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* Prologue
- What do we want in a numerical method?
- What are the challenges?
- What do we propose to do: an overview of optimization ideas

« Case study 1: Optimization-based Heterogeneous Numerical Methods
» Application to the coupling of local and nonlocal models

« Case study 2: Optimization-based transport schemes
* A spectral element scheme
* Acell-centered scheme

Thanks to:

« M. D’Elia, P. Kuberry, D. Littlewood, M. Perego, K. Peterson, D. Ridzal (SNL)
« M. Shashkov (LANL)

M. Gunzburger (FSU), A. Shapeev (SkolTech), S.Moe (U. WA),

* M. Luskin, D. Olson (U. MN)



What do we want? L

« DOE uses computer models to understand, predict, and verify complex systems in high
consequences analyses that would be difficult or even impossible by other means.

» Integrated models of such systems incorporate diverse “mathematical parts”: PDEs,
non-local (integral) equations, classical DFT, potential-based atomistic and so on...

) .-

==P Numerical parts
=)
L2

« Diversity of models leads to a diversity of “numerical parts”: mesh based (FE, FV, FD),
particle based (SPH, DPD, MLS), implicit, explicit, Eulerian, Lagrangian, semi-Lagranian...

HNM = Collection of
dissimilar numerical models
from multiple disciplines
functioning together as a
unified simulation tool

r

\_ /

* Requirements?):
- Each part must be stable, accurate and preserve the relevant physical properties.
- The parts must function together as a unified simulation tool.
- This tool itself must be stable, accurate and preserve the relevant physical properties.

1) Of course, we also need efficient solvers, but this is beyond the scope of this talk 3
- _________________________________________________________________________________________________________|




What are the challenges? iL

1. Achieving Stability & Accuracy (Structural aspects)

« Game changer: Homological techniques: FE exterior calculus (DEC), mimetic FD,...

« Typically achieved by topological means:

- Careful placement of the variables on the mesh;
- Special grid structure, e.g., topologically dual grids

« Challenges:
1. Models that don'’t fit EC structure, e.g., heterogeneous methods: FEM+SPH
2. Stable and accurate does not imply property preserving...

2. Preserving Physical Properties (Qualitative aspects)

« Maximum principles, local bounds, symmetries, Geometric Conservation Laws,...
« Correlations between variables, e.g., between two passive tracers.
« Challenges: conventional ways to preserve these properties are either

- Restrictive: Cartesian mesh, angle conditions, etc, and/or,
- Entangle accuracy with the property preservation, e.g., limiters.

- Game changer? Optimization!
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What are the challenges? )

3. Assembling Diverse Numerical Parts into HNMs

[~ “Exascale computing will enable consideration of new classes of multiscale problems
in which different types of discretizations, appropriate to a particular scale in different
portions of the domain, are employed and models which treat distinct phenomena in
different parts of the domain, such as ocean-atmosphere coupling...”

IS~ “Effective models must be hierarchical and include multiple sub-models that represent
different phenomena with vastly differing scales.”

“As this type of simulation
expands, there is a critical need to
develop systematic approaches
for coupling across the range of
scales and quantification of the
properties of these types of
coupling strategies”

Level 3

software

r Ll

Model Model Model
Level 2 Evaluator Evaluator Evaluator
A B C

LEVEI 1 @

‘ Input File A Input File B Input File C

I o : . .
AMultifaceted LIME: Lightweight Integrating
or Complex Syatems. Global Earth System Model Multiphysics Environment (CASL)

Traditional monolithic and operator-splitting modeling approaches
fall short of meeting the crosscutting challenges; see Multifaceted
Mathematical Approach for Complex Systems.




What do we propose to do ) e

Couch assembly of numerical parts and preservation of properties into an optimization problem:

Minimize
2 2
Coupling mismatch H”lh —uQH + ‘ Enuf‘ —M,T" I Target mismatch
i=1,2
Subject to
Component physics - o Physical properties
N\ J

= Reverses the roles of the coupling conditions and the models
= Divide and conquer approach:
- separates numerical parts: facilitates merging of heterogeneous methods
- separates accuracy from physical properties (local bounds, conservation, etc..)
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Case study 1: optimization-based HNMs T

In Part 1 we consider HNMs combining local (PDE) and non-local models.
Such couplings are often called heterogeneous domain decomposition.

Minimize
Jut - u

Coupling mismatch U, —uy

Subject to

Component physics

This case study highlights the use of optimization ideas for the stable
and accurate coupling of fundamentally different numerical models.

Related work: Lions (2001), Quarteroni (2000), Gunzburger (2000), Du (2001) — applications to PDEs, Oden (2011 —
Atomistic to Continuum), Discacciati (2013 — heterogeneous domain decomposition), Karniadakis (2014-Stochastic PDE) 8§
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Why Local-to-Nonlocal (LtN) couplings? @

* Nonlocal continuum mechanics: allows interactions at distance without contact:
- Can accurately resolve small scale features, e.g., crack tips or dislocations. ——»

* Nonlocal dielectric models: more accurate description of solvation processes:
- Essential in, e.g., electrokinetic nanofluidic channels, where local response
modification to Poisson-Boltzmann are qualitatively incorrect.

« Atomistic models: accurate simulation of defects (vacancy, impurity...) \

« Classical DFT: evaluation of chemical potentials of charged species VP. R
- More accurate than Poisson-Nernst-Planck models at mesoscale. o -
However, full nonlocal simulation can be very expensive!

Coupling to local (PDE) models can improve efficiency. Anatase TiO, nanoparticles in
DI water + HCI to control pH

=

J. Bardhan. “Gradient models in molecular biophysics: Progress, challenges,
opportunities.”. Journal of the mechanical behavior of materials, 22.5-6: 2013

R. Nilson and S. Griffiths. Influence of atomistic physics on electro-osmotic flow: Pennﬁ anfield. Geochim. et Cosmochim. Acta,
An analysis based on DFT. The Journal of Chemical Physics, 125(16), 2006. 63/10. 1999

9




A non-overlapping LtN example ) e

Expanding tube experiment VISAR Probes

« Tube expansion via collision of Lexan projectile and s

plug within AerMet tube

» Accurate recording of velocity and displacement on

tube surface - | l‘_._

Modeling Approach Sample Tube Projectile
» AerMet tube: nonlocal peridynamics, elastic- . .
plastic material model with linear hardening Experimental setup

* Lexan plugs: classical local (PDE), equation-of-
state Johnson-Cook material model

» Interaction via contact algorithm

Discretization
» Particles (Perydigm) + nodal FEM (Sierra/SM) —_—
« Contact algorithm.

*Vogler, T.J., Thornhill, T.F.,, Reinhart, W.D., Chhabidas, L.C., Grady, D.E., Wilson, L.T., Hurricane, O.A., and Sunwoo, A.
Fragmentation of materials in expanding tube experiments. International Journal of Impact Engineering, 29:735-746, 2003.

**D. Littlewood. 2010. Simulation of dynamic fracture using peridynamics, finite element modeling, and contact. Proceedings of
the ASME 2010 International Mechanical Engineering Congress and Exposition, British Columbia, Canada. 10
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Expanding tube simulation

Experimental image at 15.4 microseconds* Simulation at 15.4 microseconds**

Experimental image at 23.4 microseconds*® Simulation at 23.4 microseconds**

*Vogler, T.J., Thornhill, T.F., Reinhart, W.D., Chhabidas, L.C., Grady, D.E., Wilson, L.T., Hurricane, O.A., and Sunwoo, A. Fragmentation
of materials in expanding tube experiments. International Journal of Impact Engineering, 29:735-746, 2003.

**D. Littlewood. 2010. Simulation of dynamic fracture using peridynamics, finite element modeling, and contact. Proceedings of the
ASME 2010 International Mechanical Engineering Congress and Exposition, British Columbia, Canada. 11
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Expanding tube simulation

2.5
7
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. . Experimental Data [Vogler et al.] ——
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*Vogler, T.J., Thornhill, T.F., Reinhart, W.D., Chhabidas, L.C., Grady, D.E., Wilson, L.T., Hurricane, O.A., and Sunwoo, A. Fragmentation
of materials in expanding tube experiments. International Journal of Impact Engineering, 29:735-746, 2003.

**D. Littlewood. 2010. Simulation of dynamic fracture using peridynamics, finite element modeling, and contact. Proceedings of the 12

ASME 2010 International Mechanical Engineering Congress and ExEosition, British Columbia, Canada.
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An optimization based LtN coupling @&

The nonlocal problem The nonlocal diffusion operator
Lu, = fu wEQ Lufe) = [ (uly) - ul@)) 2(.v) dy
U, = Op :BEQ,

acting on u(z): R? — R

The local problem
local diffusion model given by the Poisson equation

—Au; = fi x €
u = 0y wE@Q,

where o; € H2(9) and f; € L2(Q)

» D’Elia, Bochev, Mat. Res. Soc. Cambridge Univ. Pres. 2015.

» D’Elia, Bochev, SIAM J. Num. Anal. 2015 (submitted).
13
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Optimization-based LtN formulation ) .

We couch the LtN coupling into a constrained optimization problem:

min  J(up,u) = =||un, s.t.

Un , UL 707139l

Nonlocal Local
—Lu, = f. x€ Qn % —Au; = ;. x e
Up = en—xe\QL uy = 0[ xzel,
Un = 0 T < Qi c\cl)lr::‘:glls =0 T el
. —

Key properties of the optimization-based LtN formulation:

« Eliminates ghost forces and is consistent for all polynomial orders. @ REERE“EZ\'E;;H
» Is provably stable & admits rigorous coupling and discretization error analysis.

« Basic idea applicable to diverse modeling scenarios:
— PNP+cDFT, local+nonlocal dielectric, Atomistic-to-Continuum coupling.,...

None of the existing multi-model coupling formulations such as Arlequin,
blending, morphing, force-based, etc. possess all of these properties! 14
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Optimization vs. traditional couplings @&

An example of an energy-blended LtN method Bauman et al, Comp. Mech. (2008) 42.

Cubic | jnear

1 | G
minimize E, (Nau,)+E, (J1-au,) “ *\\/ o
subject to [[uy —u, |, =0 ’ - = 5 N I

Minimize blended energy subject to constraints forcing the equality
of the nonlocal and local states

— Blending of two disparate physical models is mathematically challenging
- The notion of “equality” depends on the projection I, introducing some ambiguity
- Resulting LtN formulations may suffer from spurious effects, e.g., ghost forces

An optimization-based LtN approach: reverse the roles!

Minimize the mismatch between the nonlocal and local states subject
to the two models acting independently in O, and O,




Existence of an optimal solution T b

Reduced space formulation

We switch to an equivalent reduced space problem in terms of the virtual controls only

(—Lu =f inQ,

1 u,=0  on QC —= u,=u,(06,)
u =0 on Q,.
-) L mininiize % u, (9,,)—”1(61)”3,9,,
~Au,=f, inQ, _

T =0, onI', — wu =u(6)

u,=0 onl, U .
””” l An
s
Unconstrained minimization problem over the -) . Q, i
nonlocal and local trace spaces A, and A,




Existence of an optimal solution
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Decomposition of the states into harmonic and homogeneous parts:

<

u (0)=v(0)+u

‘ L

<

u,(6)=v,(0,)+u,

- L

/v =0 inQ

v =0  on Qc
—Lu'=f inQ

=0 onQ
—Av,=0 inQ,

v,=0 onl,
: -
~-Au) = f inQ,

w, =0  onT,

This decomposition follows the idea of Gervasio et al., Num. Math. 2001

17




Existence of an optimal solution

Reduced space problem in terms of the dual norm

minimize %H{Hn’el}Hi +(vn(8n)—vl(81),u2 —ulo)oQ +% u

A, xA, =ap

n_ul

0 0 ‘

0.Q,

The corresponding Euler-Lagrange equation

<{0n’01}’{nun’tul}>* = _(ug _ulo’vn(lun)_vl(lul))o,gb V{lun’tun} < An >([\l

Theorem

The following form defines an inner product on the trace space A, x A,

<{Hn’61}’{‘un’tul }>* = (Vn (0’1) - vl(gl)’v” (‘u”) B vl(‘ul))o,gb

Corollary. The reduced space problem has a unique solution{6,,6,} €A, x A,.
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The LtN approximation ) e,

Solution procedure

1. Solve the reduced space problem: L
L
{Hn,ﬁl } EA, XA, approximate solution traces -
B OO0O-=a
1-‘c Qb Qc
2. Recover the optimal states _o-O-0u
uo’ o ’.—O'“O“O\O\;QI} )
* 0 % * 0 * R E P u
u =u +v,(0) and u, =u, +v,(6,) O ;QQ\O’\
el no b ! Q
000000000000
Q r Q r

3. Stitch them into an LtN solution

* . +
u, in €

w, in Q\Q,

Ny

*

Il
S




Analysis of the LtN coupling error LUf

Assumptions

 The global non-local solution i, has a well-defined trace on I

‘)

T(u) = (T,w),T,(u)) = (u\ o ol

» The kernel y(x,y) is such that

1/k

Y. <% where Yy, = Hkaoo,Q, y, = f}’k(x,y)dy S g J
o

Main result

LtN coupling error is bounded by the modeling error on the local subdomain:

AR =F g
i, -u| _ =(1+C@)|a,~4| . whered, - global nonlocaland { # =7, onT,
s =]
u,=0 on T,
20



Elements of the proof ) e

V}l (671 )

Harmonic lifting operator - . o
0 . + i ' )
L , — 0 H , h 0= un . H : — vn(lun) n g2}1
(t,.0)=v’+H (u,,1,) where u (ulo) (4,1 {Vz(ﬂz) inQ\Q ®)
Error splitting T o :
ﬁ” _u*Ho,sr - i\t” _L(T(ﬁ”)) 0.Q° +‘L(T(ﬁ”))_u*Ho,g+ -
<[, - L(T@,)), . + ‘H(T(ﬁn))—H(GZ,H,*) -
<|a, -L(1@,)|, . +1H|. T, - (e,j,el*)Hog
The error components
. . . . H(w,, )|, o
- LG - 6.0, k- o
noMy no 0S|
Consistency error Approximation error Lifting operator norm
21



Consistency error )

Consistency error is bounded by the modeling error on the “pure” local region:

“Al, = f in Q,
i, - L(T(@@,)), o, = &, -, .., Where i, - global nonlocal and i, =T(%) onT,
B == b
u,=0 onT,
Proof. Note that  L(T,,(4,),T,(4,))| . =u, +H (T,(@,),T,@,))| . =4,],, andso,
L(T( ) = bAt,, in Q; <— Recovers the exact nonlocal solution in Q.
! u, in Q\Q, <— Local lifting of the exact nonlocal trace.

i, — L(T (i,))

Q=)+ 1@\, )], .
=[x (,\Q,)(u, - ”A‘l)Ho,g

=, = ul)HO,Q,\Qb

her




Approximation error Lf

Approximation error is bounded by the modeling error on the overlap region:

[ @,)-@,.6)), <

i, — i
n l 0.Q,

Proof. Using that {9:,0,*} solves the Euler-Lagrange equation of the reduced problem

0.2,

A 0 o )
HT(LA‘n)—{H:,HZ*}H _ sup <T(un)’{Mn,Mz}>* +(un u v, (u,) Vz(lh))
s {0} H{‘un’tul}‘

*

Using definition of the dual inner product

<T(ﬁn),{ﬂn’ul }>* + (”S —u) v, (1) = v, (1 ))0,9,,

= (@, - i,,v,(u,) - v,(y, ))0,9,,

=

Vn(tun)_vl(lul)Ho,Qb = ﬁn_ﬁlHO,gb {‘un"ul}H*

TR
n ) 0.Q,

23



H is bounded from above )t

The harmonic lifting operator is bounded by a constant depending only on ‘Qb‘ :

|H (et )]
{u My } ||{Mn’Ml}||

<C(Q,)

Proof. The statement is equivalent to the inequality

+Hvl(lul)HOQ\Q ) vl(lul)HOQ V{Aun’tul} S An ><[\l

Furthermore:
2 2
H, V(Q) =Co||Vn ) EQ, = Kn n ) 0,Q, —> ) 0,9} = Kn n ) 0,2,
Trace I I Caccioppoli
HMIH%IC =C Hvl(ﬂl)HLQb =K, HVI(MI)HO,Q,, —h Hvl(‘ul)Hi,g,\Qb = KIHVI(MZ)H(z),Qb

24
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H is bounded from above

Proof of nonlocal trace and Caccioppoli inequalities requires the kernel assumption

Y, <% Wwhere Y, = Hkamg’ yk=fyk(x,y)dy
Q

Now the statement of the theorem boils down to

)- vl(ul)HOQ V{w,.u} EA, xA,

0.2, +HVI(MZ)HOQ <C (Q

Which follows from the strong Cauchy-Schwartz inequality

‘(vn (‘un)’vl(‘ul))o,gb = ) 0,2, Hvl (‘ul)Ho,Qb ; 0<o<l

The proof of strong CBS again requires the kernel assumptions.

25



Modeling error ) s,

Recall our main result

Theorem

LtN coupling error is bounded by the modeling error on the local subdomain:

un _ul

i, -u'| | =1+C@,)

Ov

0.9,

We make the assumption that the restriction of the
nonlocal solution to the local region is of class C* ->

Corollary

Modeling error is bounded by the square of the interaction radius

0 —1i HOQ <Ce2+0(eh)

l

26
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Numerical examples ).

Problem setting in 1D

~ Q /
Qn U Qn .............................................................................
— i i
— 0 0.75 1 1+¢ 1.75
A A A A
homogeﬂeous Dirichlet él Hn homogeneoué Dirichlet
Uy — 0 \/ u; — 0
Virtual
controls

27




Patch test rh) ot

1
22z — g

(x —e,x+¢)

Kernel: ~(z,y) =

Exact solution:

® U, =U =X

[ J ’U,n|§'21 =
o w(1.75) = 1.75
e fn=0=0

0.2/ 05 1 15



Smooth global solution

Example 1

e U, =U =2

® Uplg =

o v (1.75) = 1.75%

® fn — fl = -2
Example 2

° un:ul:x2—x4

® Uplg = —

uy(1.75) = 1.75% — 1.
fr, = —24 1222 + £?

£ =—2+ 1222,
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| e | h |e(u,) | rate |

2.36e-03 -
7.54e-04
1.88e-04
4.67e-05
1.14e-05

| eluy) | Tate |
2.62¢-03 | -

1.65 | 7.12e-04
2.00 | 1.78¢-04
2.01 | 4.44e-05
2.04 | 1.10e-05

Optimization
approach merges the
models seamlessly!

e | N |elup) | rate | e(u) | rate |
9.70e03 295e02
2.68e-03 7.54e-03

1.90e-03

4.76e-04
1.19e-04

7.02e-04
1.78e-04
4.48e-05

29




Rough nonlocal solution

1.6

1.4r
1.2r

0.8
0.6
0.41
0.21

-0.2

Demonstrate the effectiveness of the coupling method in the

presence of “real” nonlocal effects

Point force

= - .. O
"’ ulh
' - .. O
R4 Upp ||
O' u*
"O lh
k
O' Unp,
* g
Initial guess
- ./
L 4 ~ - X .
0.5 1

1.5

Optimization
approach merges the
models seamlessly!

Discontinuous nonlocal state
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" ---u?h

‘o

Initial guess

: . Dot ~;
...................... ...- i

30




Absence of ghost forces i)

Point force

Discontinuous nonlocal
1.5 T T ? T

1.6

Optimization coupling eliminates ghost , T Coimimton-Based s |
forces because it does not try to enforce ——
equality of disparate states, rather it
tries to minimize their mismatch.

On the contrary, ghost forces are very 0.03/7

difficult to avoid in formulations where
coupling conditions are hard
constraints enforcing equality of
disparate states.

-0.04-

10 15 20 25 30

Ghost force example; Luskin et al. 31
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Crossing the valley of death

PE——— . e

Programmatically
exercised software

Research & proof-
of-principle

Significance of the agile components approach:
* Provide access to adjoints, sensitivites, etc. for adjoint-based fast optimization.
« Enable effective transitioning of research ideas into powerful production software.

l —Lu, = f, e,
. u, = 0 x € (),
—> min  J(u,,u) s.t.
U, UL, 0n, 01 —Aul = fl x €
{ w = 60, xzel,
T u = 0 xely |

Collaboration with D. Littlewood, M. D’Elia, M. Perego
* Provides a new material simulation capability with unique mathematical and computational
properties that are not currently available by other means.

« Can be used as a “corrector” to a conventional coupling to improve its accuracy.
32
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LtN coupling of Peridigm+Albany 1) .

Linear consistency test

Mesh Initial guess

dXx
0 \HHI"I"HHHI\'P
-0.005
LtN solution
/// 0 OO]CIX 0.02
W_ (BFGS) |\|H\"1\|HHH'|\
-0.005
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Part 2
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Case study 2: Transport schemes

In Part 2 we apply optimization ideas to develop property-preserving
methods for transport of passive tracers in climate models.

Minimize

Target mismatch

Subject to
Target definition C,=Cu/' <C;
- - Physical properties
Bu! =b
L J

This case study highlights application of optimization ideas for the
preservation of relevant physical properties in numerical methods.

P. Bochev, D. Ridzal, M. Shashkov, Fast optimization-based conservative remap of scalar fields, J. Comp. Phys. 246 (2013)

P. Bochev, D. Ridzal, K. Peterson, Optimization-based remap and transport: A divide and conquer strategy for
36

feature- preserving discretizations, J. Comp. Phys. 257, (2014) 1113 — 1139.
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Transport of passive tracers ) e

Governing equations

op

E+V.pu=o ; P - density
04 - = a_? +u-Vg=0 where: q - tracer mixing ratio
— +V-pqu=0 u - velocity

Key requirements M = fpdV 0= qudv
1. Conservation of mass and total tracer: / Q

2. Preservation of local bounds for g and p: ———> " < p, <™ ¢ <q,<q™
3. Preservation of linear correlations between tracers:
4. Preservation of constant tracers, i.e., “compatibility” q,(x)=aq,(x)+b

We begin Part 2 by developing a new scheme, which combines

» Spectral elements (SE) for spatial discretization.
« Semi-Lagrangian (SL) approach for time stepping.
» Optimization for enforcing conservation and local bounds.
37




Why SE + SL? ) S,

Advantages ;

« Diagonal mass matrix

« Spectral accuracy

* Avoids severe CFL restrictions of high-order methods

« Simple!! (compare, e.g., to tent-pitching schemes) cubed-sphere mesh

« HOMME (High Order Modeling Environment) uses SE and DG
on fully unstructured quadrilateral meshes on the sphere such
as the cubed-sphere mesh.

HOMME is a community model supported by the
NSF and the DOE with contributions from NCAR,
DOE laboratories and universities.

HOMME is the default dynamical core of the
Community Atmosphere Model (CAM) and the
Community Earth System Model (CESM)

The new SL-SE scheme for tracers is
motivated by and implemented in HOMME.

Dennis J, Edwards J, Evans K, Guba O, Lauritzen P, Mirin A, St.-Cyr A, Taylor M, Worley P. 2012. CAM-SE: A
scalable spectral element dynamical core for the Community Atmosphere Model. IJHPCA. 26:74-89.
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A generic SL transport scheme

Key idea: convert PDEs into ODEs along Lagrangian particle paths

é)—p+V-pu=O o &—p+u-Vp=—pV-u @=—pV-u
ot ot dx Dt
12 P F=> —=u(x(?),r) = D
ﬂ+V-,0qu=0—> —q+u-Vq=O d 2 _

| ot ot ) | Dt

Arrival pt.
Step 1: solve the “final value™ problemin [z .z, ,]:

=x(l‘n+l)

I 3 Departure pt.
E=u(x(t),t) and X(tn+1)=p —> p=x(tn)

p=x(1,)
Step 2: solve the initial value problems in [z,.z,, ,]:
Dp . P B ODE solution at ¢,, ,= PDE
Dq - Initial value at 7,= PDE
—=0 and 1 )= N —> ’tn+ = tn+ . ;
Dt 9(,)=4,(P-1,) 9 Pola) = 40n) solution at departure pt.
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Combine with SE reconstruction

Step 1: solve the “final value” problem in [z ¢, . ,]:

dx
= =u(x(?),t) and x(7,,)=p; e
S e ®
{pij} —> Arrival points = Gauss-Lobatto points /"//n" -4
| o !
3 | — _9&~
{pij} —> Departure points
Step 2: solve the initial value problems in [z,.z, . ,]:
D -
_p=_pv.u and p(tn)=ph(pz]’tn) ’’’’’’’’’ .
Dt \ < <,
Fjl =0 and ¢(t,) = q,(p;»?,) > [

Sandia
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2,(p;»t,)

Initial values = spectral element reconstruction at Gauss-Lobatto departure points
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Example: rotation ) ..

dx
* ok * % * % ¥ % * ok
7 =u(x(z),t) and x(z,)=p; .,
! * ok * ok * 0k wox * %
0.8
* ok * % * ok * %
0.5- 0.7
u(x(t),t)= Y * ok * % * % * %
05-x 0.6
* ok * % * 0k * % * %
0.5
¥k * * % * 0k * ok

Solved by RK4
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Generic SE+SL scheme scorecard LUf

Recall the advantages:
« Diagonal mass matrix

» Spectral accuracy
» Avoids severe CFL restrictions of high-order methods
« Simple!! (compare, e.g., to tent-pitching schemes)

However, the generic scheme
« Does not conserve mass and total tracer

« Does not preserve local solution bounds il PhySica|I

_—
i

\','u”u”
Wh’l
;M W
! III

' bounds

Critical for physically consistent tracer transport, since high- o
order spatial schemes are prone to unphysical oscillations:

Solution: combine the generic SE+SL scheme with optimization to

« Conserve mass and total tracer
* Preserve local solution bounds

42



Optimization-based SE-SL scheme iL

Start with a generic SE+SL scheme:

1. Determine GL departure points — p, = x(,)

Sandia
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2. Determine solution at arrival points  —> e,(p;-t,..)=p,) and q,(p;,.t,.)=q(,.,)

Then proceed as follows to find the tracer at ¢, , (density is similar)

3. Set optimization target to SE+SL solution: q:= qh(Pl-j,t,Hl)

max

4. Determine local solution bounds: q;in <q(P;.t,.1)=q; —> TBD later!

5. Set solution at the new time step by solving

qgdx=[gq,dx €—— Conservation
4, = argminq - c}Hé subject to q @ Q
q€Q"

n max

q; <4, =4 <— Local bounds
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The optimization problem ) ..

Algebraic form

w'q=w'q, <€ Conservation

ax

q,, =argminq' Mq+c'q+¢, subjectto { " .
q =q=q  <€—— Local bounds

q

M= f 0,0, dx =diag(M)); ¢=-2Mq; c¢,=q'Mq; w— Gauss-Lobato weights
Q

== Example of a “singly linearly constrained QP with simple bounds”
= QP structure admits a fast O(N) optimization algorithm.

Theorem (Existence of optimal solutions)

The feasible set of the optimization problem for the solution transfer is
non-empty. The problem has a unique optimal solution.
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Fast Optimization Algorithm ) &

. A \2
Without the equality constraint the |g;;,,, =argmin M, (ql.j — ql.j) -
QP splits into N one-dimensional % » q,,.=med(q;".q;.9; )

QPs with simple bounds: subject to qlf]l_“m <q, < q;ax

The Lagrangian

L(q’kuulnuz) = E Mij (ql'j - C}ij)z - )LE Wi (qij - qij,n) - E Aul,ij (ql'j - qir;in) - E luz,ij (sz - q,;'nax)

node node node node

The Karush-Kuhn-Tucker (KKT) conditions
q,; = éij +A+ Ui — Moy
mn g < g™
i U =4 Without the equality constraint the KKT

w,;z0, u,; =0 and 2 W, (q,-j — ql-j,,,,) =0  conditions are fully separable and can
node be solved for any fixed value of A.

J\o

lul,ij (qZ'j - q;mn) = 09
(M (ql'j - qir;ax) =0
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Fast Optimization Algorithm ) e

Step 1: solve for A fixed

q;=q;+A w; =05 w,,; =0 if CI,-rfin <g;+As= qirjnax
1q,=q;" My =0; w,=q,-q;—A if g;"=q,+A ) q,;(A)=med(q;" .4, + A.q;™);
9;=qy > ;=05 =G, —q,+A if G;+Azq;" Trivial, communication-free

O(N) computation

Step 2: adjust A in an outer iteration to satisfy the single equality constraint

Solve 2 w; (CIU(M —~ qij’n) =0 » : A

node

- Piecewise linear, monotonically increasing function of single scalar variable A
- Can solve to machine precision by a simple secant method

min ~ max )
9

- Globalization is unnecessary: A,=0 is an excellent initial guess: 4;(4) =med(q;"".q;.q;

- C],-J-()Lo) solves the QP without the equality constraint, i.e., “almost” a solution

- Locality = g ()LO) barely violates the mass conservation constraint
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Local solution bounds: V -u =0

For solenoidal fields Step 2 is trivial:

D ~
=0 = pG0.0=const —> (Byoh) = Pl) = p1) = £, (Byt,)
D ~
Df =0 = Q(x(t)at)=C0nSt —-> qh(pij’tn+1)=q(tn+1)=q(tn)=Qh(pijatn)

Solution is constant along Lagrangian paths = taking min/max in a neighborhood
of the departure points is sufficient to determine solution bounds:

o

NN Naamh
R Nfrliitasnag

%

[

q; = Iglellg q(p;-t,)

max Tight bounds Loose bounds
q;  =maxq(p;.l,)
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Rotational flow: LeVeque’'s combo iL

05-y
05-x

Zalesak cylinder, cone and a smooth hump u(p,?) =(
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80x80 bi-cubic elements; CFL=0.7

R. J. LeVeque, High-resolution conservative algorithms for advection in incompressible flow, SINUM 33 (1996) 627-665.
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0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0

Deformational flow: cosine bell

q(x,t)=0.5(1.0+cos(xr,));

0.1

0.2

0.3

0.4

0.5

0.6

h= Iiner, o) u(p,r) =

" —sin(mwry)’ sin(2x)cos(mt / T)

0.9

0.8

10.7

10.6

10.5

10.4

0.3

0.2

0.1
0.7 08 0.9 1

80x80 bi-cubic elements; CFL=0.7

h

sin(zzx)” sin(2wy)cos(st / T)

R. J. LeVeque, High-resolution conservative algorithms for advection in incompressible flow, SINUM 33 (1996) 627-665.

Sandia
National _
Laboratories

49




Convergence rates: Gaussian hill ) 52

0 L, Convergence Rates for Limiters With Deformational Flow o L+ Convergence Rates for Limiters With Deformational Flow

10

10

—+# - No Limiting —+# - No Limiting

—3% - QM Interp-Loose Bounds —» - QM Interp-Loose Bounds
—% - QM Interp-Tight bounds — % - QM Interp-Tight bounds
—* - QM Reconstruction —* - QM Reconstruction

) | T
NN

1
Tight
Loose

15.5489 25.1‘189 39.5;107 63.6957 15.5489 25.1‘189 39.5;107 63.6957 3 — \3\\:\ - — \"Q&\:
A SE+SL method with limiters would typically truncate the :\\}Q\%ﬁi‘% R
order of convergence to 2 even for L1 errors. l‘:\k\ N

\
We see essentially no degradation in the 3 order L1 error A K\\I“:“ \
50
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Long-time accuracy ) e

O

o

0 0.2 0.4 086 0.8 1 0 0.2 0.4 0.6 0.8 1

CFL=7.04 CFL=14.08

60x60 bi-cubic elements; 20 full revolutions.
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Local solution bounds: V -u #0 i
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ForV -u # 0 the density equation is a balance rather than a conservation law.

= The density is not constant along Lagrangian paths.

= Taking min/max in a neighborhood of the departure points is not appropriate.

Solution: combining the Geometric Conservation Law and the balance law

dV ]
GC Law: —+u'VV=VV-u

ot Lo PV avony=0 = [PV,
Balance law: i)—p+u-Vp=_pV.u ot Dt

t J

yields a new conservation law for the point “mass” distribution M = pV.

The idea is to associate and track an arbitrary initial volume V, and “mass” with

every GLL point and use these quantities to provide bounds for the density.
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Local solution bounds: V -u#0 LUf

Assume V,and M, are given at ¢, :

n+1
4a. Solve the GCL in |1 . ] 6 . i

%_VV uand V@)=V, — |V, =V(,.)
t

4b. Determine local bounds for the point masses:

™
M.‘T“n—mmM(pU,t ) M.‘Tla"—maxM(pU,t ) \%\)
IR
4c. Determine local bounds for the density:
min _ Mmin pmax ~ Mmax
Vi Via M;™ = maxM(p;.t,)
4d. Solve the mass law in [z,.¢,, ] M;" = mmM (p;-t,)
DM

——=0 and M(t,)=M,
Dt
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Dive rge nt ﬂOW '11 Laboratories

—sin(rx)* sin(27(y - 0.5))cos(w(y —0.5)* cos(mwt / T)
ll(p,t) =

%sin(nx)cos(n(y ~0.5))’ cos(t/T)

80x80 bi-cubic elements; CFL=0.7 s
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A cell-centered semi-Lagrangian (SL) scheme @V

Why do we care about cell-centered schemes?

» Cell-centered schemes are ubiquitous in legacy DOE codes. However,

- These schemes use monotone reconstruction, i.e., limiters to control bounds.
- Limiters use local “worst case” scenarios when enforcing the bounds.

- Limiters entangle accuracy with preservation of bounds, which obscures
sources of discretization errors.

* Besides getting a better scheme we will have another chance to showcase the
use of optimization to preserve physical properties!

Cell-centered discretization of density and tracer

C(L(1))

u, = fdx Cell area
G

m.
—> Pi=u—l Cell average density

m, =fpdx Cell mass
G

—> (, =;i Cell average tracer
Q. =f,0qu Cell tracer i
G
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A generic cell-centered SL scheme )

For Lagrangian volumes Dukowicz and Baumgardner (2000) JCP

C(Q(t + Ar))

di f pdx=0 —> m,(t+At)=m.(t) @
I'e

%qudx=0—> Q.(t+Ar)=0Q,(1)

Step 1: Trace back cell vertices to find the Lagrangian (departure) grid C(Q(1))

Step 2: Remap Lagrangian quantities from arrival to departure grid:

~ min ~ max ﬁlj = fﬁl d.x
* Reconstruct ,?,- such that p; | = /?,- =p; Lagrar!qian ] c,
- Reconstruct ¢; suchthat ¢, =¢,=<q quantities Q= f .4, dx
¢ ¢,
Step 3: Update values on the Eulerian (arrival) grid C‘(Q(t))
_ i, . o
m(t+A)=m;, —> pi=; Q(t+A)=0, —> g, =—
j m
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Optimization-based low-order SL schem & .

Step 1: Trace back cell vertices to find the Lagrangian (departure) grid C’(Q(t))

Step 2:

Remap Lagrangian quantities from arrival to departure grid:

Reconstruct 0; without applying bounds

Reconstruct ¢; without applying bounds

targets QT

R
}_> Lagrangian 4 C
I

Solve two quadratic programs (QP) for the Lagrangian quantities:

min > (i~ ) subject to
.

l 1

Eﬁ% =M; and m™" =m, =m™
Ci

IIlQin 2 (Q —Q.T)z subject to

C

Eéi — Q, and Qimin < Qi < Qimax
G

Step 3: Update values on the Eulerian (arrival) grid é(Q(t))

m(t+Af) =i, —s P =t
122

0(t+A)=0, —> q-=2
mi
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Advantages

The solution is a globally optimal state that also satisfies the bounds:
- By definition it is the best possible solution satisfying the bounds!

The solution provably preserves linear tracer correlations.

The two QPs have the exact same structure as in the SE-SL case:

- We have a fast, scalable optimization algorithm!
- Solution times are essentially the same as for conventional limiters:

Timings for Leveque’s combo example.

Cells

128x128

512x512

Time

FCT

steps (sec)

810

3,220

47.60

5802.05

Van Leer

48.35

5804.66

48.78

5655.00

1.0

0.9
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Conve rgence teSt: m Laboratories

Smooth Gaussian hills on a cubed sphere mesh

OBT* Unlimited | ot
mesh steps I loo l2 loo | :::33;
30 600 0.386 0.465 0.368 0.425 el
1.5° 1200 0.182 0.268  0.172 0.225
0.75° 2400 0.0626 0.113  0.0559 0.0843
0.375° 4800 0.0167 0.0425 0.0144 0.0233

Rate  1.51 1.16 1.56 1.40

107

3 1.5 0.75 0.375

Using optimization to enforce bounds does not lead to degradation of accuracy!
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Linear tracer correlations ) e,

Initial tracer distributions: two linearly correlated cosine bells
q1 q2

ZZ @ @ q,=-0.8¢,+0.9

” Correlation t = 2.5

Optimization formulation provably preserves linear tracer correlations

04 05 06 07 08 09
a

60




However, ... Lfr

Do you think there’s anything wrong with this result?

2.1

2.0

1.7

0, 02 04 0.6 08 1

Everything! Density is supposed to be constant in time!

All we did was switch from RK4 to a forward Euler. Clearly Euler is less
accurate but it is still supposed to preserve constant in time functions.
So what is causing such a dramatic deterioration in the solution?

61




There’s another physical property... .,

National

Let’s take p=const and examine what happens during a single time step:

C(Q(1)) C(Q(t + At))
m,(t+At) =m,
m. - - - m.
pi (t)=j=pconst m'=fpidx=pconsz1ui pl(t+At)=_l
i ] ]
m, 1. L.
pi(t + At) - ‘ul B pconsnul - pconst & > pconst —_—>

Our departure grid
approximates the true
Lagrangian grid, hence it
violates the property that
non-divergent Lagrangian
flows preserve volumes!
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The Geometric Conservation Law ) faos,

Our scheme violates the Geometric Conservation Law (GCL), i dx = f u-nds
which is critical for methods involving any kind of moving grids: dt o

Currently available solutions for dealing with the GCL

Use more Lagrangian points.

Lauritzen, Nair, Ullrich, A conservative semi-Lagrangian multi-tracer
transport scheme on the cubed-sphere grid, JCP 229/5 (2010)

» Enforces GCL approximately.

Heuristic mesh adjustment procedure:

Arbogast, Huang, A fully mass and volume conserving implementation
of a characteristic method for transport problems, SISC 28 (6) (2006).

* No theoretical assurance of completion.

Monge-Ampere trajectory correction

Cossette, Smolarkiewicz, Charbonneau, The Monge—Ampere
trajectory correction for semi-Lagrangian schemes, JCP, (2014) —

* Requires nontrivial solution of the nonlinear MAE
* Approximate: GCL = accuracy of MAE scheme

ac; (1)

Thomas, Lombardi, AIAA 17, 1979

0.0 0 |

® Adjusted point to remain
fixed at this stage.

O Points adjusted simulta-
neously in the direction
of the characteristic.

x Points adjusted “side-
ways” to the flow.

_
Flow

Correct departure points according to

corr

op;;
ox

=1

1320” — ﬁl] + (t - tn )V¢, det
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An optimization solution to the GCL

Statement of the volume correction problem

Given: source mesh C(Q) and ¢, ER" such that ECOJ =|Q| and ¢,;=0 Vi
Find: a volume compliant mesh C(Q) such that:

a) C(Q) has the same connectivity as the source mesh
b) The volumes of its cells match the volumes prescribed in ¢,

c) Every cell C, € C(Q) is valid; or convex
d) Boundary points in C(Q) correspond to boundary points in C(Q)

* The volume correction problem may or may not have a solution!
 An important setting in which solution always exist is when

The source mesh C(Q) is transformation of another mesh C(Q) such that:

Véi € C(Q) is valid, or convex and ‘éi‘ =Cy;

In this case C(Q2) = C‘(Q) is a trivial solution of the volume correction problem "
I ——
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Volume correction as an optimization probler@lamramnes

We consider quads (simplices are actually easier). We need few things:

Oriented volume of a quad cell:
1

VC eC(Q), C|= 5(()61',1 = X;3)(Vin = Yia) (X5 =X, (V5 — yi,l))
Di4s= (%,%%,4@%
g . . . . _ /%H/Ezs = (%,3,.%',3)
Partitioning of a quad into triangles: (1.2.4) r=1 »
2,3,4) r=2 el G
7WirE(:i’ Zr= a.’ ’ Cl,b,C =<(,, §
, , (pr Py, pb,) (a.,b.,c,) (13.4) r=3 |
\(1’ 293) r=4 dfwwzwaw ‘y_)\“gpi,z = (%2, Yi,2)
Oriented volume of a triangle c
1
r,edq, L,|= E(’xi,ar (yi,c, —Vin, ) - Xib, (yi,a, —Vie, ) - Xie, (yi,b, —Via, ))
Convexity indicator for a quad cell:
C, is convex, if the oriented areas of all its triangles are positive: V7T, €C,, |T;,|>0
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Volume correction as an optimization probler@

Optimization objective:

2
(2

- 1 ~ ~
Mesh distance —> Jy(p,p)= Ed(C(Q),C(Q))2 =|p-p

Optimization constraints:

@D Volume equality —> V(G ECQ), |[Cl=c,

@ Cell convexity —> VC ECQ), VT, EC, >0

T,

@ Boundary compliance @———» Vp,€9Q, y(p;)=0

Nonlinear programming problem (NLP)

p* =argmin{J,(p,p) subjectto (1),(2), and (3)}
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A simplified NLP formulation iL

Consider a polygonal domain:
« Boundary compliance on polygonal Q can be subsumed in the volume constraint
» Convexity can be enforced weakly by logarithmic barrier functions

« This leaves only the equality volume constraint and gives the simplified NLP:

L,

p = argmin{](p) subject to ‘Ci‘ = Cy; Vi} J(p)=J,(p)- /J’E E log

¢ T, €C

Specialization to simplicial cells
>0

>01

(:;
(ji

A valid simplex is always convex —> A simplex is valid if and only if

Since ¢,; >0, the volume equality constraint VC; € C(€), Cl-\ =¢,; implies

p" =argmin{J,(p) subjectto |C|=c,, Vi}
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A scalable optimization algorithm LUf

Based on the inexact trust region sequential quadratic programming (SQP) method of Ridzal
and Heinkenschloss. Key properties of the inexact SQP approach:

» Fast local convergence, based on its relationship to Newton’s method,

» Flexibility to use iterative (‘inexact’) linear systems solvers, enabling an efficient solution of
very large nonlinear optimization problems.

« Key requirement in the method: design of an efficient preconditioner.

Given an optimization iterate p* all linear systems involved are of the form

1 vC(p")' v _| b
VC(p") 0 v’ b

Preconditioner

C(p") - polynomial matrix function of coordinates

* &>0 small parameter ~ 10-8h
I 0 - VC(p"VC(p")" +&l formed explicitly

0 (VC(pk)VC(pk)T +g])_1  Inverse applied using ML Trilinos
(smoothed aggregation AMG)

k

M. Heinkenschloss, D. Ridzal, A Matrix-Free Trust-Region SQP Method for Equality Constrained Optimization, SIAM
Journal on Optimization 24 (3) (2014) 1507-1541. 68
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Applications: Lagrangian mesh motion &=

Models the evolution of the computational mesh under a non-divergent velocity

sin(rx)’ sin(2wy)cos(nt /T) | < Deformational 05-y
up.n=| u(p.?) =
—sin(ry)” sin(2x)cos(mt / T) Rotational —> 05-x
Exact Source (uncorrected) Compliant (corrected)

Deformational

R. J. LeVeque, High-resolution conservative algorithms for advection in incompressible flow, SINUM 33 (1996) 69




Improvements in mesh geometry

Cell barycenters

% - exact Lagrangian mesh . .
B - source (uncorrected)
@ - compliant (corrected)
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| f

Invalid cell in the source mesh:
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Improvements in mesh geometry LUf

Point trajectories

Rotational flow Deformational flow

—=-yuncorrected
0.7l | =#e=corrected
—exact

0.6

—=—nuncorrected
=k corrected
— X acCt

0.6

0.5¢

0.5¢

0.4r

0.4}

014 015 0.‘6 015 016 0.‘7
We observe significant improvements in the geometry of the corrected mesh:

» The shapes of the corrected cells are close to the exact Lagrangian shapes
« The barycenters of the corrected cells are very close to the exact barycenters

» The trajectories of the corrected points track the exact Lagrangian trajectories very closely
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Applications: semi-Lagrangian transport T &z.

Recall the cell-centered optimization-based semi-Lagrangian scheme:

Step 1: Trace back cell vertices to find the Lagrangian (departure) grid C(Q(1))
Step 2: Optimization-based remap of Lagrangian values from arrival to departure grid.

Step 3: Update values on the Eulerian (arrival) grid C(Q(t))

We modify it to include a volume correction step:

Step 1*: Correct the departure grid to match the cell volumes of the arrival grid

72



National

Applications: semi-Lagrangian transport @ =

Constant in time density: rotational flow

2.01p

Uncorrected Corrected Comparison
200 g e

: : : : o 2.07 : o :

: : 5 5 P JIIlexact %
206l Pl (It uncorrected . ]

' . |—corrected v
2,051 .-' Y , ;i' ]
204t ! ‘-‘ :' o
208 : o
2.02f ." , "‘,‘ !i'r , "_ ]
D

0 02 04 06 ' 0 0.2 0.4 0.6 0.8 1

0 5 0.2 0.4 0.6 0.8

Plots of the density at time ¥ = 1.5 for Forward Euler simulations with Ar =0.006
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Applications: semi-Lagrangian transport T &z.

Initial cylindrical density distribution: rotational flow

Uncorrected Corrected Comparison

=mmexact
| [r== uncorrected
—corrected

1.81

1.6f

1.4f

1.2f

Plots of the density at time ¥ = 1.5 for Forward Euler simulations with Ar =0.006
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Conclusions

Traditional approaches to devise stable and accurate numerical methods
are reaching a point of diminishing returns for complex applications
involving multiple mathematical models, requiring diverse, heterogeneous
numerical methods.

The use of optimization ideas to couple hetergoeneous numerical methods
and to preserve the relevant physical properties is very promising

However, its success depends critically on the availability of efficient and
scalable optimization algorithms to solve the resulting QPs and NLPs.

We've presented two examples where such algorithms are available and
optimization leads to successful heterogenous numerical methods and
property preserving schemes.
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