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Reliability/integrity assessment framework 
in ASME B31.12 requires fracture data in H2

gas
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• Two fracture properties in H2 needed
– Fatigue crack growth law
– Fracture threshold

• Reliability/assessment framework 
accommodates H2 embrittlement 
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Material Tested: API 5L X65 steel 
with GMAW 
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C Mn P S B Si Cu Ni Nb Ti

0.08 1.53 0.01 0.001 0.002 0.32 0.024 0.038 0.039 0.002

Material
YS 

(MPa)
UTS 

(MPa)

Base 
Material

478 564

GMAW 591 662

Gas Metal  Arc Weld (GMAW)

508 mm OD / 25.4 mm thickness

Base Metal Chemical Composition (wt %)

Filler metal: Thyssen TS-6 ER70S-G
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GMAW Fusion Zone
(FZ)

Base Metal (BM) Heat Affected Zone
(HAZ)

Microstructure of X65
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INERT ENVIRONMENT H2 ENVIRONMENT

Measure fatigue crack growth in 
high-pressure H2

• Specimen Geometry

– 12.7 or 6.4 mm Compact Tension, C(T)

– 4.7 mm thick Eccentrically loaded single edge 
notched tension, ESE(T)

• Instrumentation

– Internal load cell in feedback loop

– Crack-opening displacement measured 
internally using LVDT or clip gage

– Crack length calculated from compliance

• Mechanical loading

– Triangular load-cycle waveform

– Constant load amplitude (increasing K)

– � = 	
����

����
= 0.5

• Environment

– Primary supply gas: 99.9999% H2

– Pressure = 21 MPa (3,000 psi) 

– Room temperature (295 K)
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INERT ENVIRONMENT H2 ENVIRONMENT

Non-uniform crack fronts in weld FZ 
and HAZ specimens

FZ HAZ
Compact Tension C(T) 
specimens extracted from pipe
- Entire crack plane contained 

in FZ or HAZ
- Non-uniform crack fronts 

observed
- Attributed to residual stress 

T. Neeraj, Sci. Tech. Weld. Join., 2011

Alternate standardized 
test specimen geometry 
necessary for weld FZ 
testing: ESE(T)

..
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Repeatable da/dN vs. K curves for 
BM, FZ, and HAZ in 21 MPa H2

• Triplicate tests revealed 
repeatable results

• Results do not account for 
residual stressKapplied (MPa m1/2)



Analysis performed to account for effect of 
residual stress on crack-driving force
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• Compressive residual stress induces “crack closure”, 
reducing crack-driving force from K to Keff8
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Residual stress can reduce Kmax

~ affect onset of HA-FCG

• Compressive residual stress will 
reduce Kmax to Keff

max
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[Suresh & Ritchie, 1982]
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Compressive residual stress can 
reduce Keff

max

• Calculated residual 
stress effect on Kmax

 Kres

• BM exhibited negligible 
Kres

• HAZ exhibited 
greater Kres

Keff = Kapp + Kres

Reduction in Keff
max could artificially shift the onset of 

HA-FCG to higher K values 

(Lados, 2007)
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Crack closure reduces Keffective

• Crack closure: crack remains closed 
for portion of loading cycle

• Adjusted Compliance Ratio (ACR) 
method implemented to remove 
effects of closure 
 Keffective

- Reveals higher FCGR in HAZ 
compared to BM

Highlights importance in comparing intrinsic 
fatigue behavior

(Donald, 1997)



• Need:

– Pipeline ID

– Pressure cycle range

– Initial flaw size (ao)

– Inspection interval (cycles, N)

Measured fatigue crack growth relationships 
can be used to specify wall thickness for H2

pipelines

da/dN=CKeff
m

12
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Summary

• Completed triplicate fatigue measurements of X65 pipe 
girth weld, HAZ, and BM in 21 MPa H2 gas, results were 
reproducible 

– Welds appear to be more susceptible to H2-accelerated fatigue crack 
growth compared to base metal

– HAZ results show slightly higher FCGR when extrinsic factors such as 
crack closure and residual stress effects were removed

• Comparison of intrinsic FCG behavior (e.g. Keff) is 
necessary for evaluating microstructure performance in 
hydrogen 

– Requires removal of extrinsic effects specific to pipe 
(crack closure, residual stress, etc…)
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Crack closure appears to occur in HAZ even 
at R = 0.5, resulting in Keff < Kapplied
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Decreased Keff may account 
for reduced FCGR in HAZ
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Possible sources of crack 
closure
• Residual stress
• More pronounced 

Mode II loading



Crack closure: crack remains in closed position 
even when tensile load is applied
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• Below Pcl, contribution to 
stress intensity is reduced

• Crack closure observed in 
load-displacement curves as 
change of slope at lower loads
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Adjusted Compliance Ratio (ACR) was used to 
correct for crack closure

• Alternative method is ASTM 2% compliance offset method
• Both methods are used to determine Keffective

• ∆�������� >	∆����������
���

(Donald, J.K. 2007)

��� =
�� − ��
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Keffective = Kapp x ACR
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Compressive residual stress can reduce Keff
max

{Lados, 2006}

time
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increasing crack growth
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increasing crack growth

• Calculate Kres from load-disp
curves


