:} \quad \begin{array}{l} \rho \text{ - density} \\ q \text{ - tracer mixing ratio} \\ \mathbf{u} \text{ - velocity} \end{array}$$

Key requirements

1. Conservation of mass and total tracer: $M = \int_{\Omega} \rho dV$ $Q = \int_{\Omega} \rho q dV$
2. Preservation of local bounds for q and ρ : $\rho_i^{\min} \leq \rho_i \leq \rho_i^{\max}$ $q_i^{\min} \leq q_i \leq q_i^{\max}$
3. Preservation of linear correlations between tracers:
4. Preservation of constant tracers, i.e., “compatibility” $q_1(x) = aq_2(x) + b$

We begin Part 2 by developing a new scheme, which combines

- Spectral elements (SE) for spatial discretization.
- Semi-Lagrangian (SL) approach for time stepping.
- Optimization for enforcing conservation and local bounds.

Why SE + SL?

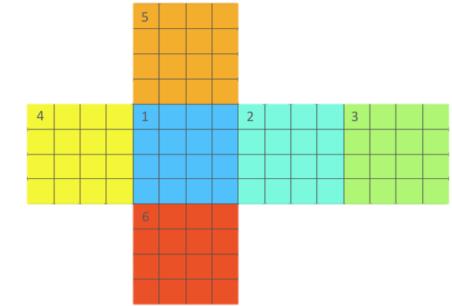
Advantages

- **Diagonal** mass matrix
- **Spectral** accuracy
- **Avoids severe CFL** restrictions of high-order methods
- **Simple!!** (compare, e.g., to tent-pitching schemes)
- **HOMME** (High Order Modeling Environment) uses SE and DG on fully **unstructured quadrilateral** meshes on the sphere such as the cubed-sphere mesh.

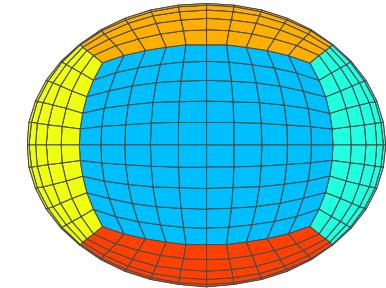
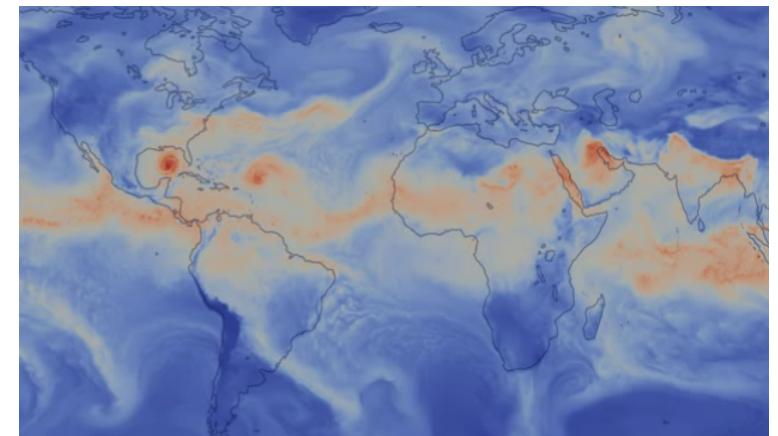
HOMME is a **community model** supported by the NSF and the DOE with contributions from NCAR, DOE laboratories and universities.

HOMME is the **default dynamical core** of the Community Atmosphere Model (CAM) and the Community Earth System Model (CESM)

The new SL-SE scheme for tracers is motivated by and implemented in HOMME.



cubed-sphere mesh



Dennis J, Edwards J, Evans K, Guba O, Lauritzen P, Mirin A, St.-Cyr A, Taylor M, Worley P. 2012. CAM-SE: A scalable spectral element dynamical core for the Community Atmosphere Model. *IJHPCA*. 26:74-89.

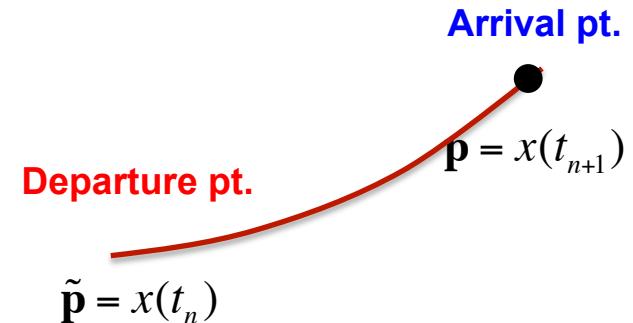
A generic SL transport scheme

Key idea: convert PDEs into ODEs along Lagrangian particle paths

$$\left. \begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot \rho \mathbf{u} &= 0 \\ \frac{\partial \rho q}{\partial t} + \nabla \cdot \rho q \mathbf{u} &= 0 \end{aligned} \right. \rightarrow \left. \begin{aligned} \frac{\partial \rho}{\partial t} + \mathbf{u} \cdot \nabla \rho &= -\rho \nabla \cdot \mathbf{u} \\ \frac{\partial q}{\partial t} + \mathbf{u} \cdot \nabla q &= 0 \end{aligned} \right\} \rightarrow \frac{dx}{dt} = \mathbf{u}(x(t), t) \rightarrow \left\{ \begin{aligned} \frac{D\rho}{Dt} &= -\rho \nabla \cdot \mathbf{u} \\ \frac{Dq}{Dt} &= 0 \end{aligned} \right.$$

Step 1: solve the “final value” problem in $[t_n, t_{n+1}]$:

$$\frac{dx}{dt} = \mathbf{u}(x(t), t) \text{ and } x(t_{n+1}) = \mathbf{p} \rightarrow \tilde{\mathbf{p}} = x(t_n)$$



Step 2: solve the initial value problems in $[t_n, t_{n+1}]$:

$$\frac{D\rho}{Dt} = -\rho \nabla \cdot \mathbf{u} \text{ and } \rho(t_n) = \rho_h(\tilde{\mathbf{p}}, t_n) \rightarrow \rho_h(\mathbf{p}, t_{n+1}) = \rho(t_{n+1})$$

$$\frac{Dq}{Dt} = 0 \text{ and } q(t_n) = q_h(\tilde{\mathbf{p}}, t_n) \rightarrow q_h(\mathbf{p}, t_{n+1}) = q(t_{n+1})$$

ODE solution at t_{n+1} = PDE solution at **arrival pt.**

Initial value at t_n = PDE solution at **departure pt.**

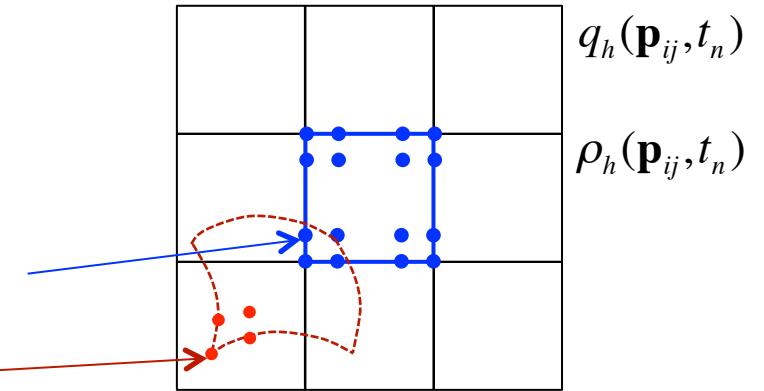
Combine with SE reconstruction

Step 1: solve the “final value” problem in $[t_n, t_{n+1}]$:

$$\frac{dx}{dt} = \mathbf{u}(x(t), t) \text{ and } x(t_{n+1}) = \mathbf{p}_{ij}$$

$\{\mathbf{p}_{ij}\} \rightarrow$ Arrival points = Gauss-Lobatto points

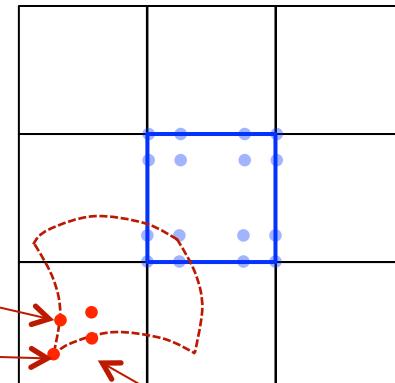
$\{\tilde{\mathbf{p}}_{ij}\} \rightarrow$ Departure points



Step 2: solve the initial value problems in $[t_n, t_{n+1}]$:

$$\frac{D\rho}{Dt} = -\rho \nabla \cdot \mathbf{u} \text{ and } \rho(t_n) = \rho_h(\tilde{\mathbf{p}}_{ij}, t_n)$$

$$\frac{Dq}{Dt} = 0 \text{ and } q(t_n) = q_h(\tilde{\mathbf{p}}_{ij}, t_n)$$



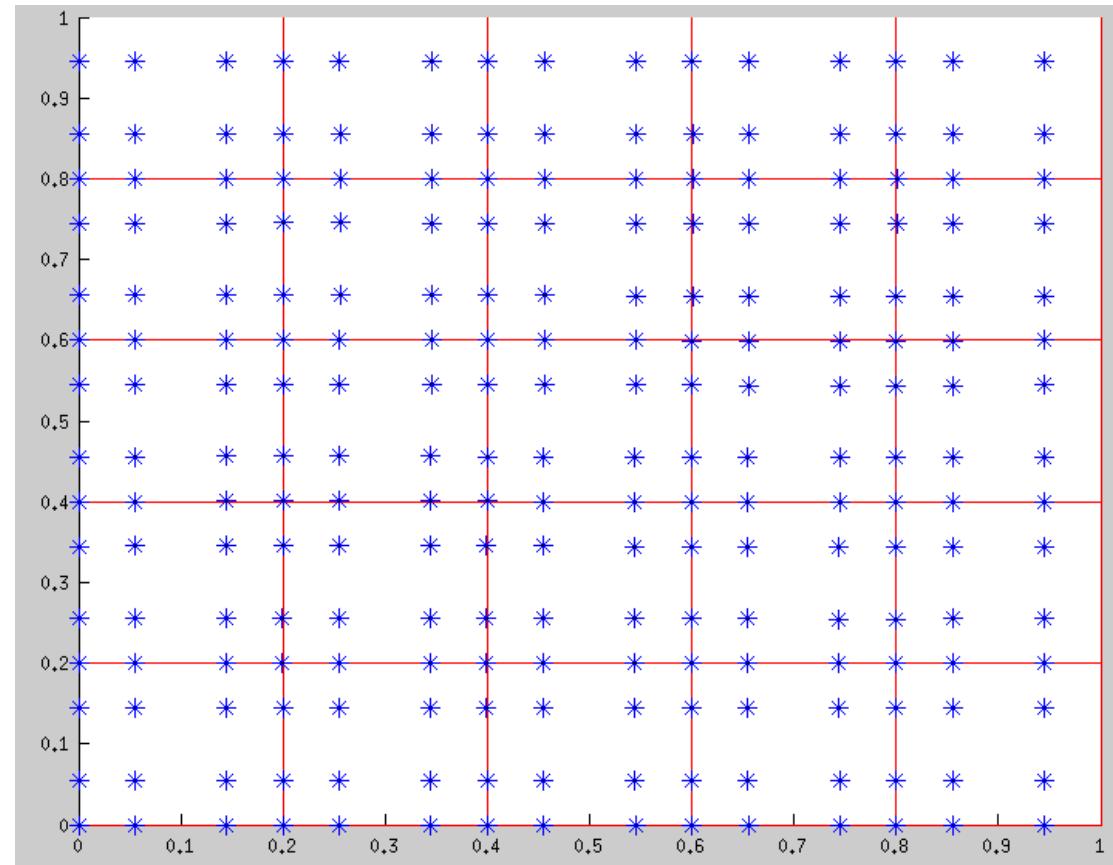
Initial values = spectral element reconstruction at Gauss-Lobatto **departure points**

Example: rotation

$$\frac{dx}{dt} = \mathbf{u}(x(t), t) \text{ and } x(t_{n+1}) = \mathbf{p}_{ij}$$

$$\mathbf{u}(x(t), t) = \begin{pmatrix} 0.5 - y \\ 0.5 - x \end{pmatrix}$$

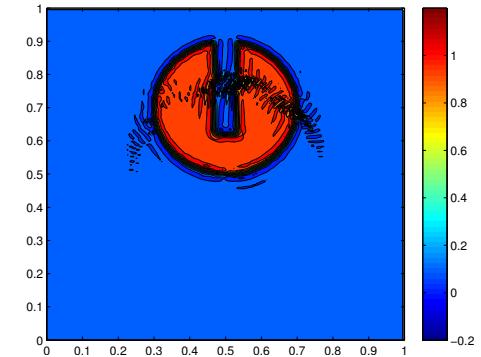
Solved by RK4



Generic SE+SL scheme scorecard

Recall the advantages:

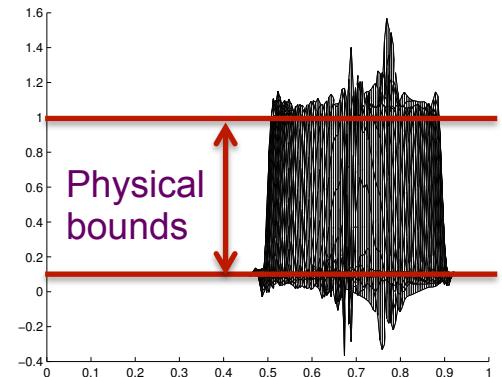
- **Diagonal** mass matrix
- **Spectral** accuracy
- **Avoids severe CFL** restrictions of high-order methods
- **Simple!!** (compare, e.g., to tent-pitching schemes)



However, the generic scheme

- **Does not conserve mass and total tracer**
- **Does not preserve local solution bounds**

Critical for physically consistent tracer transport, since **high-order spatial schemes are** prone to **unphysical oscillations**:



Solution: combine the generic SE+SL scheme with optimization to

- **Conserve mass and total tracer**
- **Preserve local solution bounds**

Optimization-based SE-SL scheme

Start with a generic SE+SL scheme:

1. Determine GL **departure points** $\rightarrow \tilde{\mathbf{p}}_{ij} = x(t_n)$
2. Determine solution at **arrival points** $\rightarrow \rho_h(\mathbf{p}_{ij}, t_{n+1}) = \rho(t_{n+1}) \text{ and } q_h(\mathbf{p}_{ij}, t_{n+1}) = q(t_{n+1})$

Then proceed as follows to find the tracer at t_{n+1} (density is similar)

3. Set **optimization target** to SE+SL solution: $\hat{q} := q_h(\mathbf{p}_{ij}, t_{n+1})$
4. Determine **local solution bounds**: $q_{ij}^{\min} \leq q(\mathbf{p}_{ij}, t_{n+1}) \leq q_{ij}^{\max}$ $\rightarrow \text{TBD later!}$
5. Set solution at the new time step by solving

$$q_{n+1}^* = \underset{q \in Q^r}{\operatorname{argmin}} \|q - \hat{q}\|_0^2 \quad \text{subject to} \quad \begin{cases} \int_{\Omega} q \, dx = \int_{\Omega} q_n \, dx & \xleftarrow{\text{Conservation}} \\ q_{ij}^{\min} \leq q_{ij} \leq q_{ij}^{\max} & \xleftarrow{\text{Local bounds}} \end{cases}$$

The optimization problem

Algebraic form

$$\mathbf{q}_{n+1} = \underset{\mathbf{q}}{\operatorname{argmin}} \mathbf{q}^T \mathbf{M} \mathbf{q} + \mathbf{c}^T \mathbf{q} + \mathbf{c}_0 \quad \text{subject to} \quad \begin{cases} \mathbf{w}^T \mathbf{q} = \mathbf{w}^T \mathbf{q}_n & \leftarrow \text{Conservation} \\ \mathbf{q}^{\min} \leq \mathbf{q} \leq \mathbf{q}^{\max} & \leftarrow \text{Local bounds} \end{cases}$$

$$\mathbf{M} = \int_{\Omega} \phi_{ij} \phi_{kl} dx = \operatorname{diag}(M_{ij}); \quad \mathbf{c} = -2\mathbf{M}\hat{\mathbf{q}}; \quad \mathbf{c}_0 = \hat{\mathbf{q}}^T \mathbf{M} \hat{\mathbf{q}}; \quad \mathbf{w} \rightarrow \text{Gauss-Lobatto weights}$$

- ☞ Example of a “*singly linearly constrained QP with simple bounds*”
- ☞ QP structure admits a *fast O(N)* optimization algorithm.

Theorem (Existence of optimal solutions)

The feasible set of the optimization problem for the solution transfer is non-empty. The problem has a unique optimal solution.

Fast Optimization Algorithm

Without the **equality constraint** the QP **splits** into N one-dimensional QPs with simple bounds:

$$\begin{aligned}
 q_{ij,n+1} &= \underset{q_{ij}}{\operatorname{argmin}} M_{ij} (q_{ij} - \hat{q}_{ij})^2 \\
 \text{subject to } q_{ij}^{\min} &\leq q_{ij} \leq q_{ij}^{\max}
 \end{aligned}
 \rightarrow q_{ij,n+1} = \text{med}(q_{ij}^{\min}, \hat{q}_{ij}, q_{ij}^{\max})$$

The Lagrangian

$$L(\mathbf{q}, \lambda, \mu_1, \mu_2) = \sum_{node} M_{ij} (q_{ij} - \hat{q}_{ij})^2 - \lambda \sum_{node} w_{ij} (q_{ij} - q_{ij,n}) - \sum_{node} \mu_{1,ij} (q_{ij} - q_{ij}^{\min}) - \sum_{node} \mu_{2,ij} (q_{ij} - q_{ij}^{\max})$$

The Karush-Kuhn-Tucker (KKT) conditions

$$\begin{cases}
 q_{ij} = \hat{q}_{ij} + \lambda + \mu_{1,ij} - \mu_{2,ij} \\
 q_{ij}^{\min} \leq q_{ij} \leq q_{ij}^{\max} \\
 \mu_{1,ij} \geq 0, \quad \mu_{2,ij} \geq 0 \quad \text{and} \quad \sum_{node} w_{ij} (q_{ij} - q_{ij,n}) = 0 \\
 \mu_{1,ij} (q_{ij} - q_{ij}^{\min}) = 0, \\
 \mu_{2,ij} (q_{ij} - q_{ij}^{\max}) = 0
 \end{cases}$$

Without the **equality constraint** the KKT conditions are **fully separable** and can be solved for any fixed value of λ .

Fast Optimization Algorithm

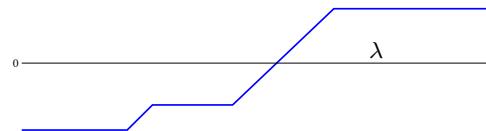
Step 1: solve for λ fixed

$$\begin{cases} q_{ij} = \tilde{q}_{ij} + \lambda; \mu_{1,ij} = 0; \mu_{2,ij} = 0 & \text{if } q_{ij}^{\min} \leq \tilde{q}_{ij} + \lambda \leq q_{ij}^{\max} \\ q_{ij} = q_{ij}^{\min}; \mu_{2,ij} = 0; \mu_{1,ij} = q_{ij} - \tilde{q}_{ij} - \lambda & \text{if } q_{ij}^{\min} \geq \tilde{q}_{ij} + \lambda \\ q_{ij} = q_{ij}^{\max}; \mu_{1,ij} = 0; \mu_{2,ij} = \tilde{q}_{ij} - q_{ij} + \lambda & \text{if } \tilde{q}_{ij} + \lambda \geq q_{ij}^{\max} \end{cases} \rightarrow q_{ij}(\lambda) = \text{med}(q_{ij}^{\min}, \tilde{q}_{ij} + \lambda, q_{ij}^{\max});$$

Trivial, communication-free
 $O(N)$ computation

Step 2: adjust λ in an outer iteration to satisfy the single equality constraint

Solve $\sum_{node} w_{ij} (q_{ij}(\lambda) - q_{ij,n}) = 0$



- Piecewise linear, monotonically increasing function of single scalar variable λ
- Can solve to machine precision by a simple secant method
- Globalization is unnecessary: $\lambda_0=0$ is an excellent initial guess: $q_{ij}(\lambda_0) = \text{med}(q_{ij}^{\min}, \tilde{q}_{ij}, q_{ij}^{\max})$;
- $q_{ij}(\lambda_0)$ solves the QP without the equality constraint, i.e., “almost” a solution
- Locality $\Rightarrow q_{ij}(\lambda_0)$ barely violates the mass conservation constraint

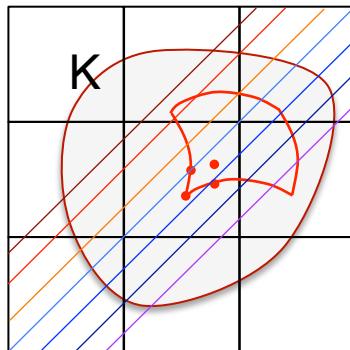
Local solution bounds: $\nabla \cdot \mathbf{u} = 0$

For solenoidal fields Step 2 is trivial:

$$\frac{D\rho}{Dt} = 0 \Rightarrow \rho(x(t), t) = \text{const} \rightarrow \rho_h(\mathbf{p}_{ij}, t_{n+1}) = \rho(t_{n+1}) = \rho(t_n) = \rho_h(\tilde{\mathbf{p}}_{ij}, t_n)$$

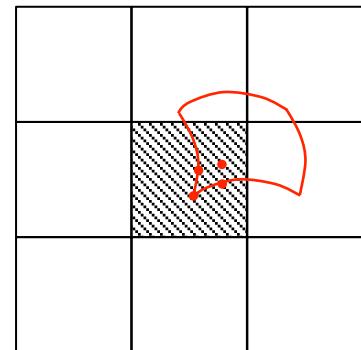
$$\frac{Dq}{Dt} = 0 \Rightarrow q(x(t), t) = \text{const} \rightarrow q_h(\mathbf{p}_{ij}, t_{n+1}) = q(t_{n+1}) = q(t_n) = q_h(\tilde{\mathbf{p}}_{ij}, t_n)$$

Solution is **constant** along Lagrangian paths \Rightarrow taking min/max in a **neighborhood of the departure points** is sufficient to determine solution bounds:

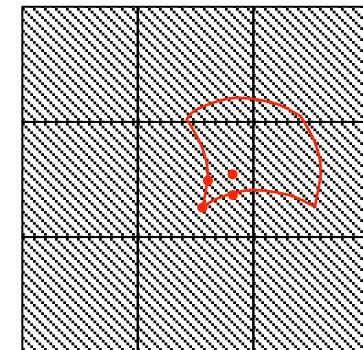


$$q_{ij}^{\min} = \min_{\mathbf{p} \in K} q(\mathbf{p}_{ij}, t_n)$$

$$q_{ij}^{\max} = \max_{\mathbf{p} \in K} q(\mathbf{p}_{ij}, t_n)$$



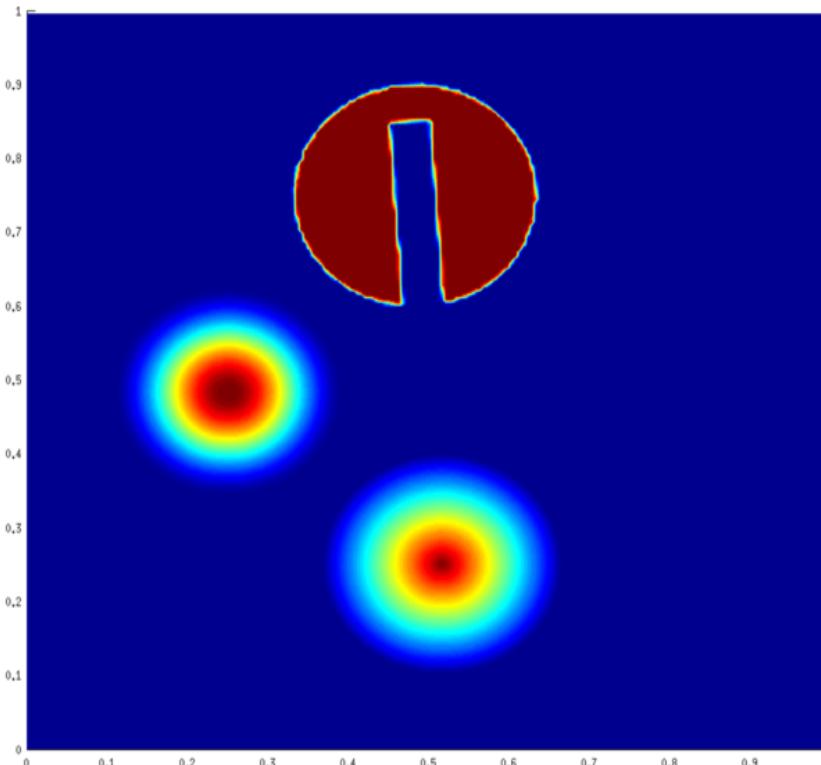
Tight bounds



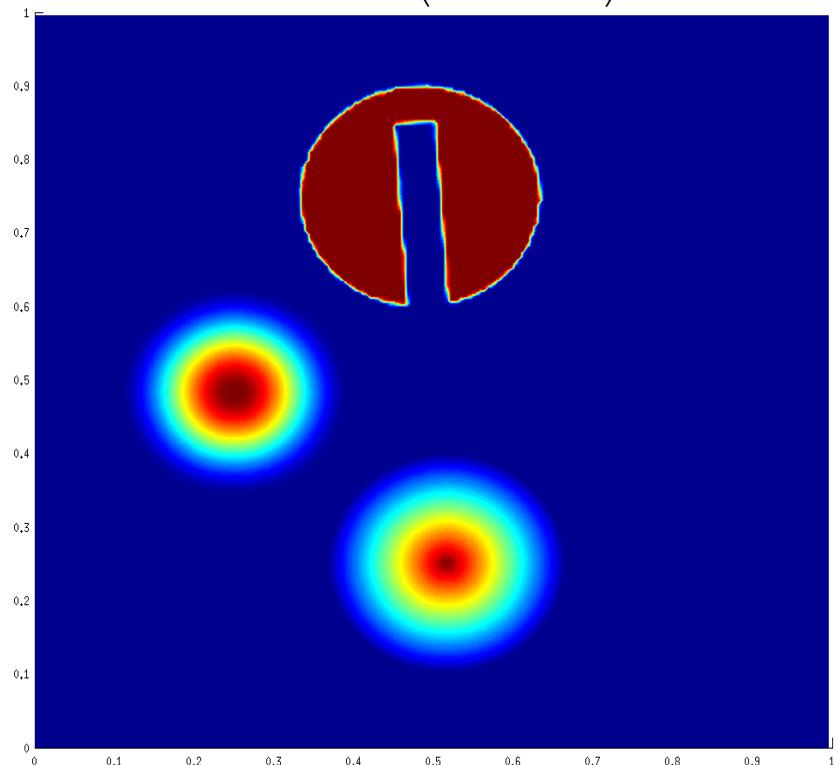
Loose bounds

Rotational flow: LeVeque's combo

Zalesak cylinder, cone and a smooth hump



$$\mathbf{u}(\mathbf{p}, t) = \begin{pmatrix} 0.5 - y \\ 0.5 - x \end{pmatrix}$$

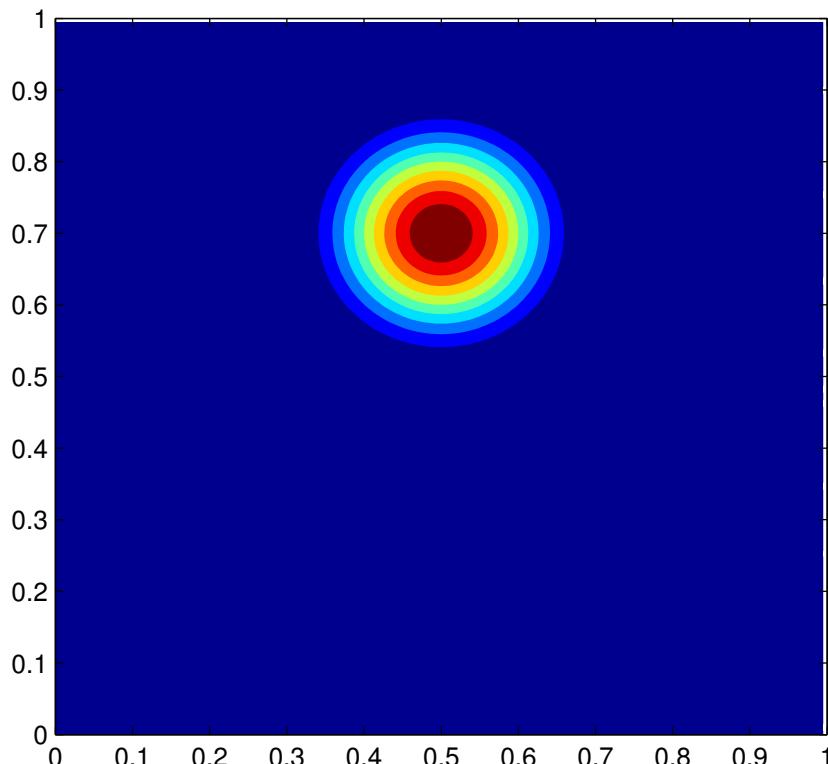
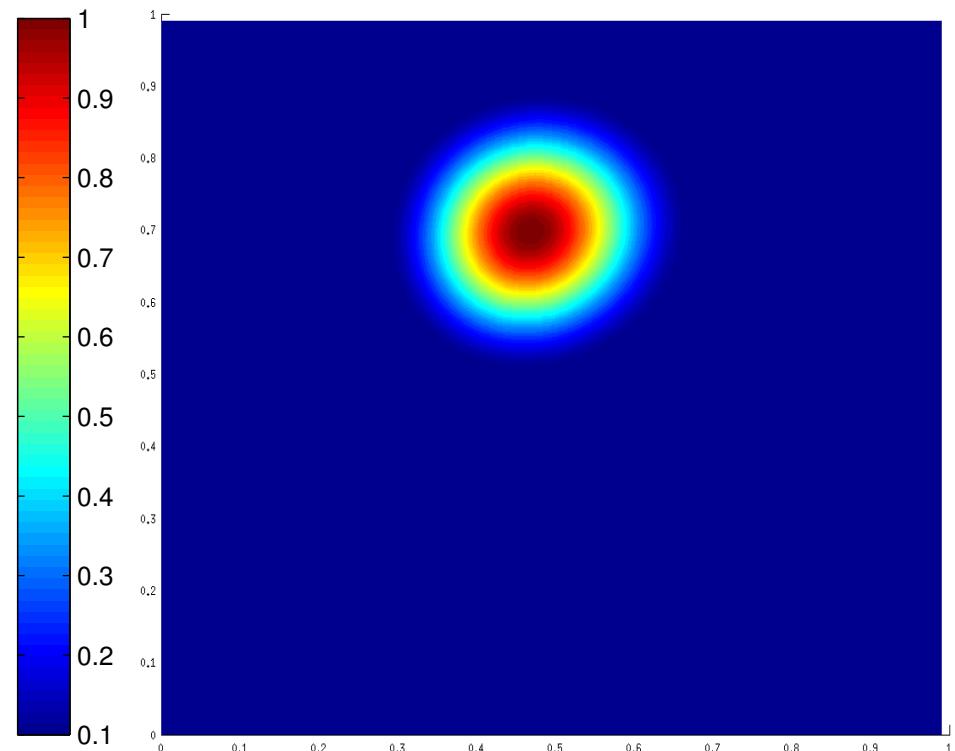


80x80 bi-cubic elements; CFL=0.7

Deformational flow: cosine bell

$$q(x,t) = 0.5(1.0 + \cos(\pi r_1)); \quad r_1 = \frac{\min(r, r_0)}{r_0}$$

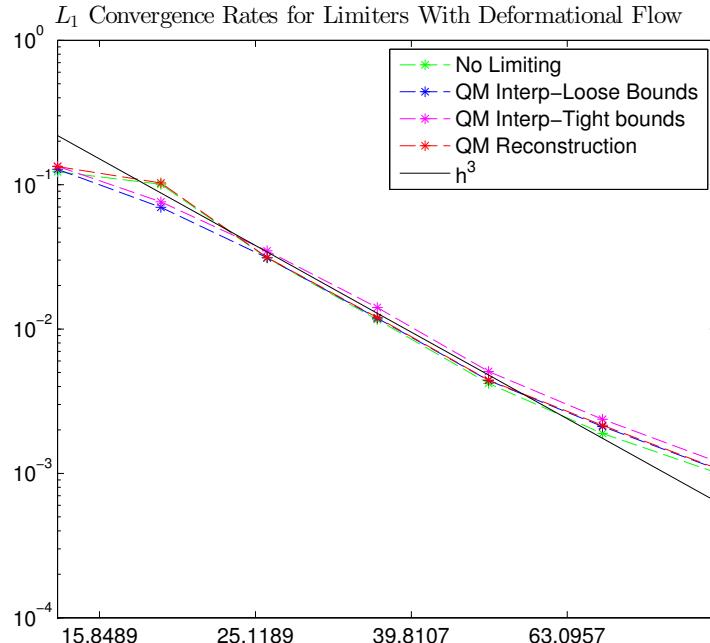
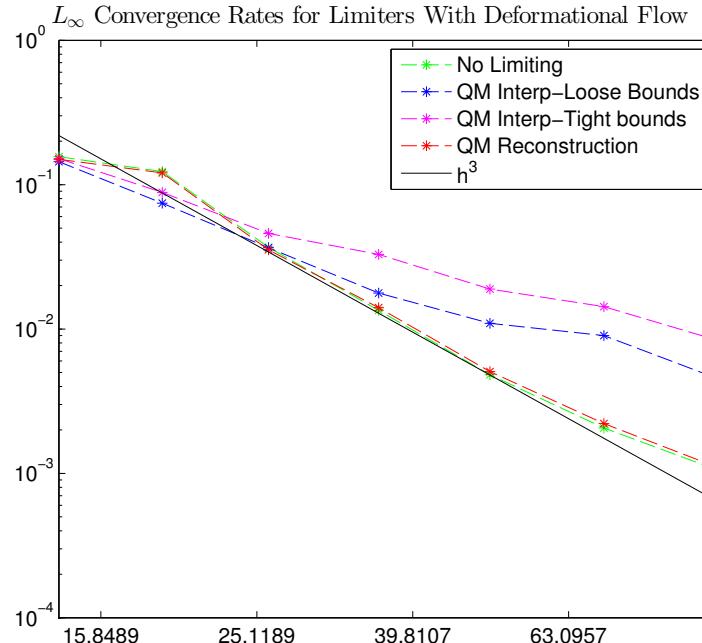
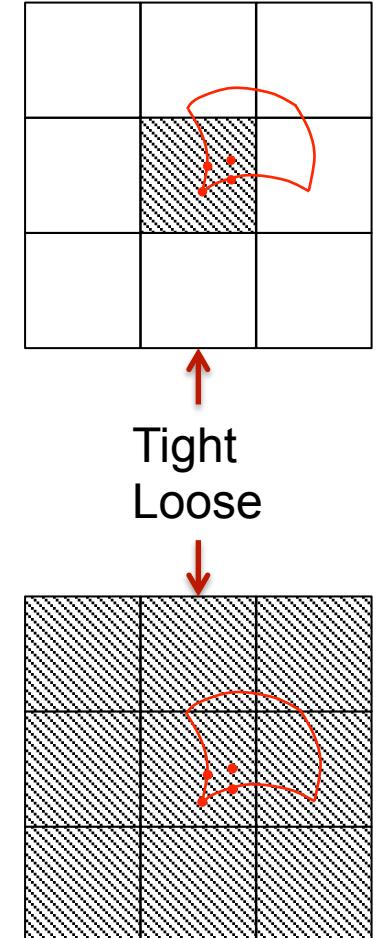
$$\mathbf{u}(\mathbf{p},t) = \begin{pmatrix} \sin(\pi x)^2 \sin(2\pi y) \cos(\pi t / T) \\ -\sin(\pi y)^2 \sin(2\pi x) \cos(\pi t / T) \end{pmatrix}$$



80x80 bi-cubic elements; CFL=0.7

R. J. LeVeque, High-resolution conservative algorithms for advection in incompressible flow, *SINUM* 33 (1996) 627–665.

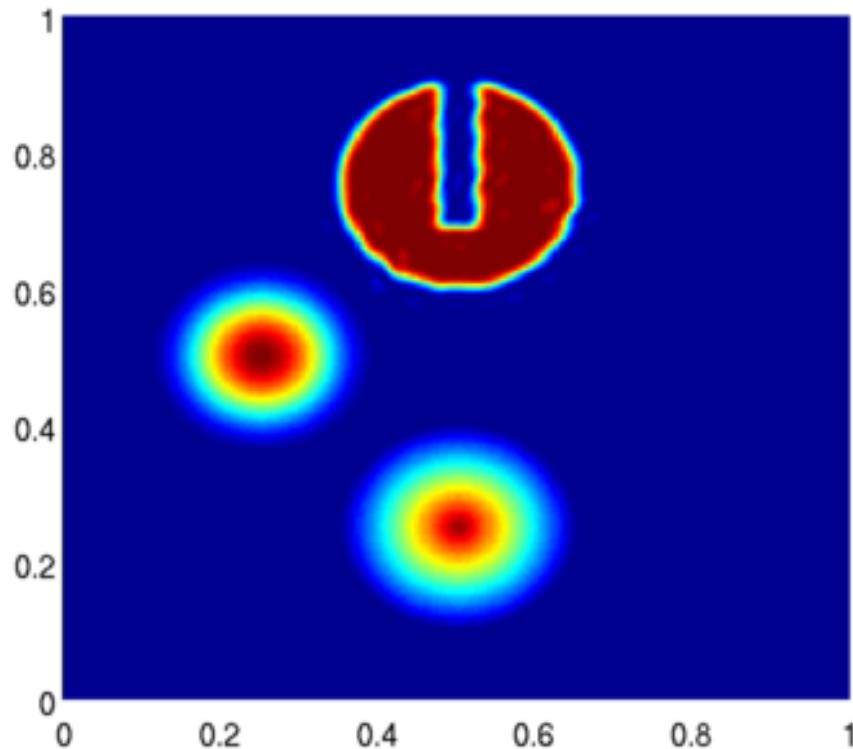
Convergence rates: Gaussian hill



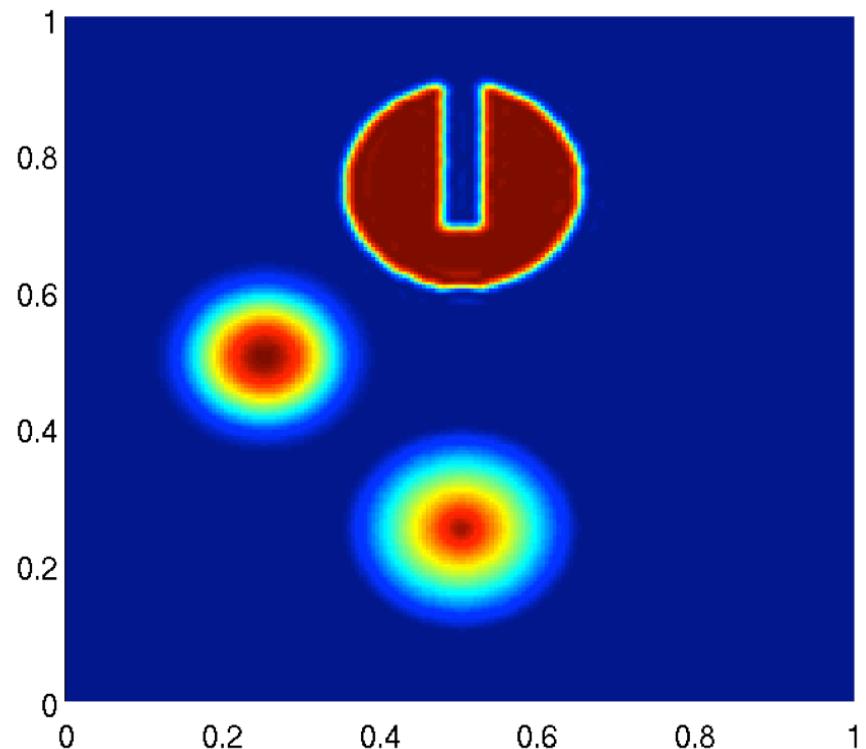
A SE+SL method with **limiters** would typically **truncate the order** of convergence to 2 even for L1 errors.

We see **essentially no degradation** in the 3rd order L1 error rate (compared to “raw” solution convergence).

Long-time accuracy



CFL=7.04



CFL=14.08

60x60 bi-cubic elements; 20 full revolutions.

Local solution bounds: $\nabla \cdot \mathbf{u} \neq 0$

For $\nabla \cdot \mathbf{u} \neq 0$ the density equation is a **balance** rather than a **conservation law**.

- ⇒ The density is **not constant** along Lagrangian paths.
- ⇒ Taking **min/max in a neighborhood** of the departure points is **not appropriate**.

Solution: combining the **Geometric Conservation Law** and the **balance law**

$$\left. \begin{array}{l} \text{GC Law: } \frac{\partial V}{\partial t} + \mathbf{u} \cdot \nabla V = V \nabla \cdot \mathbf{u} \\ \text{Balance law: } \frac{\partial \rho}{\partial t} + \mathbf{u} \cdot \nabla \rho = -\rho \nabla \cdot \mathbf{u} \end{array} \right\} \Rightarrow \frac{\partial \rho V}{\partial t} + \mathbf{u} \cdot \nabla(\rho V) = 0 \Rightarrow \boxed{\frac{D(\rho V)}{Dt} = 0}$$

yields a **new conservation law** for the point “mass” distribution $M := \rho V$.

The idea is to **associate and track** an arbitrary **initial volume** V_0 and “mass” with **every GLL point** and use these quantities to provide bounds for the density.

Local solution bounds: $\nabla \cdot \mathbf{u} \neq 0$

Assume V_n and M_n are given at t_n :

4a. Solve the GCL in $[t_n, t_{n+1}]$

$$\frac{DV}{Dt} = V \nabla \cdot \mathbf{u} \quad \text{and} \quad V(t_n) = V_n \quad \rightarrow \quad V_{n+1} = V(t_{n+1})$$

4b. Determine local bounds for the point masses:

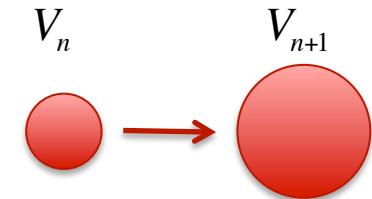
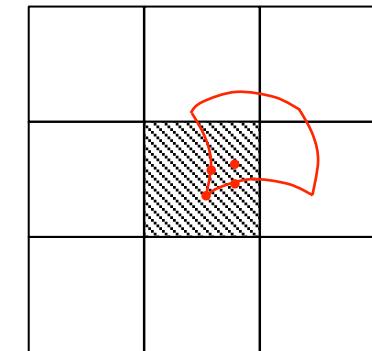
$$M_{ij}^{\min} = \min_{\mathbf{p} \in K} M(\mathbf{p}_{ij}, t_n) \quad M_{ij}^{\max} = \max_{\mathbf{p} \in K} M(\mathbf{p}_{ij}, t_n)$$

4c. Determine local bounds for the density:

$$\rho^{\min} = \frac{M^{\min}}{V_{n+1}} \quad \rho^{\max} = \frac{M^{\max}}{V_{n+1}}$$

4d. Solve the mass law in $[t_n, t_{n+1}]$

$$\frac{DM}{Dt} = 0 \quad \text{and} \quad M(t_n) = M_n$$

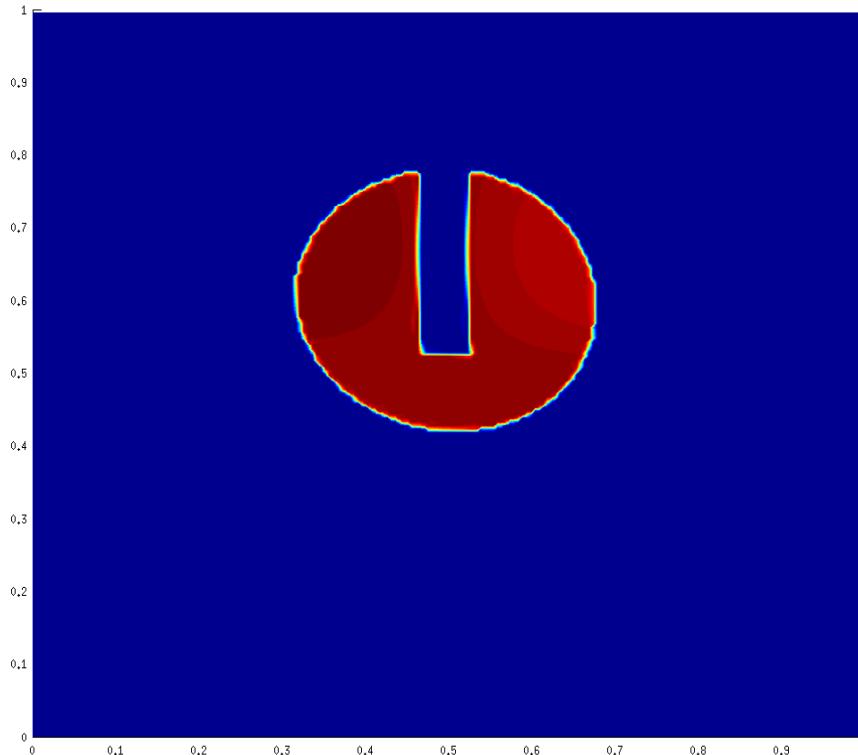


$$M_{ij}^{\max} = \max_{\mathbf{p} \in K} M(\mathbf{p}_{ij}, t_n)$$

$$M_{ij}^{\min} = \min_{\mathbf{p} \in K} M(\mathbf{p}_{ij}, t_n)$$

Divergent flow

$$\mathbf{u}(\mathbf{p}, t) = \begin{pmatrix} -\sin(\pi x)^2 \sin(2\pi(y-0.5)) \cos(\pi(y-0.5)^2 \cos(\pi t / T)) \\ \frac{1}{2} \sin(\pi x) \cos(\pi(y-0.5))^3 \cos(\pi t / T) \end{pmatrix}$$



80x80 bi-cubic elements; CFL=0.7

A cell-centered semi-Lagrangian (SL) scheme

Why do we care about cell-centered schemes?

- Cell-centered schemes are **ubiquitous in legacy DOE codes**. However,
 - These schemes use **monotone reconstruction**, i.e., **limiters** to control bounds.
 - Limiters use **local “worst case”** scenarios when enforcing the bounds.
 - Limiters **entangle accuracy** with **preservation of bounds**, which **obscures** sources of discretization errors.
- Besides getting a **better scheme** we will have another chance to showcase the **use of optimization** to preserve physical properties!

Cell-centered discretization of density and tracer

$$\mu_i = \int_{C_i} dx$$

Cell area

$$\rho_i = \frac{m_i}{\mu_i} \quad \text{Cell average density}$$

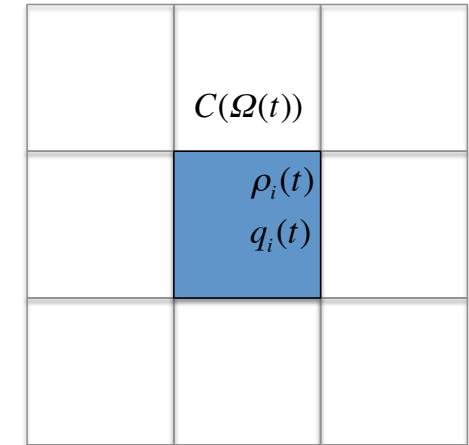
$$m_i = \int_{C_i} \rho dx$$

Cell mass

$$q_i = \frac{Q_i}{m_i} \quad \text{Cell average tracer}$$

$$Q_i = \int_{C_i} \rho q dx$$

Cell tracer

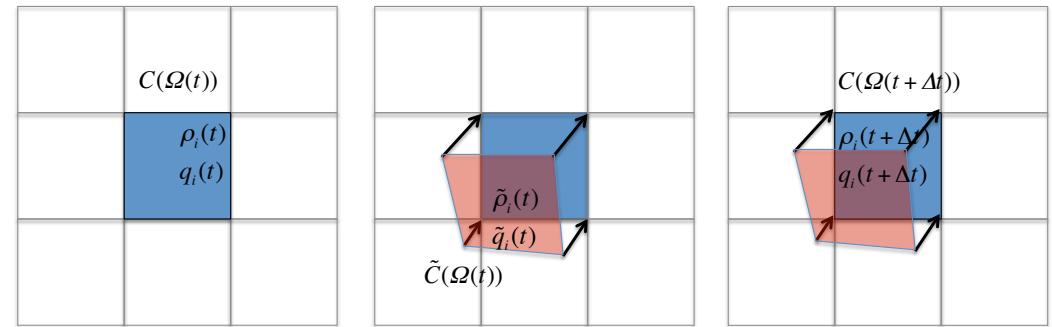


A generic cell-centered SL scheme

For Lagrangian volumes

$$\frac{d}{dt} \int_{C_i} \rho dx = 0 \longrightarrow m_i(t + \Delta t) = m_i(t)$$

$$\frac{d}{dt} \int_{C_i} \rho q dx = 0 \longrightarrow Q_i(t + \Delta t) = Q_i(t)$$



Step 1: Trace back cell vertices to find the Lagrangian (departure) grid $\tilde{C}(\Omega(t))$

Step 2: Remap Lagrangian quantities from arrival to departure grid:

- Reconstruct $\tilde{\rho}_i$ such that $\rho_i^{\min} \leq \tilde{\rho}_i \leq \rho_i^{\max}$
- Reconstruct \tilde{q}_i such that $q_i^{\min} \leq \tilde{q}_i \leq q_i^{\max}$

Lagrangian quantities

$$\left\{ \begin{array}{l} \tilde{m}_i = \int_{\tilde{C}_i} \tilde{\rho}_i dx \\ \tilde{Q}_i = \int_{\tilde{C}_i} \tilde{\rho}_i \tilde{q}_i dx \end{array} \right.$$

Step 3: Update values on the Eulerian (arrival) grid $\tilde{C}(\Omega(t))$

$$m_i(t + \Delta t) = \tilde{m}_i \longrightarrow \rho_i = \frac{\tilde{m}_i}{\mu_i}$$

$$Q_i(t + \Delta t) = \tilde{Q}_i \longrightarrow q_i = \frac{\tilde{Q}_i}{m_i}$$

Optimization-based low-order SL scheme

Step 1: Trace back cell vertices to find the Lagrangian (**departure**) grid $\tilde{C}(\Omega(t))$

Step 2: Remap Lagrangian quantities from arrival to departure grid:

- Reconstruct $\tilde{\rho}_i$ **without applying bounds**
- Reconstruct \tilde{q}_i **without applying bounds**
- **Solve two quadratic programs (QP) for the Lagrangian quantities:**

Lagrangian targets

$$\left\{ \begin{array}{l} \tilde{m}_i^T = \int_{\tilde{C}_i} \tilde{\rho}_i \, dx \\ \tilde{Q}_i^T = \int_{\tilde{C}_i} \tilde{\rho}_i \tilde{q}_i \, dx \end{array} \right.$$

$$\min_{\tilde{m}_i} \sum_{C_i} \left(\tilde{m}_i - \tilde{m}_i^T \right)^2 \text{ subject to} \\ \sum_{C_i} \tilde{m}_i = M; \quad \text{and} \quad m_i^{\min} \leq \tilde{m}_i \leq m_i^{\max}$$

$$\min_{\tilde{Q}_i} \sum_{C_i} \left(\tilde{Q}_i - \tilde{Q}_i^T \right)^2 \text{ subject to} \\ \sum_{C_i} \tilde{Q}_i = Q; \quad \text{and} \quad Q_i^{\min} \leq \tilde{Q}_i \leq Q_i^{\max}$$

Step 3: Update values on the Eulerian (**arrival**) grid $\tilde{C}(\Omega(t))$

$$m_i(t + \Delta t) = \tilde{m}_i \quad \longrightarrow \quad \rho_i = \frac{\tilde{m}_i}{\mu_i}$$

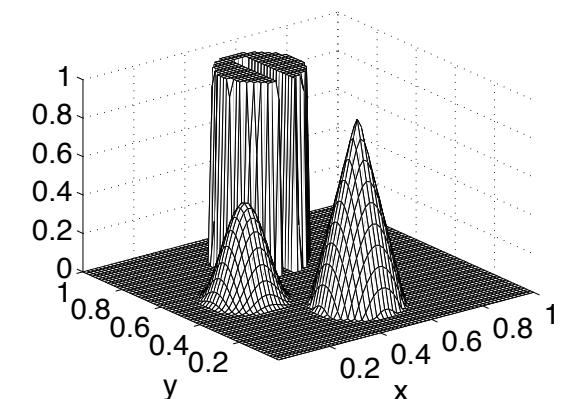
$$Q_i(t + \Delta t) = \tilde{Q}_i \quad \longrightarrow \quad q_i = \frac{\tilde{Q}_i}{m_i}$$

Advantages

- The solution is a **globally optimal state** that also satisfies the bounds:
 - By definition it is the **best possible solution** satisfying the bounds!
- The solution **provably preserves linear tracer correlations**.
- The two QPs have the exact **same structure** as in the SE-SL case:
 - We have a **fast, scalable optimization algorithm!**
 - Solution times are **essentially the same** as for conventional limiters:

Timings for Leveque's combo example.

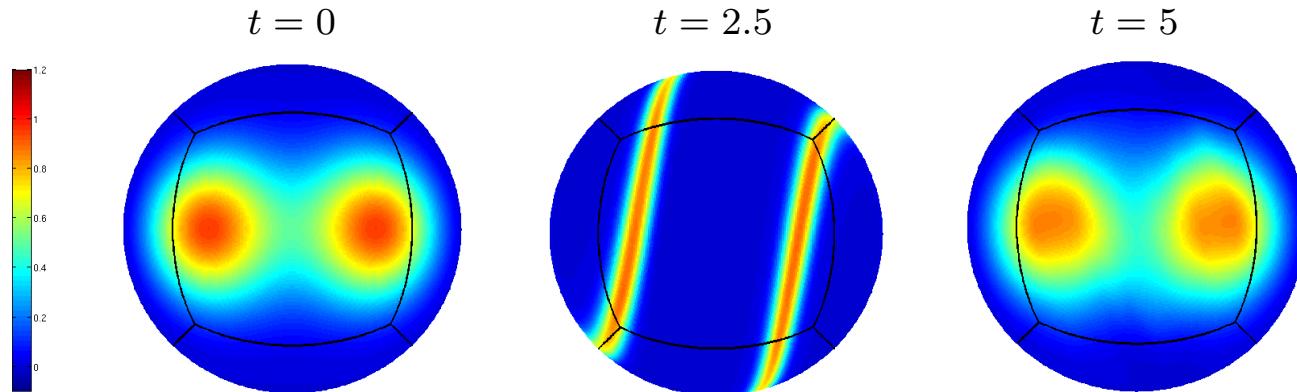
Cells	Time steps	FCT (sec)	Van Leer	OB-SL	Ratio
64x64	400	4.51	4.55	4.98	1.1
128x128	810	47.60	48.35	48.78	1.0
256x256	1,610	390.47	399.15	405.92	1.0
512x512	3,220	5802.05	5804.66	5655.00	0.9



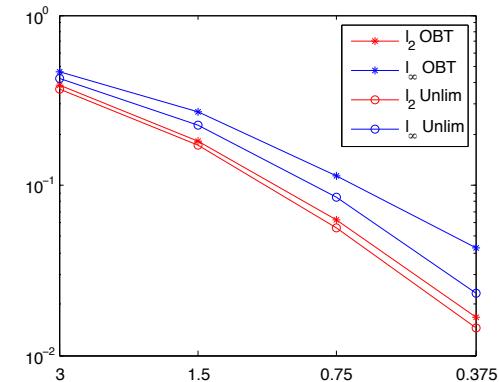
Vectorized Matlab code: wall-clock times on a 3.06GHz Intel Core Duo MacBook Pro

Convergence test:

Smooth Gaussian hills on a cubed sphere mesh



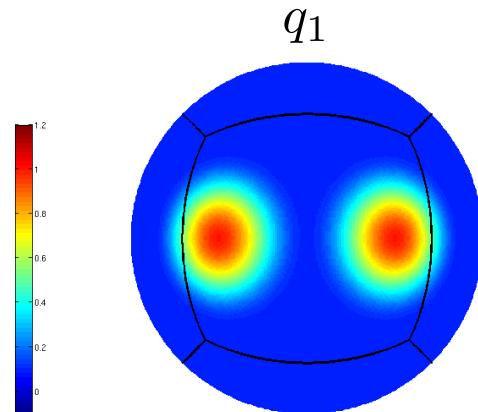
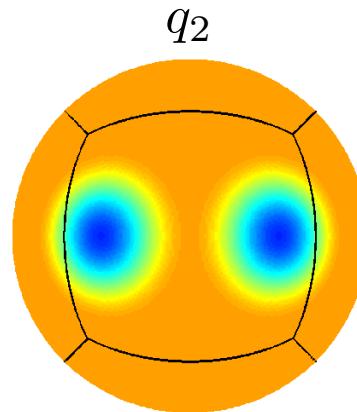
mesh	steps	OBT*		Unlimited	
		l_2	l_∞	l_2	l_∞
3°	600	0.386	0.465	0.368	0.425
1.5°	1200	0.182	0.268	0.172	0.225
0.75°	2400	0.0626	0.113	0.0559	0.0843
0.375°	4800	0.0167	0.0425	0.0144	0.0233
<i>Rate</i>		1.51	1.16	1.56	1.40



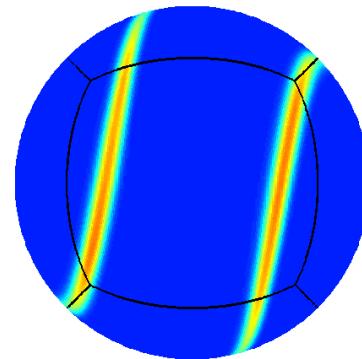
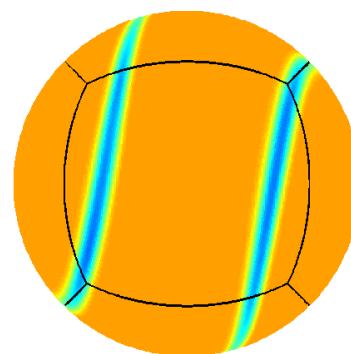
Using optimization to enforce bounds does not lead to degradation of accuracy!

Linear tracer correlations

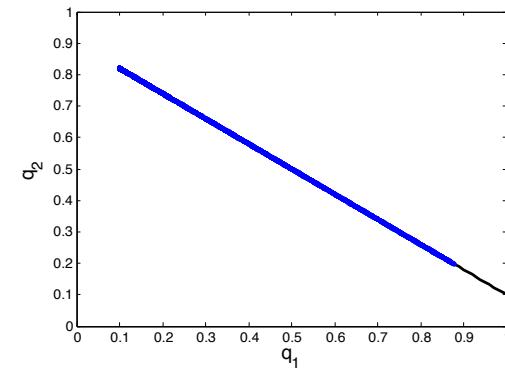
Initial tracer distributions: two linearly correlated cosine bells



$$q_2 = -0.8q_1 + 0.9$$



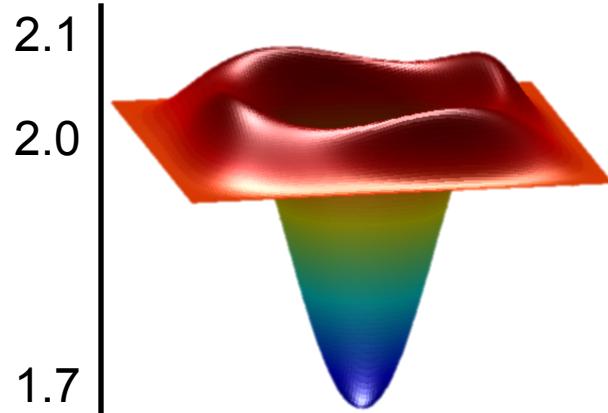
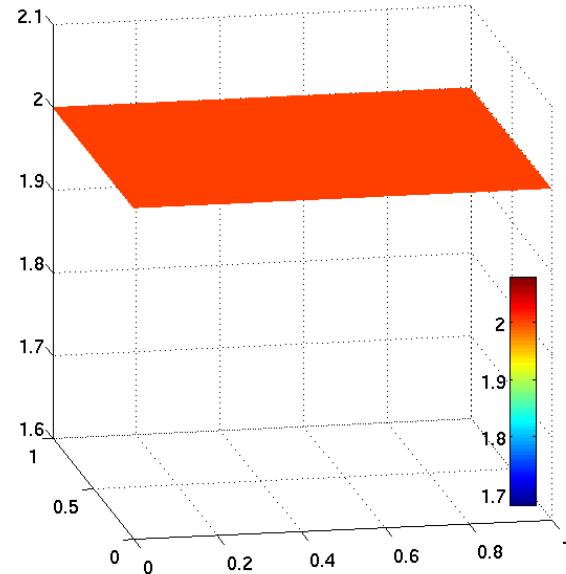
Correlation $t = 2.5$



Optimization formulation provably preserves linear tracer correlations

However, ...

Do you think there's anything wrong with this result?

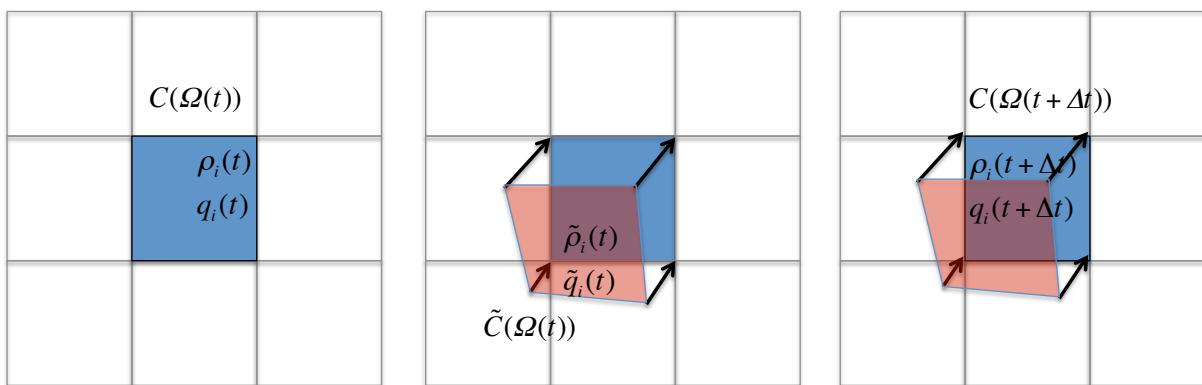


Everything! Density is supposed to be constant in time!

All we did was switch from RK4 to a forward Euler. Clearly Euler is less accurate but it is still supposed to **preserve constant in time** functions. So what is causing such a **dramatic deterioration** in the solution?

There's another physical property...

Let's take $\rho=const$ and examine what happens during a single time step:

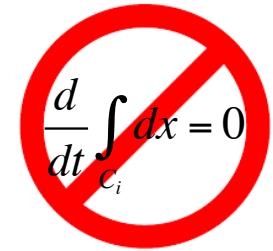


$$\rho_i(t) = \frac{m_i}{\mu_i} = \rho_{const}$$

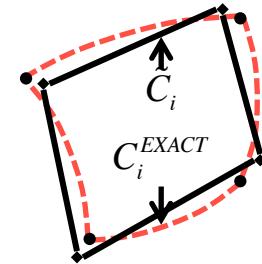
$$\tilde{m}_i = \int_{\tilde{C}_i} \tilde{\rho}_i dx = \rho_{const} \tilde{\mu}_i$$

$$\rho_i(t + \Delta t) = \frac{\tilde{m}_i}{\mu_i}$$

$$\rho_i(t + \Delta t) = \frac{\tilde{m}_i}{\mu_i} = \frac{\rho_{const} \tilde{\mu}_i}{\mu_i} = \rho_{const} \frac{\tilde{\mu}_i}{\mu_i} \neq \rho_{const}$$



$$\frac{d}{dt} \int_{C_i} dx = 0$$



Our **departure** grid approximates the true **Lagrangian grid**, hence it violates the property that **non-divergent Lagrangian flows preserve volumes!**

The Geometric Conservation Law

Our scheme violates the **Geometric Conservation Law** (GCL), which is **critical for methods** involving **any kind of moving grids**:

$$\frac{d}{dt} \int_{C_i(t)} dx = \int_{\partial C_i(t)} \mathbf{u} \cdot \mathbf{n} ds$$

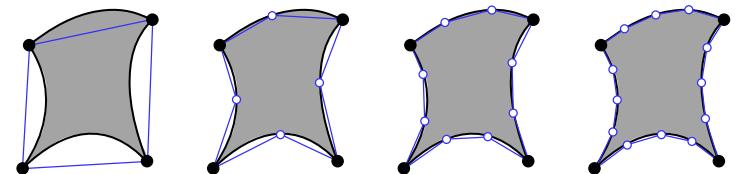
Thomas, Lombardi, AIAA 17, 1979

Currently available solutions for dealing with the GCL

Use more Lagrangian points.

Lauritzen, Nair, Ullrich, *A conservative semi-Lagrangian multi-tracer transport scheme on the cubed-sphere grid*, JCP 229/5 (2010)

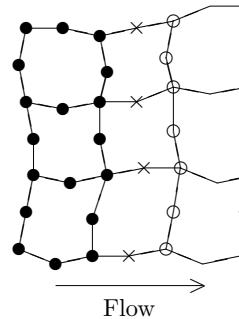
- Enforces GCL approximately.



Heuristic mesh adjustment procedure:

Arbogast, Huang, *A fully mass and volume conserving implementation of a characteristic method for transport problems*, SISC 28 (6) (2006).

- No theoretical assurance of completion.



- Adjusted point to remain fixed at this stage.
- Points adjusted simultaneously in the direction of the characteristic.
- × Points adjusted “sideways” to the flow.

Monge-Ampere trajectory correction

Cossette, Smolarkiewicz, Charbonneau, *The Monge–Ampere trajectory correction for semi-Lagrangian schemes*, JCP, (2014) –

- Requires nontrivial solution of the nonlinear MAE
- Approximate: GCL \approx accuracy of MAE scheme

Correct departure points according to

$$\tilde{\mathbf{p}}_{ij}^{corr} = \tilde{\mathbf{p}}_{ij} + (t - t_n) \nabla \phi; \quad \det \frac{\partial \mathbf{p}_{ij}^{corr}}{\partial x} = 1$$

An optimization solution to the GCL

Statement of the volume correction problem

Given: source mesh $\tilde{C}(\Omega)$ and $\mathbf{c}_o \in \mathbf{R}^m$ such that $\sum_{C_i} c_{0,i} = |\Omega|$ and $c_{0,i} \geq 0 \quad \forall i$

Find: a volume compliant mesh $C(\Omega)$ such that:

- a) $C(\Omega)$ has the same connectivity as the source mesh
- b) The volumes of its cells match the volumes prescribed in \mathbf{c}_o
- c) Every cell $C_i \in C(\Omega)$ is valid; or convex
- d) Boundary points in $C(\Omega)$ correspond to boundary points in $\tilde{C}(\Omega)$

- The volume correction problem may or may not have a solution!
- An important setting in which solution always exist is when

The source mesh $\tilde{C}(\Omega)$ is transformation of another mesh $\breve{C}(\Omega)$ such that:

$$\forall \breve{C}_i \in \breve{C}(\Omega) \text{ is valid, or convex and } |\breve{C}_i| = c_{0,i}$$

In this case $C(\Omega) = \breve{C}(\Omega)$ is a trivial solution of the volume correction problem

Volume correction as an optimization problem

We consider quads (simplices are actually easier). We need few things:

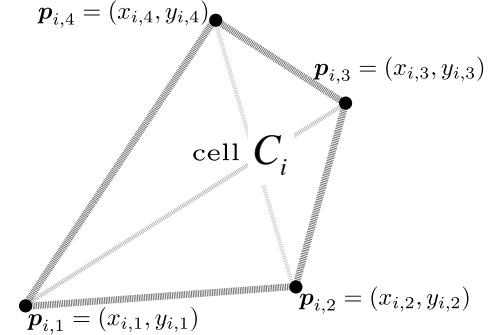
Oriented volume of a quad cell:

$$\forall C_i \in C(\Omega), \quad |C_i| = \frac{1}{2} \left((x_{i,1} - x_{i,3})(y_{i,2} - y_{i,4}) + (x_{i,2} - x_{i,4})(y_{i,3} - y_{i,1}) \right)$$

Partitioning of a quad into triangles:

$$T_{i,r} \in C_i, \quad T_{i,r} = (p_{a_r}, p_{b_r}, p_{c_r})$$

$$(a_r, b_r, c_r) = \begin{cases} (1, 2, 4) & r = 1 \\ (2, 3, 4) & r = 2 \\ (1, 3, 4) & r = 3 \\ (1, 2, 3) & r = 4 \end{cases}$$



Oriented volume of a triangle

$$T_{i,r} \in C_i, \quad |T_{i,r}| = \frac{1}{2} \left(x_{i,a_r} (y_{i,c_r} - y_{i,b_r}) - x_{i,b_r} (y_{i,a_r} - y_{i,c_r}) - x_{i,c_r} (y_{i,b_r} - y_{i,a_r}) \right)$$

Convexity indicator for a quad cell:

C_i is convex, if the oriented areas of all its triangles are positive: $\forall T_{i,r} \in C_i, |T_{i,r}| > 0$

Volume correction as an optimization problem

Optimization objective:

Mesh distance →
$$J_0(p, \tilde{p}) = \frac{1}{2} d(C(\Omega), \tilde{C}(\Omega))^2 = \|p - \tilde{p}\|_{\ell^2}^2$$

Optimization constraints:

① **Volume equality** →
$$\forall C_i \in C(\Omega), |C_i| = c_{0,i}$$

② **Cell convexity** →
$$\forall C_i \in C(\Omega), \forall T_{i,r} \in C_i, |T_{i,r}| > 0$$

③ **Boundary compliance** →
$$\forall p_j \in \partial\Omega, \gamma(p_j) = 0$$

Nonlinear programming problem (NLP)

$$p^* = \arg \min \{J_0(p, \tilde{p}) \text{ subject to (1), (2), and (3)}\}$$

A simplified NLP formulation

Consider a polygonal domain:

- Boundary compliance on polygonal Ω can be subsumed in the volume constraint
- Convexity can be enforced weakly by logarithmic barrier functions
- This leaves only the equality volume constraint and gives the simplified NLP:

$$p^* = \operatorname{argmin} \left\{ J(p) \text{ subject to } |C_i| = c_{0,i} \forall i \right\} \quad J(p) = J_0(p) - \beta \sum_{C_i} \sum_{T_{i,r} \in C_i} \log |T_{i,r}|$$

Specialization to simplicial cells

A valid simplex is always convex \longrightarrow A simplex is valid if and only if $|C_i| > 0$

Since $c_{0,i} > 0$, the volume equality constraint $\forall C_i \in C(\Omega)$, $|C_i| = c_{0,i}$ implies $|C_i| > 0$!

$$p^* = \operatorname{argmin} \left\{ J_0(p) \text{ subject to } |C_i| = c_{0,i} \forall i \right\}$$

A scalable optimization algorithm

Based on the [inexact trust region](#) sequential quadratic programming (SQP) method of Ridzal and Heinkenschloss. Key properties of the inexact SQP approach:

- [Fast local convergence](#), based on its relationship to Newton's method,
- [Flexibility to use iterative \('inexact'\)](#) linear systems solvers, enabling an efficient solution of very large nonlinear optimization problems.
- [Key requirement](#) in the method: design of an efficient preconditioner.

Given an optimization iterate p^k all linear systems involved are of the form

$$\begin{pmatrix} I & \nabla C(p^k)^T \\ \nabla C(p^k) & 0 \end{pmatrix} \begin{pmatrix} v^1 \\ v^2 \end{pmatrix} = \begin{pmatrix} b^1 \\ b^2 \end{pmatrix} \quad C(p^k) \text{ - polynomial matrix function of coordinates}$$

Preconditioner

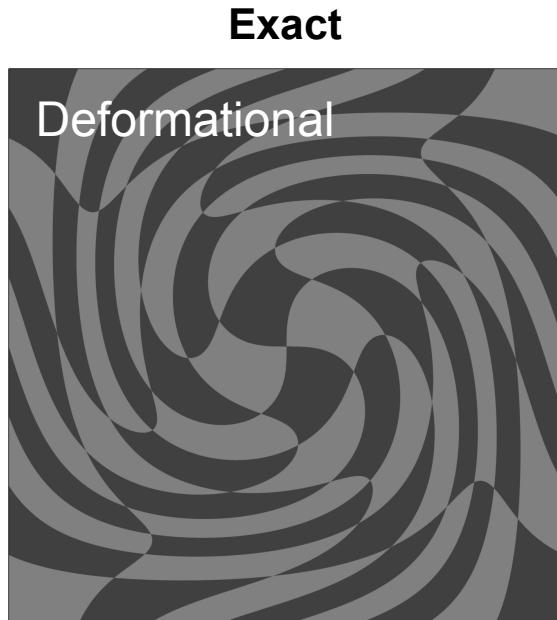
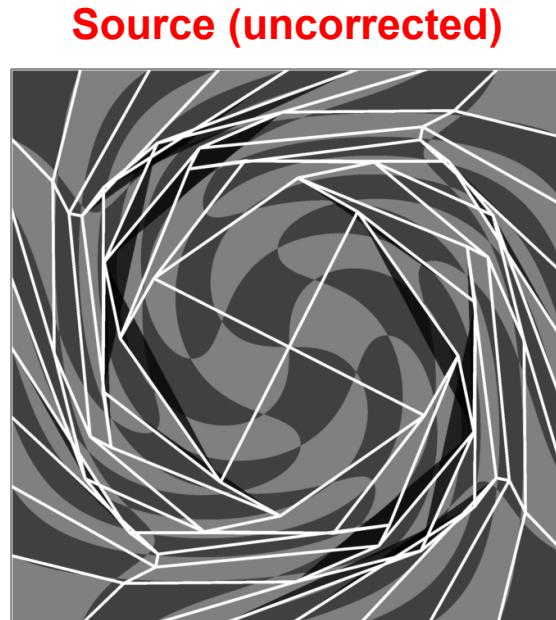
$$\pi^k = \begin{pmatrix} I & 0 \\ 0 & (\nabla C(p^k) \nabla C(p^k)^T + \varepsilon I)^{-1} \end{pmatrix}$$

- $\varepsilon > 0$ small parameter $\sim 10^{-8}h$
- $\nabla C(p^k) \nabla C(p^k)^T + \varepsilon I$ formed explicitly
- Inverse applied using ML Trilinos (smoothed aggregation AMG)

Applications: Lagrangian mesh motion

Models the evolution of the computational mesh under a non-divergent velocity

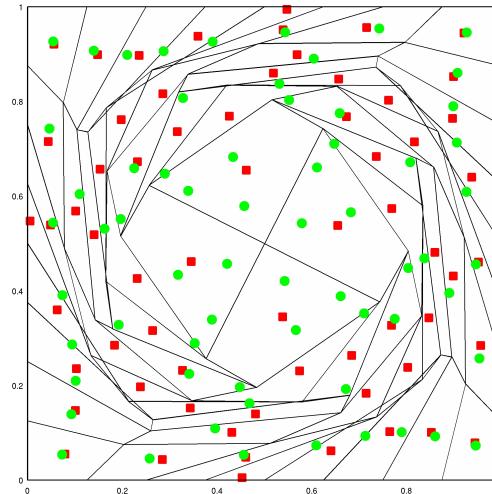
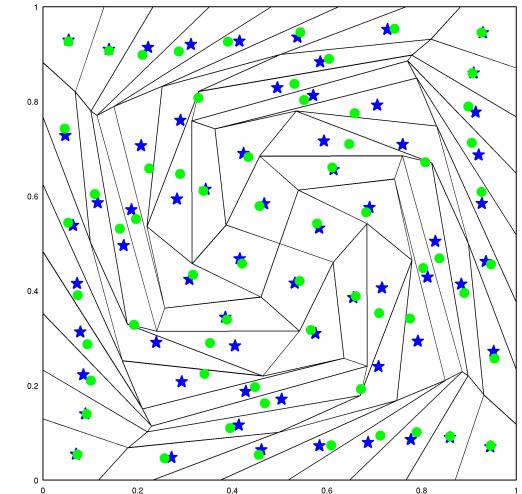
$$\mathbf{u}(\mathbf{p}, t) = \begin{pmatrix} \sin(\pi x)^2 \sin(2\pi y) \cos(\pi t / T) \\ -\sin(\pi y)^2 \sin(2\pi x) \cos(\pi t / T) \end{pmatrix} \quad \begin{array}{l} \leftarrow \text{Deformational} \\ \text{Rotational} \rightarrow \end{array} \quad \mathbf{u}(\mathbf{p}, t) = \begin{pmatrix} 0.5 - y \\ 0.5 - x \end{pmatrix}$$



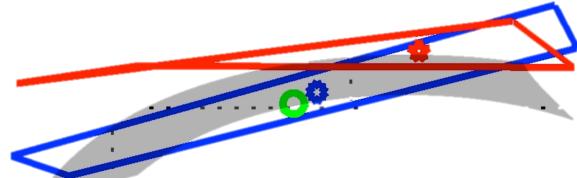
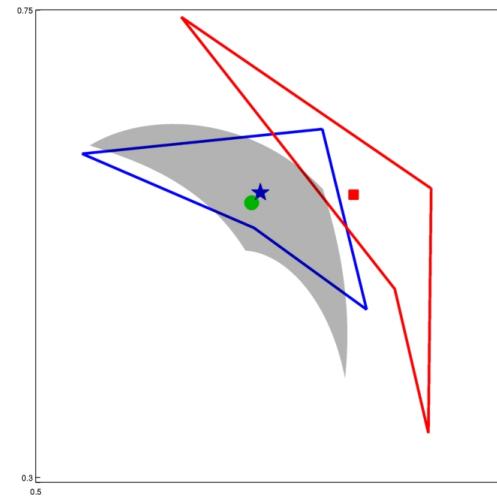
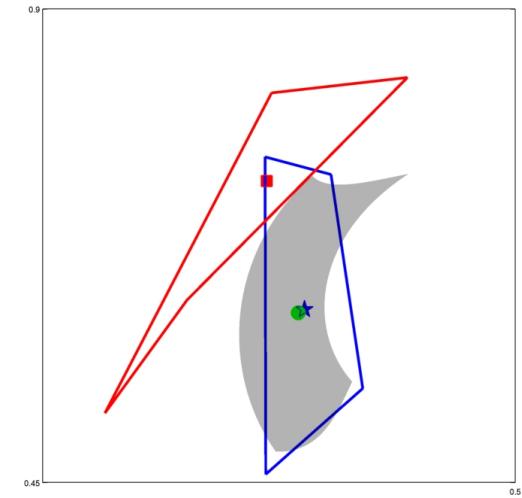
Improvements in mesh geometry

Cell barycenters

- ★ - exact Lagrangian mesh
- - source (uncorrected)
- - compliant (corrected)

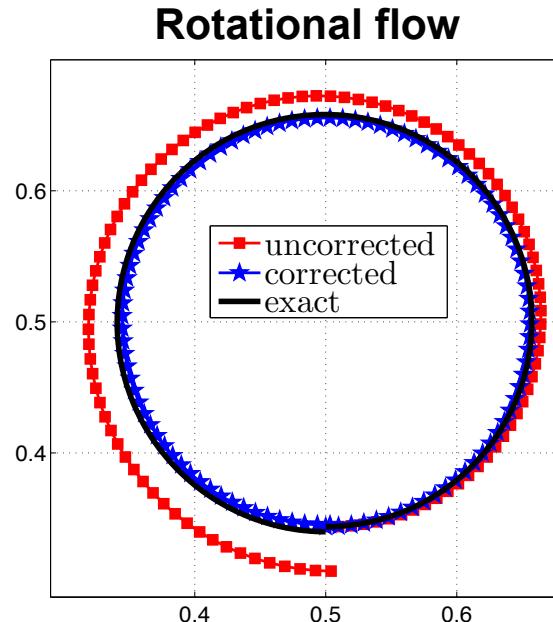
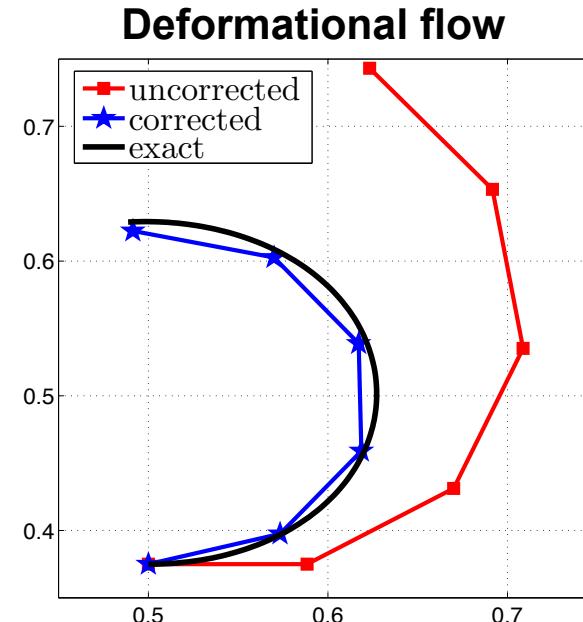


Invalid cell in the source mesh:



Improvements in mesh geometry

Point trajectories



We observe significant improvements in the geometry of the corrected mesh:

- The **shapes** of the corrected cells are close to the **exact Lagrangian shapes**
- The **barycenters** of the corrected cells are very close to the **exact barycenters**
- The **trajectories** of the corrected points track the **exact Lagrangian trajectories** very closely

Applications: semi-Lagrangian transport

Recall the cell-centered optimization-based semi-Lagrangian scheme:

Step 1: Trace back cell vertices to find the Lagrangian (**departure**) grid $\tilde{C}(\Omega(t))$

Step 2: Optimization-based remap of Lagrangian values from arrival to departure grid.

Step 3: Update values on the Eulerian (**arrival**) grid $\tilde{C}(\Omega(t))$

We modify it to include a volume correction step:

Step 1: Trace back cell vertices to find the Lagrangian (**departure**) grid $\tilde{C}(\Omega(t))$

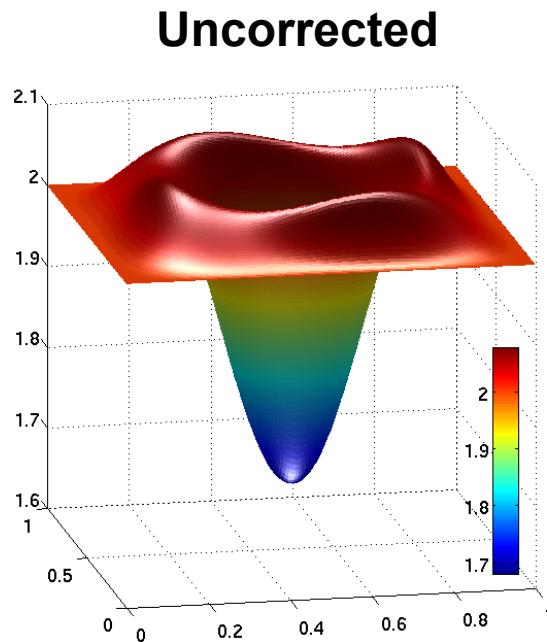
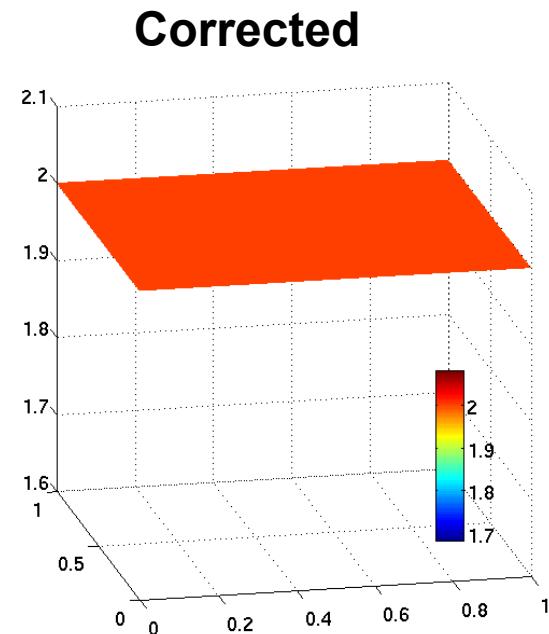
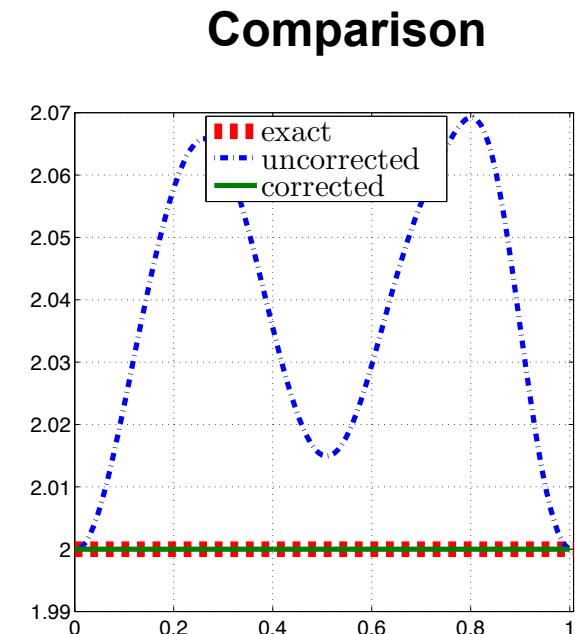
Step 1+: Correct the **departure grid** to match the cell volumes of the **arrival grid**

Step 2: Optimization-based remap of Lagrangian values from arrival to departure grid.

Step 3: Update values on the Eulerian (**arrival**) grid $\tilde{C}(\Omega(t))$

Applications: semi-Lagrangian transport

Constant in time density: rotational flow

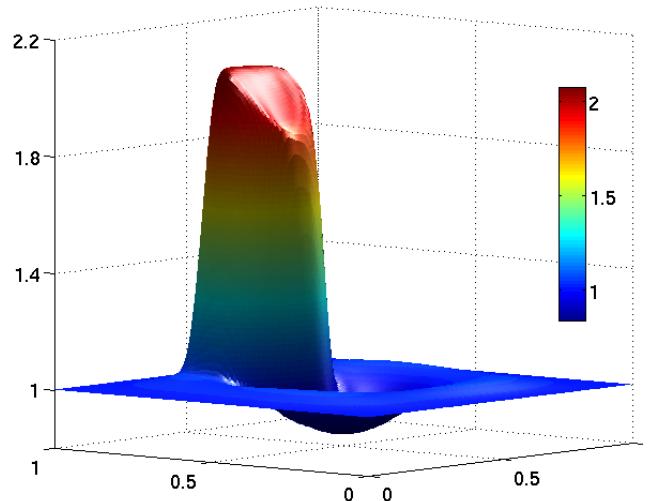


Plots of the density at time $t^N = 1.5$ for Forward Euler simulations with $\Delta t = 0.006$

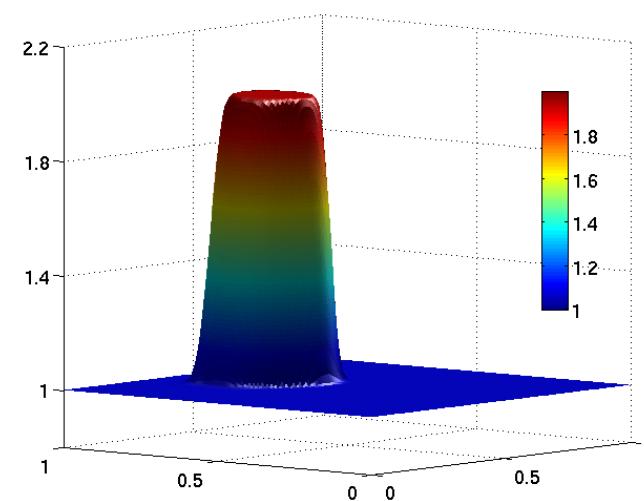
Applications: semi-Lagrangian transport

Initial cylindrical density distribution: rotational flow

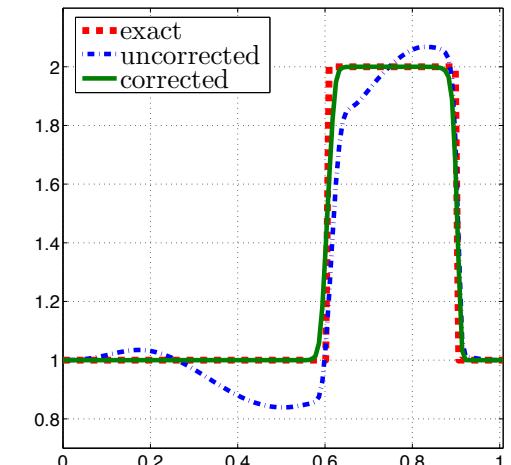
Uncorrected



Corrected



Comparison



Plots of the density at time $t^N = 1.5$ for Forward Euler simulations with $\Delta t = 0.006$

Conclusions

Traditional approaches to devise stable and accurate numerical methods are reaching a point of diminishing returns for complex applications involving multiple mathematical models, requiring diverse, heterogeneous numerical methods.

The use of optimization ideas to couple heterogeneous numerical methods and to preserve the relevant physical properties is very promising

However, its success depends critically on the availability of efficient and scalable optimization algorithms to solve the resulting QPs and NLPs.

We've presented two examples where such algorithms are available and optimization leads to successful heterogeneous numerical methods and property preserving schemes.