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•  My objective is to be a devil’s advocate and stir things up 
•  Prologue 

-  What do we want in a numerical method? 
-  What are the challenges? 
-  What do we propose to do: an overview of optimization ideas 

•  Case study 1: Optimization-based Heterogeneous Numerical Methods 
•  Application to the coupling of local and nonlocal models 

•  Case study 2: Optimization-based transport schemes 
•  A spectral element scheme 
•  A cell-centered scheme 

Thanks to:  
•  M. D’Elia, P. Kuberry, D. Littlewood, M. Perego, K. Peterson, D. Ridzal (SNL) 
•  M. Shashkov (LANL) 
•  M. Gunzburger (FSU), A. Shapeev (SkolTech), S.Moe (U. WA), 
•  M. Luskin, D. Olson (U. MN) 
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•  DOE uses computer models to understand, predict, and verify complex systems in high 
consequences analyses that would be difficult or even impossible by other means. 

•  Integrated models of such systems incorporate diverse “mathematical parts”: PDEs, 
non-local (integral) equations, classical DFT, potential-based atomistic and so on… 
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Numerical parts 

HNM	
  =	
  CollecLon	
  of	
  
dissimilar	
  numerical	
  models	
  
from	
  mulLple	
  disciplines	
  
funcLoning	
  together	
  as	
  a	
  
unified	
  simulaLon	
  tool	
  

•  Diversity of models leads to a diversity of “numerical parts”: mesh based (FE, FV, FD), 
particle based (SPH, DPD, MLS), implicit, explicit, Eulerian, Lagrangian, semi-Lagranian…  

•  Requirements1):  
-  Each part must be stable, accurate and preserve the relevant physical properties.  
-  The parts must function together as a unified simulation tool. 
-  This tool itself must be stable, accurate and preserve the relevant physical properties. 

HNM 

1) Of course, we also need efficient solvers, but this is beyond the scope of this talk 
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1. Achieving Stability & Accuracy (Structural aspects) 

•  Game changer: Homological techniques:  FE exterior calculus (DEC), mimetic FD,… 
•  Typically achieved by topological means: 

-  Careful placement of the variables on the mesh; 
-  Special grid structure, e.g., topologically dual grids 

•  Challenges:  
1.  Models that don’t fit EC structure, e.g., heterogeneous methods: FEM+SPH  
2.  Stable and accurate does not imply property preserving… 

2. Preserving Physical Properties (Qualitative aspects) 
•  Maximum principles, local bounds, symmetries, Geometric Conservation Laws,… 
•  Correlations between variables, e.g., between two passive tracers. 
•  Challenges: conventional ways to preserve these properties are either 

-  Restrictive: Cartesian mesh, angle conditions, etc, and/or, 
-  Entangle accuracy with the property preservation, e.g., limiters. 

•  Game changer? Optimization! 
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☞ “Exascale computing will enable consideration of new classes of multiscale problems 
in which different types of discretizations, appropriate to a particular scale in different 
portions of the domain, are employed  and models which treat distinct phenomena in 
different parts of the domain, such as ocean-atmosphere coupling…” 

☞ “Effective models must be hierarchical and include multiple sub-models that represent 
different phenomena with vastly differing scales.” 

“As this type of simulation 
expands, there is a critical need to 

develop systematic approaches 
for coupling across the range of 
scales and quantification of the 

properties of these types of 
coupling strategies” 

Multi-Fidelity Structure of a
Global Earth System Model
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LIME: Lightweight Integrating 
Multiphysics Environment (CASL) Global Earth System Model 

Traditional monolithic and operator-splitting modeling approaches 
fall short of meeting the crosscutting challenges; see Multifaceted 
Mathematical Approach for Complex Systems. 

3. Assembling Diverse Numerical Parts into HNMs  
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☛ Reverses the roles of the coupling conditions and the models 
☛ Divide and conquer approach:  

-  separates numerical parts: facilitates merging of heterogeneous methods 
-  separates accuracy from physical properties (local bounds, conservation, etc..) 

€ 

Bui
h = b€ 

Ci ≤Cui
h ≤C i

Couch assembly of numerical parts and preservation of properties into an optimization problem: 
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Part 1  
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Component physics 

Coupling mismatch 

In Part 1 we consider HNMs combining local (PDE) and non-local models. 
Such couplings are often called heterogeneous domain decomposition. 

Related work: Lions (2001), Quarteroni (2000), Gunzburger (2000), Du (2001) – applications to PDEs, Oden (2011 – 
Atomistic to Continuum), Discacciati (2013 – heterogeneous domain decomposition), Karniadakis (2014-Stochastic PDE) 

This case study highlights the use of optimization ideas for the stable 
and accurate coupling of fundamentally different numerical models. 
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•  Nonlocal continuum mechanics: allows interactions at distance without contact: 
-  Can accurately resolve small scale features, e.g., crack tips or dislocations.  

•  Nonlocal dielectric models: more accurate description of solvation processes: 
-  Essential in, e.g.,  electrokinetic nanofluidic channels, where local response 

modification to Poisson-Boltzmann are qualitatively incorrect. 

•  Atomistic models: accurate simulation of defects (vacancy, impurity…) 

•  Classical DFT: evaluation of chemical potentials of charged species 
-  More accurate than Poisson-Nernst-Planck models at mesoscale. 

J.P. Bardhan: Gradient models in molecular biophysics      171

elasticity: consider that Eringen presented a local formu-
lation of nonlocal elasticity [87]  > 20 years before the first 
local formulation for solvent electrostatics [88]. We hope 
that this survey will spark interest in translating the state 
of the art in gradient-based modeling to biological elec-
trostatics, as well as to biological problems more gener-
ally. As we have indicated, nonlocal models are finding 
frequent applications across the life sciences and in tech-
nologies related to biomedical engineering.

The article is organized as follows. Section 2 intro-
duces the theoretical framework for modeling molecular 
electrostatics in solvation, including the rigorous basis 
underlying Poisson-based models and a brief overview of 
the formalisms used to go beyond the basic local-dielectric 
Poisson model. Section 3 covers nonlocal dielectric theo-
ries in detail, including (1) major historical developments 
and a simple version that has become popular recently; (2) 
models and formulations for solving large, complicated 
biological systems such as proteins; and (3) criticisms 
and challenges. In Section 4, we present a systematic 
approach to develop more realistic nonlocal dielectric 
models of solvation; whereas current numerical methods 
are limited to the simplest nonlocal response, we indicate 
how large-scale problems can be solved efficiently using 
two or more length scales. Section 5 illustrates the wide 
range of opportunities for nonlocal/gradient models in 
biology outside of molecular electrostatics, and the article 
concludes in Section 6 with a brief discussion.

2  Theoretical background
Figure 1 is a schematic of the biomolecule electrostatic 
problem and a simple local-response continuum model 

VP

VW

qi
εP

εW

S

Figure 1 The basic molecular electrostatics problem: the solute mol-
ecule (e.g., a protein) is modeled as a homogeneous macroscopic 
dielectric medium whose volume VP is defined in terms of a collec-
tion of atomic spheres; the permittivity is εP and the protein charge 
distribution is frequently modeled as discrete point charges at the 
atom centers. Consequently, the potential in VP obeys a Poisson 
equation. The solute is embedded in an infinite solvent bath, VW, that 
is modeled as a homogeneous dielectric with permittivity εW; here, 
the potential obeys either a Laplace equation (in pure water) or the 
linearized Poisson-Boltzmann equation (in a dilute electrolyte).

for it; to afford some degree of specificity, we will assume 
that the solute biomolecule is a protein. The protein is 
viewed as being surrounded in an infinite solvent bath, 
and the two volumes are denoted as VP and VW (W denotes 
water). Note that the use of a pure solvent bath is an 
approximation known as the “infinite dilution” limit; 
biological fluids are actually crowded with many types 
of molecules [89]. The protein model is usually treated 
atomistically, and the atom coordinates are usually taken 
from experiments; such structural data are stored in large 
public databases such as the Protein Data Bank [90].

The two volumes are separated by a surface S that 
models the protein-solvent interface. A variety of defini-
tions are in common use [91–94], and frequently argued 
in the literature, but usually one models the protein as 
a collection of atomic spheres and the protein surface is 
defined in such a way as to have desirable smoothness 
properties while containing the union of spheres (the 
surface normal points out into the solvent). The atom 
radii are parameters determined such that calculations 
match either experiments [95] or more accurate theories 
[96]. The protein charge distribution is usually described 
as a set of discrete point charges (Dirac delta functions) 
at the atom locations, but sharply peaked Gaussians 
are also sometimes used; it is also worth noting that 
in one of the largest fields of computational chemistry, 
one couples quantum-mechanical descriptions of the 
molecular charge density (the Schrodinger equation) to 
this continuum-model solvent [97–99]. Here, we focus 
on point-charge models directly; their values are usually 
either fitting parameters [95] or used from existing MD 
theories [96]. The protein interior is treated as a mac-
roscopic dielectric with permittivity εP≈1–10 (values  > 1 
capture conformational relaxation in an implicit way) 
and the solvent exterior as a macroscopic dielectric with 
permittivity εW≈80. The potential in the protein then 
obeys a Poisson equation

 ∇2ϕP(r) = -ρ(r)/εP. (1)

If the solvent is modeled as pure water, the potential in the 
solvent obeys the Laplace equation

 ∇2ϕW(r) = 0; (2)

or, if the solvent is modeled as a dilute electrolyte (low salt 
concentration), one may model the potential using the lin-
earized Poisson-Boltzmann equation:

 ∇2ϕW(r) = κ2ϕW(r). (3)

In either case, the potential is continuous across the pro-
tein-solvent interface
 ϕP(rS) = ϕW(rS), (4)

Authenticated | jbardhan@ece.neu.edu author's copy
Download Date | 1/22/14 6:54 AM

J. Bardhan. “Gradient models in molecular biophysics: Progress, challenges, 
opportunities.”. Journal of the mechanical behavior of materials, 22.5-6: 2013 

R. Nilson and S. Griffiths. Influence of atomistic physics on electro-osmotic flow: 
An analysis based on DFT. The Journal of Chemical Physics, 125(16), 2006. 

However, full nonlocal simulation can be very expensive! 
Coupling to local (PDE) models can improve efficiency. 

true for suspensions adjusted using NaOH (!log{aH"} #
8 ! 11).
Particle size along [001], determined by XRD, typically does

not reflect coarsening due to oriented attachment. This is be-
cause junction on {112} forms chains the long axes of which
are inclined to [001], parallel to 112*.

3.3. Titania Hydrothermally Coarsened in Solutions of
Organic Compounds

Addition of organic compounds to suspensions prior to hy-
drothermal treatment dramatically effects coarsening. TEM
data indicate suppression of the oriented attachment coarsening
mechanism when glycine is added to 0.001 M HCl suspensions.
In addition, XRD reveal that the presence of glycine in solution
results in a dramatic suppression of the period of fast growth,
or fastest growth along [001] (Fig. 8). Other organic acids, such
as acetic acid and adipic acid, also suppress the oriented at-
tachment mechanism. The details of the interactions between
organic molecules and surfaces will be reported separately
(Penn and Banfield, in prep.).

4. DISCUSSION

Two primary coarsening mechanisms were observed. The
first involves single particle growth via addition of Ti ions to
surfaces from solution at rates that depend on temperature,
additives, and the crystal structure and energies of crystallo-
graphically distinct surfaces. The second mechanism involves
growth by addition of solid particles to surfaces. This occurs in
a precise, crystallographically controlled manner, resulting in
coherent interfaces and leading to the development of single
homogeneous crystals. Twinning and other intergrowths can
occur because attachment requires structural accord only in the
two dimensions defined by the junction plane (see Penn and
Banfield, 1998a, and Uyeda et al., 1973). Furthermore, misori-
entations produced by twists and tilts at the plane of attachment
can produce defects, ranging from pure tilt to pure screw
dislocations (see Penn and Banfield, 1998b and Chun et al.,
1995).

4.1. Morphology Evolution

Reduction in surface energy is the primary driving force for
simple particle growth and morphology evolution is driven by
the further reduction in energy due to minimization of the area
of high surface energy faces. Preliminary growth from equidi-
mensional primary particles is characterized by rapid develop-
ment of morphology, resulting in formation of distinctly fac-
eted crystallites dominated by {101} surfaces. This is followed
by a period in which growth along [001] far exceeds growth
along$101% and, thus, (001) faces are shrinking. The fact that
growth along $101% nearly stops during the period of rapid
[001] growth suggests a solubility limited system. Work by
Willis (1992) on titanium ion speciation in hydrothermal aque-
ous solutions supports this possibility (titanium ion concentra-
tions were typically calculated to be in the ppb range, even at
high temperature and low pH).
Detailed examination of the advancing crystal faces and an

understanding of the relative surface energies of crystal faces
leads to an expectation that particle morphologies will be
dominated by {101} and that growth along [001] will be rapid
in comparison to {101}. Donnay-Harker (1937) rules predict
that the surface energy of the (001) faces is approximately 1.4
times that of the {101} faces. Considering growth to be per-
pendicular to a particular set of faces, crystal morphology will
be defined by the slowest growing faces because the fastest

Fig. 5. Graph of average anatase, hydrothermally coarsened in DI
water and in 0.001 M HCl, particle dimensions vs. time.

Fig. 6. TEM micrograph of a single crystal of anatase that was hydrothermally coarsened in 0.001 M HCl.

1552 R. L. Penn and J. F. Banfield

Penn, Banfield. Geochim. et Cosmochim. Acta,
63/10, 1999 

Anatase TiO2 nanoparticles in 
DI water + HCl to control pH  
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 Expanding tube experiment 
•  Tube expansion via collision of Lexan projectile and 

plug within AerMet tube 
•  Accurate recording of velocity and displacement on 

tube surface 

 Modeling Approach 
•  AerMet tube: nonlocal peridynamics, elastic-

plastic material model with linear hardening 
•  Lexan plugs: classical local (PDE), equation-of-

state Johnson-Cook material model 
•  Interaction via contact algorithm 

Discretization 
•  Particles (Perydigm) + nodal FEM (Sierra/SM) 
•  Contact algorithm. 

 

* Vogler, T.J., Thornhill, T.F., Reinhart, W.D., Chhabidas, L.C., Grady, D.E., Wilson, L.T., Hurricane, O.A., and Sunwoo, A.  
Fragmentation of materials in expanding tube experiments.  International Journal of Impact Engineering, 29:735-746, 2003. 

** D. Littlewood.  2010.  Simulation of dynamic fracture using peridynamics, finite element modeling, and contact.  Proceedings of 
the ASME 2010 International Mechanical Engineering Congress and Exposition, British Columbia, Canada. 

Experimental setup* 

FE 

particles 
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Simulation at 15.4 microseconds** 

Simulation at 23.4 microseconds** 

Experimental image at 15.4 microseconds* 

Experimental image at 23.4 microseconds* 

* Vogler, T.J., Thornhill, T.F., Reinhart, W.D., Chhabidas, L.C., Grady, D.E., Wilson, L.T., Hurricane, O.A., and Sunwoo, A.  Fragmentation 
of materials in expanding tube experiments.  International Journal of Impact Engineering, 29:735-746, 2003. 

** D. Littlewood.  2010.  Simulation of dynamic fracture using peridynamics, finite element modeling, and contact.  Proceedings of the 
ASME 2010 International Mechanical Engineering Congress and Exposition, British Columbia, Canada. 
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* Vogler, T.J., Thornhill, T.F., Reinhart, W.D., Chhabidas, L.C., Grady, D.E., Wilson, L.T., Hurricane, O.A., and Sunwoo, A.  Fragmentation 
of materials in expanding tube experiments.  International Journal of Impact Engineering, 29:735-746, 2003. 

** D. Littlewood.  2010.  Simulation of dynamic fracture using peridynamics, finite element modeling, and contact.  Proceedings of the 
ASME 2010 International Mechanical Engineering Congress and Exposition, British Columbia, Canada. 
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The nonlocal problem         

The local problem 

The nonlocal diffusion operator 

• D’Elia, Bochev, Mat. Res. Soc. Cambridge Univ. Pres. 2015. 
• D’Elia, Bochev, SIAM J. Num. Anal. 2015 (submitted). 
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We couch the LtN coupling into a constrained optimization problem: 

14	
  

Nonlocal Local 

Virtual 
controls 

Key properties of the optimization-based LtN formulation: 

•  Eliminates ghost forces and is consistent for all polynomial orders. 
•  Is provably stable & admits rigorous coupling and discretization error analysis. 
•  Basic idea applicable to diverse modeling scenarios: 

-  PNP+cDFT, local+nonlocal dielectric, Atomistic-to-Continuum coupling.,… 

CM4,  ASCR 

None of the existing multi-model coupling  formulations such as Arlequin, 
blending, morphing, force-based, etc. possess all of these properties! 
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An example of an energy-blended LtN method 

minimize   EN ( αuN )+EL ( (1−α)uL )

subject to ΠuN −uL Ωo
= 0

$
%
&

'&

Bauman et al, Comp. Mech. (2008) 42. 

Minimize blended energy subject to constraints forcing the equality 
of the nonlocal and local states  

­  Blending of two disparate physical models is mathematically challenging 
­  The notion of “equality” depends on the projection Π, introducing some ambiguity 
­  Resulting LtN formulations may suffer from spurious effects, e.g., ghost forces   

An optimization-based LtN approach: reverse the roles! 

Minimize the mismatch between the nonlocal and local states subject 
to the two models acting independently in ΩN and ΩL 
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Reduced space formulation  

We switch to an equivalent reduced space problem in terms of the virtual controls only 

−Δul = fl     in Ωl

ul =θl     on Γc

ul = 0      on Γi

%

&
'

(
'

−Lun = fn     in Ωn

un =θn     on Ωc

un = 0      on Ωi

#

$
%

&
%

→ un = un (θn )

→ ul = ul (θl )

minimize
Λn×Λl

1
2
un (θn )−ul (θl ) 0,Ωb

2

Unconstrained minimization problem over the 
nonlocal and local trace spaces Λn and Λl	



Λn

Λ l

!ΩcΓc

Ωb
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−L vn = 0      in Ωn

vn =θn     on Ωc

#
$
%

&%un (θn ) = vn (θn )+un
0

Decomposition of the states into harmonic and homogeneous parts: 

−L un
0 = fn     in Ωn

un
0 = 0        on Ωn

#
$
%

&%

−Δvl = 0      in Ωl

vl =θl     on Γc

%
&
'

('ul (θl ) = vl (θl )+ul
0

−Δul
0 = fl     in Ωl

ul
0 = 0        on Γl

%
&
'

('

This decomposition follows the idea of Gervasio et al., Num. Math. 2001 

Ωn

ΓiΓc Ωl

!Ωi
!Ωc

θl

θn

vn (θn )

un
0

vl (θl )

ul
0
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Theorem 

The following form defines an inner product on the trace space            .   Λn ×Λ l

θn,θl{ }, µn,µl{ }
*
:= vn (θn )− vl (θl ),vn (µn )− vl (µl )( )0,Ωb

minimize
Λn×Λl

1
2

θn,θl{ }
*

2
+ vn (θn )− vl (θl ),un

0 −ul
0( )0,Ωb

+
1
2
un
0 −ul

0

0,Ωb

Reduced space problem in terms of the dual norm 

The corresponding Euler-Lagrange equation 

θn,θl{ }, µn,µl{ }
*
= − un

0 −ul
0,vn (µn )− vl (µl )( )0,Ωb

∀ µn,µn{ }∈ Λn ×Λ l

Corollary. The reduced space problem has a unique solution                           . θn,θl{ }∈ Λn ×Λ l
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Solution procedure 

θn
*,θl

*{ }∈ Λn ×Λ l

1. Solve the reduced space problem: 

approximate solution traces   ➙ 

2. Recover the optimal states 

un
* = un

0 + vn (θn
*)   and   ul

* = ul
0 + vl (θl

*)

3. Stitch them into an LtN solution 

u*=
un

*   in  Ωn
+

ul
*   in  Ωl \Ωb

"
#
$

%$

θn
*

Γc
Ωc

θl
*

Ωn

ΓiΓc

Ωl

ul
*

un
*

Ωn
+ Ωl \Ωb

!Ωc
!Ωi

Ωb

Ωb
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Theorem 

LtN coupling error is bounded by the modeling error on the local subdomain: 
 

                                                               where      -  global nonlocal and  ûn −u
*

0,Ω+
≤ (1+C(Ωb )) ûn − ûl 0,Ωl

Main result 

ûn
−Δûl = f           in Ωl

ûl = Tl (ûn )   on Γc

ûl = 0          on Γi     

%

&
'

(
'

Assumptions 

γ k <∞ where γ k = γ k
1/k

∞,Ω
, γ k = γ k (x, y)dy

Ω+

∫

•  The global non-local solution     has a well-defined trace on Γc: ûn

T (u) = Tn (u),Tl (u)( ) = u !Ωc
,u

Γc( )

•  The kernel γ(x,y) is such that  

Ωl

  
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Error splitting 

ûn −u
*

0,Ω+
= ûn − L(T (ûn )) 0,Ω+ + L(T (ûn ))−u

*

0,Ω+
=

≤ ûn − L T (ûn )( ) 0,Ω+ + H T (ûn )( )−H θn
*,θl

*( )
0,Ω+

≤ ûn − L T (ûn )( ) 0,Ω+ + H
*
T (ûn )− (θn

*,θl
*)

0,Ω+

Harmonic lifting operator 

The error components 

ûn − L(T (ûn )) 0,Ω+ T (ûn )− (θn
*,θl

*)
0,Ω+

H
*
= sup

µn ,µl{ }

H (µn,µl ) 0,Ω+

µn,µl{ }
∗

Consistency error Approximation error Lifting operator norm 

L µn,µl( ) = u0 +H µn,µl( )   where u0 =
un

0

ul
0

!

"
##

$

%
&&;   H µn,µl( ) =

vn (µn ) in  Ωn
+

vl (µl ) in  Ωl \Ωb

(
)
*

Ωn
!Ωi

!Ωc

θn

vn (θn )

ΓiΓc Ωl

θl
vl (θl )
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Proof. Note that 

L(T (ûn )) = ûn in  Ωn
+

ûl in  Ωl \Ωb

"
#
$

Recovers the exact nonlocal solution in      . 
Local lifting of the exact nonlocal trace. 

Lemma 1 

Consistency error is bounded by the modeling error on the “pure” local region: 
 
                                                      where       -  global nonlocal and  
  

ûnûn − L(T (ûn )) 0,Ω+ = ûn − ûl 0,Ωl \Ωb

−Δûl = f           in Ωl

ûl = Tl (ûn )   on Γc

ûl = 0          on Γi     

%

&
'

(
'

L Tn (ûn ),Tl (ûn )( )
Ωn
+ = un

0 +H Tn (ûn ),Tl (ûn )( )
Ωn
+ = ûn Ωn

+ and so, 

ûn − L(T (ûn )) 0,Ω+ = χ (Ωn
+ )(ûn − ûn )+ χ (Ωl \Ωb )(ûn − ûl ) 0,Ω+

= χ (Ωl \Ωb )(ûn − ûl ) 0,Ω+

= (ûn − ûl ) 0,Ωl \Ωb

Ωn
+
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Lemma 2 

Approximation error is bounded by the modeling error on the overlap region: 
 
                                                                         
  

T (ûn )− (θn
*,θl

*)
*
≤ ûn − ûl 0,Ωb

T (ûn )− θn
*,θl

*{ }
*
= sup

µn ,µl{ }

T (ûn ), µn,µl{ }
*
+ un

0 −ul
0,vn (µn )− vl (µl )( )0,Ωb

µn,µl{ }
*

T (ûn ), µn,µl{ }
*
+ un

0 −ul
0,vn (µn )− vl (µl )( )0,Ωb

= ûn − ûl,vn (µn )− vl (µl )( )0,Ωb

≤ ûn − ûl 0,Ωb
vn (µn )− vl (µl ) 0,Ωb

= ûn − ûl 0,Ωb
µn,µl{ }

*

Proof. Using that                solves the Euler-Lagrange equation of the reduced problem  θn
*,θl

*{ }

Using definition of the dual inner product 
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Lemma 3 

The harmonic lifting operator is bounded by a constant depending only on        :  
 
                                                                         
  

Ωb

H
*
= sup

µn ,µl{ }

H (µn,µl ) 0,Ω+

µn,µl{ }
∗

≤C(Ωb )

Proof. The statement is equivalent to the inequality 

vn (µn ) 0,Ωn
+

2
+ vl (µl ) 0,Ωl \Ωb

2
≤C2 (Ωb ) vn (µn )− vl (µl ) 0,Ωb

2
∀ µn,µl{ }∈ Λn ×Λ l

Furthermore: 

vn (µn ) 0,Ωn
+

2
≤ Kn vn (µn ) 0,Ωb

2

µl 1
2
,Γc
≤ cl vl (µl ) 1,Ωb

≤ Kl vl (µl ) 0,Ωb

µn V ( Ωn
+ )
≤ cn vn (µn ) E,Ωb

≤ Kn vn (µn ) 0,Ωb

Trace Caccioppoli 

vl (µl ) 0,Ωl \Ωb

2
≤ Kl vl (µl ) 0,Ωb

2
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γ k <∞ where γ k = γ k
1/k

∞,Ω
, γ k = γ k (x, y)dy

Ω

∫

Proof of nonlocal trace and Caccioppoli inequalities requires the kernel assumption  

Now the statement of the theorem boils down to 

vn (µn ) 0,Ωb

2
+ vl (µl ) 0,Ωb

2
≤C2 (Ωb ) vn (µn )− vl (µl ) 0,Ωb

2
∀ µn,µl{ }∈ Λn ×Λ l

Which follows from the strong Cauchy-Schwartz inequality  

vn (µn ),vl (µl )( )0,Ωb
≤ (1−δ) vn (µn ) 0,Ωb

vl (µl ) 0,Ωb
; 0 < δ <1

The proof of strong CBS again requires the kernel assumptions. 
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Theorem 

LtN coupling error is bounded by the modeling error on the local subdomain: 

ûn −u
*

0,Ω+
≤ (1+C(Ωb )) ûn − ûl 0,Ωl

Recall our main result 

We make the assumption that the restriction of the 
nonlocal solution to the local region is of class C4	



Ωn	



Ωl	



Ωl	



Corollary 

Modeling error is bounded by the square of the interaction radius 

ûn − ûl 0,Ωl
≤Cε 2 +O(ε 4 )
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Problem setting in 1D 

Virtual 
controls 
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The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.
The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been 
corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then 
insert it again.

Kernel: 

Exact solution: 

Initial guess 
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Example 1 

Example 2 

Optimization 
approach merges the 
models seamlessly!  

Initial guess 

Initial guess 
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Demonstrate the effectiveness of the coupling method in the 
presence of “real” nonlocal effects   

0 0.5 1 1.5
−0.2

0

0.2

0.4

0.6
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u
0
lh

u
0
nh

u
∗

lh

u
∗

nh

Point force Discontinuous nonlocal state 

Optimization 
approach merges the 
models seamlessly!  

Initial guess 

Initial guess 
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nhInitial guess 

Initial guess 

Ghost force example; Luskin et al. 

10 15 20 25 30

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

 

 
Actual Strain
Optimization−Based Strain
QCE Strain

Point force Discontinuous nonlocal 

Optimization coupling eliminates ghost 
forces because it does not try to enforce 
equality of disparate states, rather it 
tries to minimize their mismatch. 

On the contrary, ghost forces are very 
difficult to avoid in formulations where 
coupling conditions are hard 
constraints enforcing equality of 
disparate states. 
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Significance of the agile components approach: 
•  Provide access to adjoints, sensitivites, etc. for adjoint-based fast optimization. 
•  Enable effective transitioning of research ideas into powerful production software. 

Collaboration with D. Littlewood, M. D’Elia, M. Perego 
•  Provides a new material simulation capability with unique mathematical and computational 

properties that are not currently available by other means. 
•  Can be used as a “corrector” to a conventional coupling to improve its accuracy. 

Research & proof-
of-principle 

Programmatically 
exercised software  
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Linear consistency test 

Mesh Initial guess 

LtN solution 

(BFGS) 
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Coupling mismatch 

€ 

L1
h (u1

T ,θ) = f1

€ 

L2
h (u2

T ,θ) = f2

€ 

u1
h − u2

h 2

€ 

Bui
h = b€ 

Ci ≤Cui
h ≤C i

Subject to  

€ 

ui
h − ui

T 2

i
∑

Minimize 

+ 

Target definition 
Physical properties 

Target mismatch 

This case study highlights application of optimization ideas for the 
preservation of relevant physical properties in numerical methods. 

P. Bochev, D. Ridzal, M. Shashkov, Fast optimization-based conservative remap of scalar fields, J. Comp. Phys. 246 (2013) 

P. Bochev, D. Ridzal, K. Peterson, Optimization-based remap and transport: A divide and conquer strategy for 
feature- preserving discretizations, J. Comp. Phys. 257, (2014) 1113 – 1139. 

In Part 2 we apply optimization ideas to develop property-preserving 
methods for transport of passive tracers in climate models. 
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1.  Conservation of mass and total tracer: 
2.  Preservation of local bounds for q and ρ:	


3.  Preservation of linear correlations between tracers: 
4.  Preservation of constant tracers, i.e., “compatibility” 

M = ρ dV
Ω

∫ Q = ρqdV
Ω

∫

q1(x) = aq2 (x)+ b

qi
min ≤ qi ≤ qi

maxρi
min ≤ ρi ≤ ρi

max

Key requirements 

Governing equations  

ρ

q
u

- density 
- tracer mixing ratio 
- velocity 

∂ρ
∂t
+∇⋅ρu = 0

∂ρq
∂t

+∇⋅ρqu = 0

#

$
%%

&
%
%

⇒ ∂q
∂t
+u ⋅∇q = 0 where: 

We begin Part 2 by developing a new scheme, which combines 
•  Spectral elements (SE) for spatial discretization. 
•  Semi-Lagrangian (SL) approach for time stepping. 
•  Optimization for enforcing conservation and local bounds.  
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Advantages  
•  Diagonal mass matrix 
•  Spectral accuracy 
•  Avoids severe CFL restrictions of high-order methods 
•  Simple!! (compare, e.g., to tent-pitching schemes) 
•  HOMME (High Order Modeling Environment) uses SE and DG 

on fully unstructured quadrilateral meshes on the sphere such 
as the cubed-sphere mesh. 

HOMME is a community model supported by the 
NSF and the DOE with contributions from NCAR, 
DOE laboratories and universities. 

HOMME is the default dynamical core of the 
Community Atmosphere Model (CAM) and the 
Community Earth System Model (CESM) 

The new SL-SE scheme for tracers is 
motivated by and implemented in HOMME. 

cubed-sphere mesh 

Dennis J, Edwards J, Evans K, Guba O, Lauritzen P, Mirin A, St.-Cyr A, Taylor M, Worley P.  2012.  CAM-SE: A 
scalable spectral element dynamical core for the Community Atmosphere Model. IJHPCA. 26:74-89. 
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∂ρ
∂t
+∇⋅ρu = 0

∂ρq
∂t

+∇⋅ρqu = 0

#

$
%%

&
%
%

∂ρ
∂t
+u ⋅∇ρ = −ρ∇⋅u

∂q
∂t
+u ⋅∇q = 0

$

%
&&

'
&
&

Dρ
Dt

= −ρ∇⋅u

Dq
Dt

= 0

$

%
&&

'
&
&

Key idea: convert PDEs into ODEs along Lagrangian particle paths 

dx
dt
= u(x(t), t)

Step 1: solve the “final value” problem in [tn,tn+1]: 

dx
dt
= u(x(t), t)  and  x(tn+1) = p

Step 2: solve the initial value problems in [tn,tn+1]: 

Dρ
Dt

= −ρ∇⋅u  and  ρ(tn ) = ρh ( p, tn )

Dq
Dt

= 0            and  q(tn ) = qh ( p, tn )

p = x(tn+1)
p = x(tn )

Arrival pt. 

Departure pt. 

Initial value at tn = PDE 
solution at departure pt.  

ρh (p, tn+1) = ρ(tn+1)

qh (p, tn+1) = q(tn+1)

ODE solution at tn+1 = PDE 
solution at arrival pt.   

p = x(tn )
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Step 1: solve the “final value” problem in [tn,tn+1]: 

Step 2: solve the initial value problems in [tn,tn+1]:  

dx
dt
= u(x(t), t)  and  x(tn+1) = pij

pij{ }

Arrival points = Gauss-Lobatto points  pij{ }

Departure points      

Dρ
Dt

= −ρ∇⋅u  and  ρ(tn ) = ρh ( pij, tn )

Dq
Dt

= 0            and  q(tn ) = qh ( pij, tn )

qh (pij, tn )

ρh (pij, tn )

Initial values = spectral element reconstruction at Gauss-Lobatto departure points  



SAND2015-3701 C 

SAND2015-3701 C 

Example:	
  rotaLon	
  

41	
  

u(x(t), t) = 0.5− y
0.5− x

"

#
$$

%

&
''

dx
dt
= u(x(t), t)  and  x(tn+1) = pij

Solved by RK4 
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Critical for physically consistent tracer transport, since high-
order spatial schemes are prone to unphysical oscillations:  

However, the generic scheme 
•  Does not conserve mass and total tracer 
•  Does not preserve local solution bounds  
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Solution: combine the generic SE+SL scheme with optimization to 
•  Conserve mass and total tracer 
•  Preserve local solution bounds  

Recall the advantages:  
•  Diagonal mass matrix 
•  Spectral accuracy 
•  Avoids severe CFL restrictions of high-order methods 
•  Simple!! (compare, e.g., to tent-pitching schemes) 

Physical 
bounds 
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pij = x(tn )

ρh (pij, tn+1) = ρ(tn+1)  and  qh (pij, tn+1) = q(tn+1)

Start with a generic SE+SL scheme:  

1. Determine GL departure points  

2. Determine solution at arrival points 

Then proceed as follows to find the tracer at tn+1 (density is similar)   

3.  Set optimization target to SE+SL solution: 

4.  Determine local solution bounds: 

5.  Set solution at the new time step by solving 

q̂ := qh (pij, tn+1)

qij
min ≤ q(pij, tn+1) ≤ qij

max

qn+1
* = argmin

q∈Qr
q− q̂

0

2 subject to  
qdx

Ω

∫ = qn dx
Ω

∫

qij
min ≤ qij ≤ qij

max

&

'
(

)(

Conservation 

Local bounds 

TBD later! 
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Algebraic form 

qn+1 = argmin
q

qTMq+ cTq+ c0 subject to  
wTq =wTq n

qmin ≤ q ≤ qmax

"
#
$

%$

Conservation 

Local bounds 

☞  Example of a “singly linearly constrained QP with simple bounds” 
☞  QP structure admits a fast O(N) optimization algorithm. 

Theorem (Existence of optimal solutions) 
The feasible set of the optimization problem for the solution transfer is 
non-empty. The problem has a unique optimal solution. 
 

M = φijφkl dx
Ω

∫ = diag(Mij ); c = −2Mq̂; c0 = q̂
TMq̂; w→  Gauss-Lobato weights
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L(q,λ,µ1,µ2 ) = Mij qij − q̂ij( )
2

node
∑ −λ wij qij − qij,n( )

node
∑ − µ1,ij (qij − qiji

min )
node
∑ − µ2,ij (qij − qiji

max )
node
∑

qij = q̂ij +λ +µ1,ij −µ2,ij
qiji
min ≤ qij ≤ qiji

max

µ1,ij ≥ 0, µ2,ij ≥ 0

µ1,ij (qij − qiji
min ) = 0,

µ2,ij (qij − qiji
max ) = 0

$

%

&
&
&

'

&
&
&

and wij qij − qij,n( )
node
∑ = 0

The Lagrangian 

The Karush-Kuhn-Tucker (KKT) conditions 

Without the equality constraint the 
QP splits into N one-dimensional 
QPs with simple bounds: 

Without the equality constraint the KKT 
conditions are fully separable and can 
be solved for any fixed value of λ. 

qij,n+1 = argmin
qij

Mij qij − q̂ij( )
2

subject to  qiji
min ≤ qij ≤ qiji

max

qij,n+1=med(qiji
min, q̂ij,qiji

max )
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qij = qij +λ; µ1,ij = 0; µ2,ij = 0                   if   qiji
min ≤ qij +λ ≤ qiji

max

qij = qiji
min; µ2,ij = 0; µ1,ij = qij − qiji −λ    if   qiji

min ≥ qij +λ

qij = qiji
max; µ1,ij = 0; µ2,ij = qij − qij +λ     if             qij +λ ≥ qiji

max

$

%
&&

'
&
&

Step 1: solve for λ fixed 

qij (λ) =med(qiji
min, qij +λ,qiji

max );

Step 2: adjust λ in an outer iteration to satisfy the single equality constraint 

Solve wij qij (λ)− qij,n( )
node
∑ = 0

-  Piecewise linear, monotonically increasing function of single scalar variable λ  
-  Can solve to machine precision by a simple secant method  
-  Globalization is unnecessary: λ0=0 is an excellent initial guess:  

-                solves the QP without the equality constraint, i.e., “almost” a solution 
-  Locality                     barely violates the mass conservation constraint 

qij (λ0 )
⇒ qij (λ0 )

Trivial, communication-free 
O(N) computation 

qij (λ0 ) =med(qiji
min, qij,qiji

max );

Mass-form OBR algorithm
Second, we adjust � in an outer iteration in order to satisfy

CX

i=1

�mi (�) = 0 .

When we find the �⇤ such that
PC

i=1 �mi (�⇤) = 0 holds, we will have
solved the full KKT conditions.

The function
PC

i=1 �mi (�) is a piecewise linear, monotonically increasing
function of a single scalar variable �. Therefore, a secant method can
be e�ciently employed as the outer iteration.

0
�

. . . given �p , �c , rp
1 Compute �mi (�c ) 

median(emmin
i � mi , �m

T
i + �c , emmax

i � mi ) 8i .

Compute residual rc  
PC

i=1 �mi (�c ).

2 Set ↵ (�p � �c )/(rp � rc ). Set rp  rc .

3 Set �p  �c . Set �c  �c � ↵rc .

In all our examples, the algorithm requires  5 secant iterations!

,
D. Ridzal Feature-preserving solution transfer 22
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For solenoidal fields Step 2 is trivial: 
Dρ
Dt

= 0  ⇒ ρ(x(t), t) = const

Dq
Dt

= 0  ⇒ q(x(t), t) = const

ρh (pij, tn+1) = ρ(tn+1) = ρ(tn ) = ρh ( pij, tn )

qh (pij, tn+1) = q(tn+1) = q(tn ) = qh ( pij, tn )

qij
min =min

p∈Κ
q(pij, tn )

qij
max =max

p∈Κ
q(pij, tn )

Tight bounds Loose bounds 

Solution is constant along Lagrangian paths ⇒ taking min/max in a neighborhood 
of  the departure points is sufficient to determine solution bounds: 

K 



SAND2015-3701 C 

SAND2015-3701 C 

RotaLonal	
  flow:	
  LeVeque’s	
  combo	
  

48	
  R. J. LeVeque, High-resolution conservative algorithms for advection in incompressible flow, SINUM 33 (1996) 627–665. 

u(p, t) = 0.5− y
0.5− x

"

#
$$

%

&
''Zalesak cylinder, cone and a smooth hump 

80x80 bi-cubic elements; CFL=0.7  
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u(p, t) =
sin(π x)2 sin(2π y)cos(π t /T )
−sin(π y)2 sin(2π x)cos(π t /T )

"

#

$
$

%

&

'
'

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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0.7

0.8

0.9

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

q(x, t) = 0.5(1.0+ cos(πr1)); r1 =
min(r, r0 )

r0

80x80 bi-cubic elements; CFL=0.7  

R. J. LeVeque, High-resolution conservative algorithms for advection in incompressible flow, SINUM 33 (1996) 627–665. 
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0
L1 Convergence Rates for Limiters With Deformational Flow

 

 

No Limiting
QM Interp−Loose Bounds
QM Interp−Tight bounds
QM Reconstruction

h3

15.8489 25.1189 39.8107 63.0957
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−4

10
−3

10
−2

10
−1

10
0
L∞ Convergence Rates for Limiters With Deformational Flow

 

 

No Limiting
QM Interp−Loose Bounds
QM Interp−Tight bounds
QM Reconstruction

h3

A SE+SL method with limiters would typically truncate the 
order of convergence to 2 even for L1 errors.    

We see essentially no degradation in the 3rd order L1 error 
rate (compared to “raw” solution convergence). 

Tight 
Loose 
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CFL=14.08 

60x60 bi-cubic elements; 20 full revolutions. 

CFL=7.04 
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For∇⋅u ≠ 0 the density equation is a balance rather than a conservation law. 

⇒ The density is not constant along Lagrangian paths.  
⇒ Taking min/max in a neighborhood of the departure points is not appropriate.  

∂V
∂t

+u ⋅∇V =V∇⋅u

∂ρ
∂t
+u ⋅∇ρ = −ρ∇⋅u

$

%
&&

'
&
&

⇒
∂ρV
∂t

+u ⋅∇(ρV ) = 0 ⇒
D(ρV )
Dt

= 0

Solution: combining the Geometric Conservation Law and the balance law 

GC Law: 

Balance law: 

The idea is to associate and track an arbitrary initial volume V0 and “mass” with 
every GLL point and use these quantities to provide bounds for the density. 

yields a new conservation law for the point “mass” distribution             . M := ρV
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ρmin =
M min

Vn+1

4a. Solve the GCL in [tn,tn+1] 

DV
Dt

=V∇⋅u  and  V (tn ) =Vn

Assume Vn and Mn are given at tn : 

4d. Solve the mass law in [tn,tn+1] 

DM
Dt

= 0  and  M (tn ) =Mn

4b. Determine local bounds for the point masses: 

Mij
min =min

p∈Κ
M (pij, tn ) Mij

max =max
p∈Κ

M (pij, tn )

4c. Determine local bounds for the density: 

ρmax =
M max

Vn+1

Vn+1 =V (tn+1)

Mij
min =min

p∈Κ
M (pij, tn )

Mij
max =max

p∈Κ
M (pij, tn )

Vn+1Vn



SAND2015-3701 C 

SAND2015-3701 C 

Divergent	
  flow	
  

54	
  
80x80 bi-cubic elements; CFL=0.7  

u(p, t) =
−sin(π x)2 sin(2π (y− 0.5))cos(π (y− 0.5)2 cos(π t /T )

1
2
sin(π x)cos(π (y− 0.5))3 cos(π t /T )

"

#

$
$
$

%

&

'
'
'
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•  Cell-centered schemes are ubiquitous in legacy DOE codes. However, 

-  These schemes use monotone reconstruction, i.e., limiters to control bounds. 
-  Limiters use local “worst case” scenarios when enforcing the bounds. 
-  Limiters entangle accuracy with preservation of bounds, which obscures 

sources of discretization errors.  

•  Besides getting a better scheme we will have another chance to showcase the 
use of optimization to preserve physical properties! 

Why do we care about cell-centered schemes? 

Cell-centered discretization of density and tracer 

!C(!(t))

C(!(t))

!i (t)
qi (t)

!!i (t)
!qi (t)

!i (t +!t)
qi (t +!t)

C(!(t +"t))

mi = ρ dx
Ci

∫

µi = dx
Ci

∫
ρi =

mi

µi

qi =
Qi

miQi = ρqdx
Ci

∫

Cell mass 

Cell area 
Cell average density 

Cell average tracer 
Cell tracer 
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  cell-­‐centered	
  SL	
  scheme	
  

56	
  

!C(!(t))

C(!(t))

!i (t)
qi (t)

!!i (t)
!qi (t)

!i (t +!t)
qi (t +!t)

C(!(t +"t))d
dt

ρ dx
Ci

∫ = 0

d
dt

ρqdx
Ci

∫ = 0

For Lagrangian volumes 

Step 2: Remap Lagrangian quantities from arrival to departure grid:   

•  Reconstruct       such that 

•  Reconstruct       such that 

Step 1: Trace back cell vertices to find the Lagrangian  (departure) grid  C(Ω(t))

ρi
qi

ρi
min ≤ ρi ≤ ρi

max

qi
min ≤ qi ≤ qi

max
Lagrangian 
quantities 

mi = ρi dx
Ci

∫

Qi = ρi qi dx
Ci

∫

!
"
#

!
"
#

Step 3: Update values on the Eulerian (arrival) grid C(Ω(t))

Dukowicz and Baumgardner (2000) JCP 

mi (t +Δt) =mi (t)

Qi (t +Δt) =Qi (t)

mi (t +Δt) = mi ρi =
mi

µi
Qi (t +Δt) = Qi qi =

Qi

mi
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Step 2: Remap Lagrangian quantities from arrival to departure grid:   

•  Reconstruct       without applying bounds 

•  Reconstruct       without applying bounds 

•  Solve two quadratic programs (QP) for the Lagrangian quantities: 

Step 1: Trace back cell vertices to find the Lagrangian  (departure) grid  C(Ω(t))

ρi
qi

Lagrangian 
targets 

mi
T = ρi dx

Ci

∫

Qi
T = ρi qi dx

Ci

∫

!
"
#

!
"
#

min
mi

     mi − mi
T( )

2

Ci

∑    subject to

mi
Ci

∑ =M; and mi
min ≤ mi ≤mi

max

min
Qi

     Qi − Qi
T( )

2

Ci

∑    subject to

Qi
Ci

∑ =Q; and Qi
min ≤ Qi ≤Qi

max

Step 3: Update values on the Eulerian (arrival) grid C(Ω(t))

mi (t +Δt) = mi ρi =
mi

µi
Qi (t +Δt) = Qi qi =

Qi

mi
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•  The solution is a globally optimal state that also satisfies the bounds: 
-  By definition it is the best possible solution satisfying the bounds! 

•  The solution provably preserves linear tracer correlations. 

•  The two QPs have the exact same structure as in the SE-SL case: 
-  We have a fast, scalable optimization algorithm! 
-  Solution times are essentially the same as for conventional limiters: 

Cells Time 
steps 

FCT 
(sec) 

Van Leer  OB-SL  Ratio 

64x64 400 4.51 4.55 4.98 1.1 
128x128 810 47.60 48.35 48.78 1.0 
256x256 1,610 390.47 399.15 405.92 1.0 
512x512 3,220 5802.05 5804.66 5655.00 0.9 

Timings for Leveque’s combo example.  

0.2 0.4
0.6 0.8

1
0.20.40.60.81

0
0.2
0.4
0.6
0.8
1

xy

Vectorized Matlab code: wall-clock times on a 3.06GHz Intel Core Duo MacBook Pro 
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Convergence Test

t = 0 t = 2.5 t = 5

OBT⇤ Unlimited
mesh steps l

2

l1 l

2

l1

3

� 600 0.386 0.465 0.368 0.425
1.5

� 1200 0.182 0.268 0.172 0.225
0.75

� 2400 0.0626 0.113 0.0559 0.0843
0.375

� 4800 0.0167 0.0425 0.0144 0.0233

Rate 1.51 1.16 1.56 1.40
3 1.5 0.75 0.375

10−2

10−1

100

 

 
l2 OBT
l
∞

 OBT
l2 Unlim
l
∞

 Unlim

⇤ Optimization-based transport

April 7, 2014 14

Smooth Gaussian hills on a cubed sphere mesh  

Using optimization to enforce bounds does not lead to degradation of accuracy! 
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Linear Tracer Correlation Test

Two tracers with initial distributions linearly correlated cosine bells,
q

1

has min = 0.1 and max = 1.0, q
2

= �0.8q
1

+ 0.9.

q1 q2

Correlation t = 2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

q1

q 2

April 7, 2014 15

Initial tracer distributions: two linearly correlated cosine bells 

q2=-0.8q1+0.9	



Optimization formulation provably preserves linear tracer correlations 
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All we did was switch from RK4 to a forward Euler. Clearly Euler is less 
accurate but it is still supposed to preserve constant in time functions.   
So what is causing such a dramatic deterioration in the solution? 

Do you think there’s anything wrong with this result? 

1.7 

2.1 

2.0 

Everything! Density is supposed to be constant in time!  
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Let’s take ρ=const and examine what happens during a single time step: 

mi = ρi dx
Ci

∫ = ρconst µiρi (t) =
mi

µi

= ρconst

ρi = ρconst mi (t +Δt) = mi

ρi (t +Δt) =
mi

µi

!C(!(t))

C(!(t))

!i (t)
qi (t)

!!i (t)
!qi (t)

!i (t +!t)
qi (t +!t)

C(!(t +"t))

Ci
EXACT

Ci

d
dt

dx
Ci

∫ = 0

Our departure grid 
approximates the true 

Lagrangian grid, hence it 
violates the property that 

non-divergent Lagrangian 
flows preserve volumes! 

ρi (t +Δt) =
mi

µi

=
ρconst µi

µi

= ρconst
µi

µi

≠ ρconst
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Our scheme violates the Geometric Conservation Law (GCL), 
which is critical for methods involving any kind of moving grids:  

Currently available solutions for dealing with the GCL 

Use more Lagrangian points.  
Lauritzen, Nair, Ullrich, A conservative semi-Lagrangian multi-tracer 
transport scheme on the cubed-sphere grid, JCP 229/5 (2010)  

Arbogast, Huang, A fully mass and volume conserving implementation 
of a characteristic method for transport problems, SISC 28 (6) (2006). 

Cossette, Smolarkiewicz, Charbonneau, The Monge–Ampere 
trajectory correction for semi-Lagrangian schemes, JCP, (2014) – 

Heuristic mesh adjustment procedure: 

Monge-Ampere trajectory correction 

Author's personal copy

2.1. Upstream integrals

The sub-domains ak‘ over which must be integrated can have many possible shapes (Fig. 3). The practical difficulty in
developing analytical integrals that cover all possible cases is, in general, somewhat complicated but not impossible [23].
Instead the problem can be greatly simplified by converting the area-integrals into line-integrals by appropriate use of
the Gauss–Green theorem [6].

2.1.1. Lagrangian cell boundary computation (search algorithm)
Suppose the trajectories for the vertices of ak are given. Finding the location of the vertices of ak‘ basically reduces to the

computation of intersections between coordinate lines (sides of A‘) and lines of arbitrary orientation (sides of ak‘). Only three
intersection scenarios are possible when marching counter-clockwise along a side of ak‘: Intersection with a horizontal coor-
dinate line (Fig. 4(a)), intersection with a vertical coordinate line (Fig. 4(b)) or intersection with a vertex of A‘ (Fig. 4(c)). The
coordinates of the crossing are simply the location of the intersection between straight lines. Let Nh be the number of vertices
of ak‘. The coordinates of the vertices of the polygon ak‘ are denoted ðxk‘;h; yk‘;hÞ; h ¼ 1; . . . ;Nh, and are numbered counter-
clockwise (Fig. 5). The first subscript k refers to the kth departure cell to which ak‘ belongs, ‘ refers to the fact that
ðxk‘;h; yk‘;hÞ is a vertex in the grid cell A‘ and h is the local index for the numbered vertices of ak‘.

(b)(a) (c) (d)

Fig. 2. Schematic illustrations of possible approximations to the analytical departure cell boundary (solid curved line) using different levels of refinement
with piecewise straight lines. (a) The approach used in this paper connects the four vertices of the departure cell (filled circles) with straight lines. To
improve the approximation to the departure cell one may introduce (b) one, (c) two or (d) three Lagrangian points along the cell sides (unfilled circles) and
connect these by straight line segments to converge towards the exact departure cell boundary.

(a) (b)

(c) (d)

Fig. 3. A schematic illustration of some of the possible shapes the polygons ak‘ (shaded areas) may take depending on the location of the departure points
(filled circles). The number of vertices can be (a) 3, (b) 4, (c) 5, (d) 6 and even more depending on the flow and time-step.

1404 P.H. Lauritzen et al. / Journal of Computational Physics 229 (2010) 1401–1424

2010 TODD ARBOGAST AND CHIEH-SEN HUANG

! Adjusted point to remain
fixed at this stage." Points adjusted simulta-
neously in the direction
of the characteristic.

× Points adjusted “side-
ways” to the flow.

>
Flow
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Fig. 6.1. The adjustment of the trace-back regions. At each adjustment stage, the points marked
with a solid dot remain fixed. In the first step, the points marked with a circle are simultaneously
adjusted to obtain volume balance of the entire layer. In the second step, the points marked with a
cross are adjusted to obtain volume balance for each element.

>

Flow ×
xi,j+1/2
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Fig. 6.2. The adjustment of the interior midpoints. The points marked with a solid dot remain
fixed, and the points marked with a cross are adjusted to obtain volume balance for each element.

converging to the correct τn. This method works well since points trace toward the
sources backward in time, and so τn < tn adjusts the region to have less volume while
τn > tn gives more volume. At the conclusion of this step, we have volume balance
for the layer, but not for each element.

The second step is to adjust the interior midpoints of the layer to obtain volume
balance of each element. We choose to adjust in the direction of maximal change
to the volume (so that points move minimally). As depicted in Figure 6.2, we ad-
just, e.g., xi,j+1/2 = (xi, yj+1/2) along the line through its unadjusted position and
perpendicular to the line adjoining vertices xi,j and xi,j+1. On an exterior no-flow
boundary where u(x) · ν(x) = 0, points should not be adjusted, since they can move
only tangentially along the boundary, and so do not change volumes.

The trace-back layers can be of several types. Around an injection well, we may
have a closed ring, in which case we may fix one of the midpoints and adjust the rest
in sequence around the ring. The volume of the entire ring is correct, so adjustment
of the last point will correct the volumes of the final two elements. We may also
have a simple layer which meets the external boundary on two ends. Even if we
are not allowed to change the end trace-back midpoints (because of no-flow boundary
conditions), again we can meet the volume constraint for each element since the entire
layer has the proper volume.

Things get more complex with multiple injection wells and/or inflow boundaries,
since these can produce multiple basins of attraction. In that case, care must be taken
when multiple trace-back adjustment layers intersect. In principle this problem can
be resolved, either through human intervention or automatically. Automatic handling

d
dt

dx
Ci (t )
∫ = u ⋅nds

∂Ci (t )
∫

Thomas, Lombardi, AIAA 17, 1979 

•  No theoretical assurance of completion.  

•  Requires nontrivial solution of the nonlinear MAE  
•  Approximate: GCL ≈ accuracy of MAE scheme  

•  Enforces GCL approximately.  

pij
corr = pij + (t − tn )∇φ; det

∂pij
corr

∂x
=1

Correct departure points according to 
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Statement of the volume correction problem  

C(Ω) co ∈ R
m   such that  c0,i

Ci

∑ = Ω   and  c0,i ≥ 0 ∀iGiven: source mesh           and  

Find: a volume compliant mesh            such that: C(Ω)

a)            has the same connectivity as the source mesh 
b)  The volumes of its cells match the volumes prescribed in c0	



c)  Every cell                   is valid; or convex 
d)  Boundary points in           correspond to boundary points in  

Ci ∈C(Ω)
C(Ω) C(Ω)

C(Ω)

•  The volume correction problem may or may not have a solution! 
•  An important setting in which solution always exist is when 

C(Ω)The source mesh          is transformation of another mesh          such that: 

C(Ω)

∀

Ci ∈


C(Ω)   is valid, or convex and  


Ci = c0,i

In this case                       is a trivial solution of the volume correction problem C(Ω) =

C(Ω)
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We consider quads (simplices are actually easier). We need few things: 

∀Ci ∈C(Ω),      Ci =
1
2

(xi,1 − xi,3 )(yi,2 − yi,4 )+ (xi,2 − xi,4 )(yi,3 − yi,1)( )

  

Ci

Ti,r ∈Ci,      Ti,r =
1
2
xi,ar (yi,cr − yi,br )− xi,br (yi,ar − yi,cr )− xi,cr (yi,br − yi,ar )( )

Convexity indicator for a quad cell: 

Oriented volume of a quad cell: 

Ti,r ∈Ci,    Ti,r = (par , pbr , pbr ) (ar,br,cr ) =

(1, 2, 4) r =1
(2,3, 4) r = 2
(1,3, 4) r = 3
(1, 2,3) r = 4

!

"
##

$
#
#

Ci is convex, if the oriented areas of all its triangles are positive:  ∀Ti,r ∈Ci,  Ti,r > 0

Partitioning of a quad into triangles: 

Oriented volume of a triangle 
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Optimization objective: 

J0 (p, p) =
1
2
d(C(Ω), C(Ω))2 = p− p

2
2

Optimization constraints: 

Mesh distance 

①  Volume equality 

②  Cell convexity 

③  Boundary compliance 

∀Ci ∈C(Ω),      Ci = c0,i

∀Ci ∈C(Ω), ∀Ti,r ∈Ci,  Ti,r > 0

∀pj ∈∂Ω, γ (pj ) = 0

Nonlinear programming problem (NLP) 

p∗ = argmin J0 (p, p)  subject to  (1), (2),  and (3){ }
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  NLP	
  formulaLon	
  

•  Boundary compliance on polygonal Ω can be subsumed in the volume constraint   

Specialization to simplicial cells 

•  Convexity can be enforced weakly by logarithmic barrier functions 

p∗ = argmin J(p)  subject to  Ci = c0,i ∀i{ } J(p) = J0 (p)−β log Ti,r
Ti,r∈Ci

∑
Ci

∑

•  This leaves only the equality volume constraint and gives the simplified NLP: 

Consider a polygonal domain: 

A simplex is valid if and only if Ci > 0A valid simplex is always convex 

Since c0,i >0, the volume equality constraint                                       implies             ! ∀Ci ∈C(Ω),  Ci = c0,i Ci > 0

p∗ = argmin J0 (p)  subject to  Ci = c0,i ∀i{ }

67	
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Based on the inexact trust region sequential quadratic programming (SQP) method of Ridzal 
and Heinkenschloss. Key properties of the inexact SQP approach:  

•  Fast local convergence, based on its relationship to Newton’s method,  
•  Flexibility to use iterative (‘inexact’) linear systems solvers, enabling an efficient solution of 

very large nonlinear optimization problems.  
•  Key requirement in the method: design of an efficient preconditioner. 

M. Heinkenschloss, D. Ridzal, A Matrix-Free Trust-Region SQP Method for Equality Constrained Optimization, SIAM 
Journal on Optimization 24 (3) (2014) 1507–1541.  

Given an optimization iterate pk all linear systems involved are of the form 

I ∇C(pk )T

∇C(pk ) 0

"

#

$
$

%

&

'
'

v1

vv
"

#
$$

%

&
''=

b1

b2
"

#
$$

%

&
'' C(pk ) - polynomial matrix function of coordinates 

π k =
I 0

0 ∇C(pk )∇C(pk )T +εI( )
−1

#

$

%
%

&

'

(
(

•  ε>0 small parameter ~ 10-8h	



•                                     formed explicitly 

•  Inverse applied using ML Trilinos       
(smoothed aggregation AMG) 

∇C(pk )∇C(pk )T +εI

Preconditioner 
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Models the evolution of the computational mesh under a non-divergent velocity 

u(p, t) =
sin(π x)2 sin(2π y)cos(π t /T )
−sin(π y)2 sin(2π x)cos(π t /T )

"

#

$
$

%

&

'
'

Deformational 

R. J. LeVeque, High-resolution conservative algorithms for advection in incompressible flow, SINUM 33 (1996) 

Exact Source (uncorrected) Compliant (corrected) 

u(p, t) = 0.5− y
0.5− x

"

#
$$

%

&
''Rotational 

Deformational 
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- exact Lagrangian mesh 

- source (uncorrected) 

- compliant (corrected) 

Cell barycenters 

Invalid cell in the source mesh: 
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•  The shapes of the corrected cells are close to the exact Lagrangian shapes 
•  The barycenters of the corrected cells are very close to the exact barycenters 
•  The trajectories of the corrected points track the exact Lagrangian trajectories very closely 

Point trajectories 
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Rotational flow Deformational flow 

We observe significant improvements in the geometry of the corrected mesh: 
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Recall the cell-centered optimization-based semi-Lagrangian scheme: 

Step 2: Optimization-based remap of Lagrangian values from arrival to departure grid.   

Step 1: Trace back cell vertices to find the Lagrangian  (departure) grid  C(Ω(t))

Step 3: Update values on the Eulerian (arrival) grid C(Ω(t))

We modify it to include a volume correction step: 

Step 2:  Optimization-based remap of Lagrangian values from arrival to departure grid.   

Step 1:  Trace back cell vertices to find the Lagrangian  (departure) grid  C(Ω(t))

Step 3:  Update values on the Eulerian (arrival) grid C(Ω(t))

Step 1+: Correct the departure grid to match the cell volumes of the arrival grid 
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Plots of the density at time tN = 1.5 for Forward Euler simulations with ∆t = 0.006	
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Uncorrected Corrected Comparison 

Constant in time density: rotational flow 
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Initial cylindrical density distribution: rotational flow 

Uncorrected Corrected Comparison 

Plots of the density at time tN = 1.5 for Forward Euler simulations with ∆t = 0.006	
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Traditional approaches to devise stable and accurate numerical methods 
are reaching a point of diminishing returns for complex applications 
involving multiple mathematical models, requiring diverse, heterogeneous 
numerical methods. 

The use of optimization ideas to couple hetergoeneous numerical methods 
and to preserve the relevant physical properties is very promising 

However, its success depends critically on the availability of efficient and 
scalable optimization algorithms to solve the resulting QPs and NLPs. 

We’ve presented two examples where such algorithms are available and 
optimization leads to successful heterogenous numerical methods and 
property preserving schemes. 


